|  | //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements the lowering of LLVM calls to machine code calls for | 
|  | /// GlobalISel. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPUCallLowering.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPULegalizerInfo.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/IR/IntrinsicsAMDGPU.h" | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-call-lowering" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. | 
|  | static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, | 
|  | Register ValVReg, CCValAssign &VA) { | 
|  | if (VA.getLocVT().getSizeInBits() < 32) { | 
|  | // 16-bit types are reported as legal for 32-bit registers. We need to | 
|  | // extend and do a 32-bit copy to avoid the verifier complaining about it. | 
|  | return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); | 
|  | } | 
|  |  | 
|  | return Handler.extendRegister(ValVReg, VA); | 
|  | } | 
|  |  | 
|  | struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { | 
|  | AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, | 
|  | MachineInstrBuilder MIB) | 
|  | : OutgoingValueHandler(B, MRI), MIB(MIB) {} | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | Register getStackAddress(uint64_t Size, int64_t Offset, | 
|  | MachinePointerInfo &MPO, | 
|  | ISD::ArgFlagsTy Flags) override { | 
|  | llvm_unreachable("not implemented"); | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | llvm_unreachable("not implemented"); | 
|  | } | 
|  |  | 
|  | void assignValueToReg(Register ValVReg, Register PhysReg, | 
|  | CCValAssign VA) override { | 
|  | Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); | 
|  |  | 
|  | // If this is a scalar return, insert a readfirstlane just in case the value | 
|  | // ends up in a VGPR. | 
|  | // FIXME: Assert this is a shader return. | 
|  | const SIRegisterInfo *TRI | 
|  | = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); | 
|  | if (TRI->isSGPRReg(MRI, PhysReg)) { | 
|  | LLT Ty = MRI.getType(ExtReg); | 
|  | LLT S32 = LLT::scalar(32); | 
|  | if (Ty != S32) { | 
|  | // FIXME: We should probably support readfirstlane intrinsics with all | 
|  | // legal 32-bit types. | 
|  | assert(Ty.getSizeInBits() == 32); | 
|  | if (Ty.isPointer()) | 
|  | ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0); | 
|  | else | 
|  | ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0); | 
|  | } | 
|  |  | 
|  | auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, | 
|  | {MRI.getType(ExtReg)}, false) | 
|  | .addReg(ExtReg); | 
|  | ExtReg = ToSGPR.getReg(0); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildCopy(PhysReg, ExtReg); | 
|  | MIB.addUse(PhysReg, RegState::Implicit); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { | 
|  | uint64_t StackUsed = 0; | 
|  |  | 
|  | AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) | 
|  | : IncomingValueHandler(B, MRI) {} | 
|  |  | 
|  | Register getStackAddress(uint64_t Size, int64_t Offset, | 
|  | MachinePointerInfo &MPO, | 
|  | ISD::ArgFlagsTy Flags) override { | 
|  | auto &MFI = MIRBuilder.getMF().getFrameInfo(); | 
|  |  | 
|  | // Byval is assumed to be writable memory, but other stack passed arguments | 
|  | // are not. | 
|  | const bool IsImmutable = !Flags.isByVal(); | 
|  | int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); | 
|  | MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); | 
|  | auto AddrReg = MIRBuilder.buildFrameIndex( | 
|  | LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); | 
|  | StackUsed = std::max(StackUsed, Size + Offset); | 
|  | return AddrReg.getReg(0); | 
|  | } | 
|  |  | 
|  | void assignValueToReg(Register ValVReg, Register PhysReg, | 
|  | CCValAssign VA) override { | 
|  | markPhysRegUsed(PhysReg); | 
|  |  | 
|  | if (VA.getLocVT().getSizeInBits() < 32) { | 
|  | // 16-bit types are reported as legal for 32-bit registers. We need to do | 
|  | // a 32-bit copy, and truncate to avoid the verifier complaining about it. | 
|  | auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); | 
|  |  | 
|  | // If we have signext/zeroext, it applies to the whole 32-bit register | 
|  | // before truncation. | 
|  | auto Extended = | 
|  | buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); | 
|  | MIRBuilder.buildTrunc(ValVReg, Extended); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  |  | 
|  | auto MMO = MF.getMachineMemOperand( | 
|  | MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, | 
|  | inferAlignFromPtrInfo(MF, MPO)); | 
|  | MIRBuilder.buildLoad(ValVReg, Addr, *MMO); | 
|  | } | 
|  |  | 
|  | /// How the physical register gets marked varies between formal | 
|  | /// parameters (it's a basic-block live-in), and a call instruction | 
|  | /// (it's an implicit-def of the BL). | 
|  | virtual void markPhysRegUsed(unsigned PhysReg) = 0; | 
|  | }; | 
|  |  | 
|  | struct FormalArgHandler : public AMDGPUIncomingArgHandler { | 
|  | FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) | 
|  | : AMDGPUIncomingArgHandler(B, MRI) {} | 
|  |  | 
|  | void markPhysRegUsed(unsigned PhysReg) override { | 
|  | MIRBuilder.getMBB().addLiveIn(PhysReg); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallReturnHandler : public AMDGPUIncomingArgHandler { | 
|  | CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | MachineInstrBuilder MIB) | 
|  | : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} | 
|  |  | 
|  | void markPhysRegUsed(unsigned PhysReg) override { | 
|  | MIB.addDef(PhysReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  | }; | 
|  |  | 
|  | struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { | 
|  | /// For tail calls, the byte offset of the call's argument area from the | 
|  | /// callee's. Unused elsewhere. | 
|  | int FPDiff; | 
|  |  | 
|  | // Cache the SP register vreg if we need it more than once in this call site. | 
|  | Register SPReg; | 
|  |  | 
|  | bool IsTailCall; | 
|  |  | 
|  | AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, | 
|  | MachineRegisterInfo &MRI, MachineInstrBuilder MIB, | 
|  | bool IsTailCall = false, int FPDiff = 0) | 
|  | : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), | 
|  | IsTailCall(IsTailCall) {} | 
|  |  | 
|  | Register getStackAddress(uint64_t Size, int64_t Offset, | 
|  | MachinePointerInfo &MPO, | 
|  | ISD::ArgFlagsTy Flags) override { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | Offset += FPDiff; | 
|  | int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); | 
|  | auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); | 
|  | MPO = MachinePointerInfo::getFixedStack(MF, FI); | 
|  | return FIReg.getReg(0); | 
|  | } | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (!SPReg) { | 
|  | const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>(); | 
|  | if (ST.enableFlatScratch()) { | 
|  | // The stack is accessed unswizzled, so we can use a regular copy. | 
|  | SPReg = MIRBuilder.buildCopy(PtrTy, | 
|  | MFI->getStackPtrOffsetReg()).getReg(0); | 
|  | } else { | 
|  | // The address we produce here, without knowing the use context, is going | 
|  | // to be interpreted as a vector address, so we need to convert to a | 
|  | // swizzled address. | 
|  | SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy}, | 
|  | {MFI->getStackPtrOffsetReg()}).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); | 
|  |  | 
|  | auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); | 
|  | MPO = MachinePointerInfo::getStack(MF, Offset); | 
|  | return AddrReg.getReg(0); | 
|  | } | 
|  |  | 
|  | void assignValueToReg(Register ValVReg, Register PhysReg, | 
|  | CCValAssign VA) override { | 
|  | MIB.addUse(PhysReg, RegState::Implicit); | 
|  | Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); | 
|  | MIRBuilder.buildCopy(PhysReg, ExtReg); | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | uint64_t LocMemOffset = VA.getLocMemOffset(); | 
|  | const auto &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  |  | 
|  | auto MMO = MF.getMachineMemOperand( | 
|  | MPO, MachineMemOperand::MOStore, MemTy, | 
|  | commonAlignment(ST.getStackAlignment(), LocMemOffset)); | 
|  | MIRBuilder.buildStore(ValVReg, Addr, *MMO); | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(const CallLowering::ArgInfo &Arg, | 
|  | unsigned ValRegIndex, Register Addr, LLT MemTy, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt | 
|  | ? extendRegister(Arg.Regs[ValRegIndex], VA) | 
|  | : Arg.Regs[ValRegIndex]; | 
|  | assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) | 
|  | : CallLowering(&TLI) { | 
|  | } | 
|  |  | 
|  | // FIXME: Compatibility shim | 
|  | static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { | 
|  | switch (MIOpc) { | 
|  | case TargetOpcode::G_SEXT: | 
|  | return ISD::SIGN_EXTEND; | 
|  | case TargetOpcode::G_ZEXT: | 
|  | return ISD::ZERO_EXTEND; | 
|  | case TargetOpcode::G_ANYEXT: | 
|  | return ISD::ANY_EXTEND; | 
|  | default: | 
|  | llvm_unreachable("not an extend opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, | 
|  | CallingConv::ID CallConv, | 
|  | SmallVectorImpl<BaseArgInfo> &Outs, | 
|  | bool IsVarArg) const { | 
|  | // For shaders. Vector types should be explicitly handled by CC. | 
|  | if (AMDGPU::isEntryFunctionCC(CallConv)) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, | 
|  | MF.getFunction().getContext()); | 
|  |  | 
|  | return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); | 
|  | } | 
|  |  | 
|  | /// Lower the return value for the already existing \p Ret. This assumes that | 
|  | /// \p B's insertion point is correct. | 
|  | bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, | 
|  | const Value *Val, ArrayRef<Register> VRegs, | 
|  | MachineInstrBuilder &Ret) const { | 
|  | if (!Val) | 
|  | return true; | 
|  |  | 
|  | auto &MF = B.getMF(); | 
|  | const auto &F = MF.getFunction(); | 
|  | const DataLayout &DL = MF.getDataLayout(); | 
|  | MachineRegisterInfo *MRI = B.getMRI(); | 
|  | LLVMContext &Ctx = F.getContext(); | 
|  |  | 
|  | CallingConv::ID CC = F.getCallingConv(); | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  |  | 
|  | SmallVector<EVT, 8> SplitEVTs; | 
|  | ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); | 
|  | assert(VRegs.size() == SplitEVTs.size() && | 
|  | "For each split Type there should be exactly one VReg."); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> SplitRetInfos; | 
|  |  | 
|  | for (unsigned i = 0; i < SplitEVTs.size(); ++i) { | 
|  | EVT VT = SplitEVTs[i]; | 
|  | Register Reg = VRegs[i]; | 
|  | ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); | 
|  | setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); | 
|  |  | 
|  | if (VT.isScalarInteger()) { | 
|  | unsigned ExtendOp = TargetOpcode::G_ANYEXT; | 
|  | if (RetInfo.Flags[0].isSExt()) { | 
|  | assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); | 
|  | ExtendOp = TargetOpcode::G_SEXT; | 
|  | } else if (RetInfo.Flags[0].isZExt()) { | 
|  | assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); | 
|  | ExtendOp = TargetOpcode::G_ZEXT; | 
|  | } | 
|  |  | 
|  | EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, | 
|  | extOpcodeToISDExtOpcode(ExtendOp)); | 
|  | if (ExtVT != VT) { | 
|  | RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); | 
|  | LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); | 
|  | Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Reg != RetInfo.Regs[0]) { | 
|  | RetInfo.Regs[0] = Reg; | 
|  | // Reset the arg flags after modifying Reg. | 
|  | setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); | 
|  | } | 
|  |  | 
|  | splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); | 
|  | } | 
|  |  | 
|  | CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); | 
|  |  | 
|  | OutgoingValueAssigner Assigner(AssignFn); | 
|  | AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); | 
|  | return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, | 
|  | CC, F.isVarArg()); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, | 
|  | ArrayRef<Register> VRegs, | 
|  | FunctionLoweringInfo &FLI) const { | 
|  |  | 
|  | MachineFunction &MF = B.getMF(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | MFI->setIfReturnsVoid(!Val); | 
|  |  | 
|  | assert(!Val == VRegs.empty() && "Return value without a vreg"); | 
|  |  | 
|  | CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); | 
|  | const bool IsShader = AMDGPU::isShader(CC); | 
|  | const bool IsWaveEnd = | 
|  | (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); | 
|  | if (IsWaveEnd) { | 
|  | B.buildInstr(AMDGPU::S_ENDPGM) | 
|  | .addImm(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned ReturnOpc = | 
|  | IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN; | 
|  | auto Ret = B.buildInstrNoInsert(ReturnOpc); | 
|  |  | 
|  | if (!FLI.CanLowerReturn) | 
|  | insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); | 
|  | else if (!lowerReturnVal(B, Val, VRegs, Ret)) | 
|  | return false; | 
|  |  | 
|  | // TODO: Handle CalleeSavedRegsViaCopy. | 
|  |  | 
|  | B.insertInstr(Ret); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, | 
|  | uint64_t Offset) const { | 
|  | MachineFunction &MF = B.getMF(); | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | Register KernArgSegmentPtr = | 
|  | MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | 
|  | Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); | 
|  |  | 
|  | auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); | 
|  |  | 
|  | B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); | 
|  | } | 
|  |  | 
|  | void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, | 
|  | uint64_t Offset, | 
|  | Align Alignment) const { | 
|  | MachineFunction &MF = B.getMF(); | 
|  | const Function &F = MF.getFunction(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); | 
|  |  | 
|  | LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); | 
|  |  | 
|  | SmallVector<ArgInfo, 32> SplitArgs; | 
|  | SmallVector<uint64_t> FieldOffsets; | 
|  | splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); | 
|  |  | 
|  | unsigned Idx = 0; | 
|  | for (ArgInfo &SplitArg : SplitArgs) { | 
|  | Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); | 
|  | lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); | 
|  |  | 
|  | LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); | 
|  | if (SplitArg.Flags[0].isPointer()) { | 
|  | // Compensate for losing pointeriness in splitValueTypes. | 
|  | LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), | 
|  | ArgTy.getScalarSizeInBits()); | 
|  | ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) | 
|  | : PtrTy; | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | PtrInfo, | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant, | 
|  | ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); | 
|  |  | 
|  | assert(SplitArg.Regs.size() == 1); | 
|  |  | 
|  | B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); | 
|  | ++Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate special inputs passed in user SGPRs. | 
|  | static void allocateHSAUserSGPRs(CCState &CCInfo, | 
|  | MachineIRBuilder &B, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? | 
|  | if (Info.hasPrivateSegmentBuffer()) { | 
|  | Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); | 
|  | MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); | 
|  | CCInfo.AllocateReg(PrivateSegmentBufferReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchPtr()) { | 
|  | Register DispatchPtrReg = Info.addDispatchPtr(TRI); | 
|  | MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchPtrReg); | 
|  | } | 
|  |  | 
|  | const Module *M = MF.getFunction().getParent(); | 
|  | if (Info.hasQueuePtr() && | 
|  | AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { | 
|  | Register QueuePtrReg = Info.addQueuePtr(TRI); | 
|  | MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(QueuePtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasKernargSegmentPtr()) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | Register InputPtrReg = Info.addKernargSegmentPtr(TRI); | 
|  | const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); | 
|  | Register VReg = MRI.createGenericVirtualRegister(P4); | 
|  | MRI.addLiveIn(InputPtrReg, VReg); | 
|  | B.getMBB().addLiveIn(InputPtrReg); | 
|  | B.buildCopy(VReg, InputPtrReg); | 
|  | CCInfo.AllocateReg(InputPtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchID()) { | 
|  | Register DispatchIDReg = Info.addDispatchID(TRI); | 
|  | MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchIDReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasFlatScratchInit()) { | 
|  | Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); | 
|  | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(FlatScratchInitReg); | 
|  | } | 
|  |  | 
|  | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read | 
|  | // these from the dispatch pointer. | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::lowerFormalArgumentsKernel( | 
|  | MachineIRBuilder &B, const Function &F, | 
|  | ArrayRef<ArrayRef<Register>> VRegs) const { | 
|  | MachineFunction &MF = B.getMF(); | 
|  | const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); | 
|  |  | 
|  | allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); | 
|  |  | 
|  | unsigned i = 0; | 
|  | const Align KernArgBaseAlign(16); | 
|  | const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(); | 
|  | uint64_t ExplicitArgOffset = 0; | 
|  |  | 
|  | // TODO: Align down to dword alignment and extract bits for extending loads. | 
|  | for (auto &Arg : F.args()) { | 
|  | const bool IsByRef = Arg.hasByRefAttr(); | 
|  | Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); | 
|  | unsigned AllocSize = DL.getTypeAllocSize(ArgTy); | 
|  | if (AllocSize == 0) | 
|  | continue; | 
|  |  | 
|  | MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt; | 
|  | Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy); | 
|  |  | 
|  | uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; | 
|  | ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; | 
|  |  | 
|  | if (Arg.use_empty()) { | 
|  | ++i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); | 
|  |  | 
|  | if (IsByRef) { | 
|  | unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); | 
|  |  | 
|  | assert(VRegs[i].size() == 1 && | 
|  | "expected only one register for byval pointers"); | 
|  | if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { | 
|  | lowerParameterPtr(VRegs[i][0], B, ArgOffset); | 
|  | } else { | 
|  | const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); | 
|  | Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); | 
|  | lowerParameterPtr(PtrReg, B, ArgOffset); | 
|  |  | 
|  | B.buildAddrSpaceCast(VRegs[i][0], PtrReg); | 
|  | } | 
|  | } else { | 
|  | ArgInfo OrigArg(VRegs[i], Arg, i); | 
|  | const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; | 
|  | setArgFlags(OrigArg, OrigArgIdx, DL, F); | 
|  | lowerParameter(B, OrigArg, ArgOffset, Alignment); | 
|  | } | 
|  |  | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); | 
|  | TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::lowerFormalArguments( | 
|  | MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, | 
|  | FunctionLoweringInfo &FLI) const { | 
|  | CallingConv::ID CC = F.getCallingConv(); | 
|  |  | 
|  | // The infrastructure for normal calling convention lowering is essentially | 
|  | // useless for kernels. We want to avoid any kind of legalization or argument | 
|  | // splitting. | 
|  | if (CC == CallingConv::AMDGPU_KERNEL) | 
|  | return lowerFormalArgumentsKernel(B, F, VRegs); | 
|  |  | 
|  | const bool IsGraphics = AMDGPU::isGraphics(CC); | 
|  | const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); | 
|  |  | 
|  | MachineFunction &MF = B.getMF(); | 
|  | MachineBasicBlock &MBB = B.getMBB(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); | 
|  |  | 
|  | if (Info->hasImplicitBufferPtr()) { | 
|  | Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); | 
|  | MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(ImplicitBufferPtrReg); | 
|  | } | 
|  |  | 
|  | // FIXME: This probably isn't defined for mesa | 
|  | if (Info->hasFlatScratchInit() && !Subtarget.isAmdPalOS()) { | 
|  | Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI); | 
|  | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(FlatScratchInitReg); | 
|  | } | 
|  |  | 
|  | SmallVector<ArgInfo, 32> SplitArgs; | 
|  | unsigned Idx = 0; | 
|  | unsigned PSInputNum = 0; | 
|  |  | 
|  | // Insert the hidden sret parameter if the return value won't fit in the | 
|  | // return registers. | 
|  | if (!FLI.CanLowerReturn) | 
|  | insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); | 
|  |  | 
|  | for (auto &Arg : F.args()) { | 
|  | if (DL.getTypeStoreSize(Arg.getType()) == 0) | 
|  | continue; | 
|  |  | 
|  | const bool InReg = Arg.hasAttribute(Attribute::InReg); | 
|  |  | 
|  | // SGPR arguments to functions not implemented. | 
|  | if (!IsGraphics && InReg) | 
|  | return false; | 
|  |  | 
|  | if (Arg.hasAttribute(Attribute::SwiftSelf) || | 
|  | Arg.hasAttribute(Attribute::SwiftError) || | 
|  | Arg.hasAttribute(Attribute::Nest)) | 
|  | return false; | 
|  |  | 
|  | if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { | 
|  | const bool ArgUsed = !Arg.use_empty(); | 
|  | bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); | 
|  |  | 
|  | if (!SkipArg) { | 
|  | Info->markPSInputAllocated(PSInputNum); | 
|  | if (ArgUsed) | 
|  | Info->markPSInputEnabled(PSInputNum); | 
|  | } | 
|  |  | 
|  | ++PSInputNum; | 
|  |  | 
|  | if (SkipArg) { | 
|  | for (Register R : VRegs[Idx]) | 
|  | B.buildUndef(R); | 
|  |  | 
|  | ++Idx; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | ArgInfo OrigArg(VRegs[Idx], Arg, Idx); | 
|  | const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; | 
|  | setArgFlags(OrigArg, OrigArgIdx, DL, F); | 
|  |  | 
|  | splitToValueTypes(OrigArg, SplitArgs, DL, CC); | 
|  | ++Idx; | 
|  | } | 
|  |  | 
|  | // At least one interpolation mode must be enabled or else the GPU will | 
|  | // hang. | 
|  | // | 
|  | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user | 
|  | // set PSInputAddr, the user wants to enable some bits after the compilation | 
|  | // based on run-time states. Since we can't know what the final PSInputEna | 
|  | // will look like, so we shouldn't do anything here and the user should take | 
|  | // responsibility for the correct programming. | 
|  | // | 
|  | // Otherwise, the following restrictions apply: | 
|  | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. | 
|  | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be | 
|  | //   enabled too. | 
|  | if (CC == CallingConv::AMDGPU_PS) { | 
|  | if ((Info->getPSInputAddr() & 0x7F) == 0 || | 
|  | ((Info->getPSInputAddr() & 0xF) == 0 && | 
|  | Info->isPSInputAllocated(11))) { | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR0); | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR1); | 
|  | Info->markPSInputAllocated(0); | 
|  | Info->markPSInputEnabled(0); | 
|  | } | 
|  |  | 
|  | if (Subtarget.isAmdPalOS()) { | 
|  | // For isAmdPalOS, the user does not enable some bits after compilation | 
|  | // based on run-time states; the register values being generated here are | 
|  | // the final ones set in hardware. Therefore we need to apply the | 
|  | // workaround to PSInputAddr and PSInputEnable together.  (The case where | 
|  | // a bit is set in PSInputAddr but not PSInputEnable is where the frontend | 
|  | // set up an input arg for a particular interpolation mode, but nothing | 
|  | // uses that input arg. Really we should have an earlier pass that removes | 
|  | // such an arg.) | 
|  | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); | 
|  | if ((PsInputBits & 0x7F) == 0 || | 
|  | ((PsInputBits & 0xF) == 0 && | 
|  | (PsInputBits >> 11 & 1))) | 
|  | Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); | 
|  | } | 
|  | } | 
|  |  | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  | CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); | 
|  |  | 
|  | if (!MBB.empty()) | 
|  | B.setInstr(*MBB.begin()); | 
|  |  | 
|  | if (!IsEntryFunc && !IsGraphics) { | 
|  | // For the fixed ABI, pass workitem IDs in the last argument register. | 
|  | TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | IncomingValueAssigner Assigner(AssignFn); | 
|  | if (!determineAssignments(Assigner, SplitArgs, CCInfo)) | 
|  | return false; | 
|  |  | 
|  | FormalArgHandler Handler(B, MRI); | 
|  | if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) | 
|  | return false; | 
|  |  | 
|  | uint64_t StackSize = Assigner.StackSize; | 
|  |  | 
|  | // Start adding system SGPRs. | 
|  | if (IsEntryFunc) { | 
|  | TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); | 
|  | } else { | 
|  | if (!Subtarget.enableFlatScratch()) | 
|  | CCInfo.AllocateReg(Info->getScratchRSrcReg()); | 
|  | TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | // When we tail call, we need to check if the callee's arguments will fit on | 
|  | // the caller's stack. So, whenever we lower formal arguments, we should keep | 
|  | // track of this information, since we might lower a tail call in this | 
|  | // function later. | 
|  | Info->setBytesInStackArgArea(StackSize); | 
|  |  | 
|  | // Move back to the end of the basic block. | 
|  | B.setMBB(MBB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, | 
|  | CCState &CCInfo, | 
|  | SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, | 
|  | CallLoweringInfo &Info) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  |  | 
|  | // If there's no call site, this doesn't correspond to a call from the IR and | 
|  | // doesn't need implicit inputs. | 
|  | if (!Info.CB) | 
|  | return true; | 
|  |  | 
|  | const AMDGPUFunctionArgInfo *CalleeArgInfo | 
|  | = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); | 
|  |  | 
|  |  | 
|  | // TODO: Unify with private memory register handling. This is complicated by | 
|  | // the fact that at least in kernels, the input argument is not necessarily | 
|  | // in the same location as the input. | 
|  | AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { | 
|  | AMDGPUFunctionArgInfo::DISPATCH_PTR, | 
|  | AMDGPUFunctionArgInfo::QUEUE_PTR, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, | 
|  | AMDGPUFunctionArgInfo::DISPATCH_ID, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_X, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, | 
|  | AMDGPUFunctionArgInfo::LDS_KERNEL_ID, | 
|  | }; | 
|  |  | 
|  | static constexpr StringLiteral ImplicitAttrNames[] = { | 
|  | "amdgpu-no-dispatch-ptr", | 
|  | "amdgpu-no-queue-ptr", | 
|  | "amdgpu-no-implicitarg-ptr", | 
|  | "amdgpu-no-dispatch-id", | 
|  | "amdgpu-no-workgroup-id-x", | 
|  | "amdgpu-no-workgroup-id-y", | 
|  | "amdgpu-no-workgroup-id-z", | 
|  | "amdgpu-no-lds-kernel-id", | 
|  | }; | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | const AMDGPULegalizerInfo *LI | 
|  | = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); | 
|  |  | 
|  | unsigned I = 0; | 
|  | for (auto InputID : InputRegs) { | 
|  | const ArgDescriptor *OutgoingArg; | 
|  | const TargetRegisterClass *ArgRC; | 
|  | LLT ArgTy; | 
|  |  | 
|  | // If the callee does not use the attribute value, skip copying the value. | 
|  | if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) | 
|  | continue; | 
|  |  | 
|  | std::tie(OutgoingArg, ArgRC, ArgTy) = | 
|  | CalleeArgInfo->getPreloadedValue(InputID); | 
|  | if (!OutgoingArg) | 
|  | continue; | 
|  |  | 
|  | const ArgDescriptor *IncomingArg; | 
|  | const TargetRegisterClass *IncomingArgRC; | 
|  | std::tie(IncomingArg, IncomingArgRC, ArgTy) = | 
|  | CallerArgInfo.getPreloadedValue(InputID); | 
|  | assert(IncomingArgRC == ArgRC); | 
|  |  | 
|  | Register InputReg = MRI.createGenericVirtualRegister(ArgTy); | 
|  |  | 
|  | if (IncomingArg) { | 
|  | LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); | 
|  | } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { | 
|  | LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); | 
|  | } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { | 
|  | std::optional<uint32_t> Id = | 
|  | AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction()); | 
|  | if (Id) { | 
|  | MIRBuilder.buildConstant(InputReg, *Id); | 
|  | } else { | 
|  | MIRBuilder.buildUndef(InputReg); | 
|  | } | 
|  | } else { | 
|  | // We may have proven the input wasn't needed, although the ABI is | 
|  | // requiring it. We just need to allocate the register appropriately. | 
|  | MIRBuilder.buildUndef(InputReg); | 
|  | } | 
|  |  | 
|  | if (OutgoingArg->isRegister()) { | 
|  | ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); | 
|  | if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) | 
|  | report_fatal_error("failed to allocate implicit input argument"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pack workitem IDs into a single register or pass it as is if already | 
|  | // packed. | 
|  | const ArgDescriptor *OutgoingArg; | 
|  | const TargetRegisterClass *ArgRC; | 
|  | LLT ArgTy; | 
|  |  | 
|  | std::tie(OutgoingArg, ArgRC, ArgTy) = | 
|  | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); | 
|  | if (!OutgoingArg) | 
|  | std::tie(OutgoingArg, ArgRC, ArgTy) = | 
|  | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); | 
|  | if (!OutgoingArg) | 
|  | std::tie(OutgoingArg, ArgRC, ArgTy) = | 
|  | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); | 
|  | if (!OutgoingArg) | 
|  | return false; | 
|  |  | 
|  | auto WorkitemIDX = | 
|  | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); | 
|  | auto WorkitemIDY = | 
|  | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); | 
|  | auto WorkitemIDZ = | 
|  | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); | 
|  |  | 
|  | const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); | 
|  | const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); | 
|  | const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  |  | 
|  | const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); | 
|  | const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); | 
|  | const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); | 
|  |  | 
|  | // If incoming ids are not packed we need to pack them. | 
|  | // FIXME: Should consider known workgroup size to eliminate known 0 cases. | 
|  | Register InputReg; | 
|  | if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && | 
|  | NeedWorkItemIDX) { | 
|  | if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) { | 
|  | InputReg = MRI.createGenericVirtualRegister(S32); | 
|  | LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, | 
|  | std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); | 
|  | } else { | 
|  | InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && | 
|  | NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) { | 
|  | Register Y = MRI.createGenericVirtualRegister(S32); | 
|  | LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), | 
|  | std::get<2>(WorkitemIDY)); | 
|  |  | 
|  | Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); | 
|  | InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; | 
|  | } | 
|  |  | 
|  | if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && | 
|  | NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) { | 
|  | Register Z = MRI.createGenericVirtualRegister(S32); | 
|  | LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), | 
|  | std::get<2>(WorkitemIDZ)); | 
|  |  | 
|  | Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); | 
|  | InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; | 
|  | } | 
|  |  | 
|  | if (!InputReg && | 
|  | (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { | 
|  | InputReg = MRI.createGenericVirtualRegister(S32); | 
|  | if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { | 
|  | // We're in a situation where the outgoing function requires the workitem | 
|  | // ID, but the calling function does not have it (e.g a graphics function | 
|  | // calling a C calling convention function). This is illegal, but we need | 
|  | // to produce something. | 
|  | MIRBuilder.buildUndef(InputReg); | 
|  | } else { | 
|  | // Workitem ids are already packed, any of present incoming arguments will | 
|  | // carry all required fields. | 
|  | ArgDescriptor IncomingArg = ArgDescriptor::createArg( | 
|  | IncomingArgX ? *IncomingArgX : | 
|  | IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); | 
|  | LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, | 
|  | &AMDGPU::VGPR_32RegClass, S32); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OutgoingArg->isRegister()) { | 
|  | if (InputReg) | 
|  | ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); | 
|  |  | 
|  | if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) | 
|  | report_fatal_error("failed to allocate implicit input argument"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for | 
|  | /// CC. | 
|  | static std::pair<CCAssignFn *, CCAssignFn *> | 
|  | getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { | 
|  | return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; | 
|  | } | 
|  |  | 
|  | static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, | 
|  | bool IsTailCall, CallingConv::ID CC) { | 
|  | assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, " | 
|  | "because the address can be divergent"); | 
|  | if (!IsTailCall) | 
|  | return AMDGPU::G_SI_CALL; | 
|  |  | 
|  | return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX : | 
|  | AMDGPU::SI_TCRETURN; | 
|  | } | 
|  |  | 
|  | // Add operands to call instruction to track the callee. | 
|  | static bool addCallTargetOperands(MachineInstrBuilder &CallInst, | 
|  | MachineIRBuilder &MIRBuilder, | 
|  | AMDGPUCallLowering::CallLoweringInfo &Info) { | 
|  | if (Info.Callee.isReg()) { | 
|  | CallInst.addReg(Info.Callee.getReg()); | 
|  | CallInst.addImm(0); | 
|  | } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { | 
|  | // The call lowering lightly assumed we can directly encode a call target in | 
|  | // the instruction, which is not the case. Materialize the address here. | 
|  | const GlobalValue *GV = Info.Callee.getGlobal(); | 
|  | auto Ptr = MIRBuilder.buildGlobalValue( | 
|  | LLT::pointer(GV->getAddressSpace(), 64), GV); | 
|  | CallInst.addReg(Ptr.getReg(0)); | 
|  | CallInst.add(Info.Callee); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( | 
|  | CallLoweringInfo &Info, MachineFunction &MF, | 
|  | SmallVectorImpl<ArgInfo> &InArgs) const { | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  |  | 
|  | // If the calling conventions match, then everything must be the same. | 
|  | if (CalleeCC == CallerCC) | 
|  | return true; | 
|  |  | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  |  | 
|  | // Make sure that the caller and callee preserve all of the same registers. | 
|  | auto TRI = ST.getRegisterInfo(); | 
|  |  | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | 
|  | return false; | 
|  |  | 
|  | // Check if the caller and callee will handle arguments in the same way. | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  | CCAssignFn *CalleeAssignFnFixed; | 
|  | CCAssignFn *CalleeAssignFnVarArg; | 
|  | std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = | 
|  | getAssignFnsForCC(CalleeCC, TLI); | 
|  |  | 
|  | CCAssignFn *CallerAssignFnFixed; | 
|  | CCAssignFn *CallerAssignFnVarArg; | 
|  | std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = | 
|  | getAssignFnsForCC(CallerCC, TLI); | 
|  |  | 
|  | // FIXME: We are not accounting for potential differences in implicitly passed | 
|  | // inputs, but only the fixed ABI is supported now anyway. | 
|  | IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, | 
|  | CalleeAssignFnVarArg); | 
|  | IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, | 
|  | CallerAssignFnVarArg); | 
|  | return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( | 
|  | CallLoweringInfo &Info, MachineFunction &MF, | 
|  | SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | // If there are no outgoing arguments, then we are done. | 
|  | if (OutArgs.empty()) | 
|  | return true; | 
|  |  | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  |  | 
|  | CCAssignFn *AssignFnFixed; | 
|  | CCAssignFn *AssignFnVarArg; | 
|  | std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); | 
|  |  | 
|  | // We have outgoing arguments. Make sure that we can tail call with them. | 
|  | SmallVector<CCValAssign, 16> OutLocs; | 
|  | CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); | 
|  | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); | 
|  |  | 
|  | if (!determineAssignments(Assigner, OutArgs, OutInfo)) { | 
|  | LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure that they can fit on the caller's stack. | 
|  | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { | 
|  | LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Verify that the parameters in callee-saved registers match. | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); | 
|  | } | 
|  |  | 
|  | /// Return true if the calling convention is one that we can guarantee TCO for. | 
|  | static bool canGuaranteeTCO(CallingConv::ID CC) { | 
|  | return CC == CallingConv::Fast; | 
|  | } | 
|  |  | 
|  | /// Return true if we might ever do TCO for calls with this calling convention. | 
|  | static bool mayTailCallThisCC(CallingConv::ID CC) { | 
|  | switch (CC) { | 
|  | case CallingConv::C: | 
|  | case CallingConv::AMDGPU_Gfx: | 
|  | return true; | 
|  | default: | 
|  | return canGuaranteeTCO(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::isEligibleForTailCallOptimization( | 
|  | MachineIRBuilder &B, CallLoweringInfo &Info, | 
|  | SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | // Must pass all target-independent checks in order to tail call optimize. | 
|  | if (!Info.IsTailCall) | 
|  | return false; | 
|  |  | 
|  | // Indirect calls can't be tail calls, because the address can be divergent. | 
|  | // TODO Check divergence info if the call really is divergent. | 
|  | if (Info.Callee.isReg()) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = B.getMF(); | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  |  | 
|  | const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | // Kernels aren't callable, and don't have a live in return address so it | 
|  | // doesn't make sense to do a tail call with entry functions. | 
|  | if (!CallerPreserved) | 
|  | return false; | 
|  |  | 
|  | if (!mayTailCallThisCC(CalleeCC)) { | 
|  | LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (any_of(CallerF.args(), [](const Argument &A) { | 
|  | return A.hasByValAttr() || A.hasSwiftErrorAttr(); | 
|  | })) { | 
|  | LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " | 
|  | "or swifterror arguments\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have -tailcallopt, then we're done. | 
|  | if (MF.getTarget().Options.GuaranteedTailCallOpt) | 
|  | return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); | 
|  |  | 
|  | // Verify that the incoming and outgoing arguments from the callee are | 
|  | // safe to tail call. | 
|  | if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Caller and callee have incompatible calling conventions.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Insert outgoing implicit arguments for a call, by inserting copies to the | 
|  | // implicit argument registers and adding the necessary implicit uses to the | 
|  | // call instruction. | 
|  | void AMDGPUCallLowering::handleImplicitCallArguments( | 
|  | MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, | 
|  | const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, | 
|  | ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { | 
|  | if (!ST.enableFlatScratch()) { | 
|  | // Insert copies for the SRD. In the HSA case, this should be an identity | 
|  | // copy. | 
|  | auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), | 
|  | FuncInfo.getScratchRSrcReg()); | 
|  | MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); | 
|  | CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { | 
|  | MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); | 
|  | CallInst.addReg(ArgReg.first, RegState::Implicit); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::lowerTailCall( | 
|  | MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, | 
|  | SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const Function &F = MF.getFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  |  | 
|  | // True when we're tail calling, but without -tailcallopt. | 
|  | bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; | 
|  |  | 
|  | // Find out which ABI gets to decide where things go. | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CCAssignFn *AssignFnFixed; | 
|  | CCAssignFn *AssignFnVarArg; | 
|  | std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); | 
|  |  | 
|  | MachineInstrBuilder CallSeqStart; | 
|  | if (!IsSibCall) | 
|  | CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); | 
|  |  | 
|  | unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true, CalleeCC); | 
|  | auto MIB = MIRBuilder.buildInstrNoInsert(Opc); | 
|  | if (!addCallTargetOperands(MIB, MIRBuilder, Info)) | 
|  | return false; | 
|  |  | 
|  | // Byte offset for the tail call. When we are sibcalling, this will always | 
|  | // be 0. | 
|  | MIB.addImm(0); | 
|  |  | 
|  | // Tell the call which registers are clobbered. | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | MIB.addRegMask(Mask); | 
|  |  | 
|  | // FPDiff is the byte offset of the call's argument area from the callee's. | 
|  | // Stores to callee stack arguments will be placed in FixedStackSlots offset | 
|  | // by this amount for a tail call. In a sibling call it must be 0 because the | 
|  | // caller will deallocate the entire stack and the callee still expects its | 
|  | // arguments to begin at SP+0. | 
|  | int FPDiff = 0; | 
|  |  | 
|  | // This will be 0 for sibcalls, potentially nonzero for tail calls produced | 
|  | // by -tailcallopt. For sibcalls, the memory operands for the call are | 
|  | // already available in the caller's incoming argument space. | 
|  | unsigned NumBytes = 0; | 
|  | if (!IsSibCall) { | 
|  | // We aren't sibcalling, so we need to compute FPDiff. We need to do this | 
|  | // before handling assignments, because FPDiff must be known for memory | 
|  | // arguments. | 
|  | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); | 
|  | SmallVector<CCValAssign, 16> OutLocs; | 
|  | CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); | 
|  |  | 
|  | // FIXME: Not accounting for callee implicit inputs | 
|  | OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); | 
|  | if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) | 
|  | return false; | 
|  |  | 
|  | // The callee will pop the argument stack as a tail call. Thus, we must | 
|  | // keep it 16-byte aligned. | 
|  | NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment()); | 
|  |  | 
|  | // FPDiff will be negative if this tail call requires more space than we | 
|  | // would automatically have in our incoming argument space. Positive if we | 
|  | // actually shrink the stack. | 
|  | FPDiff = NumReusableBytes - NumBytes; | 
|  |  | 
|  | // The stack pointer must be 16-byte aligned at all times it's used for a | 
|  | // memory operation, which in practice means at *all* times and in | 
|  | // particular across call boundaries. Therefore our own arguments started at | 
|  | // a 16-byte aligned SP and the delta applied for the tail call should | 
|  | // satisfy the same constraint. | 
|  | assert(isAligned(ST.getStackAlignment(), FPDiff) && | 
|  | "unaligned stack on tail call"); | 
|  | } | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); | 
|  |  | 
|  | // We could pass MIB and directly add the implicit uses to the call | 
|  | // now. However, as an aesthetic choice, place implicit argument operands | 
|  | // after the ordinary user argument registers. | 
|  | SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; | 
|  |  | 
|  | if (Info.CallConv != CallingConv::AMDGPU_Gfx) { | 
|  | // With a fixed ABI, allocate fixed registers before user arguments. | 
|  | if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); | 
|  |  | 
|  | if (!determineAssignments(Assigner, OutArgs, CCInfo)) | 
|  | return false; | 
|  |  | 
|  | // Do the actual argument marshalling. | 
|  | AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); | 
|  | if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) | 
|  | return false; | 
|  |  | 
|  | handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); | 
|  |  | 
|  | // If we have -tailcallopt, we need to adjust the stack. We'll do the call | 
|  | // sequence start and end here. | 
|  | if (!IsSibCall) { | 
|  | MIB->getOperand(1).setImm(FPDiff); | 
|  | CallSeqStart.addImm(NumBytes).addImm(0); | 
|  | // End the call sequence *before* emitting the call. Normally, we would | 
|  | // tidy the frame up after the call. However, here, we've laid out the | 
|  | // parameters so that when SP is reset, they will be in the correct | 
|  | // location. | 
|  | MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); | 
|  | } | 
|  |  | 
|  | // Now we can add the actual call instruction to the correct basic block. | 
|  | MIRBuilder.insertInstr(MIB); | 
|  |  | 
|  | // If Callee is a reg, since it is used by a target specific | 
|  | // instruction, it must have a register class matching the | 
|  | // constraint of that instruction. | 
|  |  | 
|  | // FIXME: We should define regbankselectable call instructions to handle | 
|  | // divergent call targets. | 
|  | if (MIB->getOperand(0).isReg()) { | 
|  | MIB->getOperand(0).setReg(constrainOperandRegClass( | 
|  | MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, | 
|  | MIB->getDesc(), MIB->getOperand(0), 0)); | 
|  | } | 
|  |  | 
|  | MF.getFrameInfo().setHasTailCall(); | 
|  | Info.LoweredTailCall = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, | 
|  | CallLoweringInfo &Info) const { | 
|  | if (Info.IsVarArg) { | 
|  | LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  |  | 
|  | const Function &F = MF.getFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> OutArgs; | 
|  | for (auto &OrigArg : Info.OrigArgs) | 
|  | splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> InArgs; | 
|  | if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) | 
|  | splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); | 
|  |  | 
|  | // If we can lower as a tail call, do that instead. | 
|  | bool CanTailCallOpt = | 
|  | isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); | 
|  |  | 
|  | // We must emit a tail call if we have musttail. | 
|  | if (Info.IsMustTailCall && !CanTailCallOpt) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Info.IsTailCall = CanTailCallOpt; | 
|  | if (CanTailCallOpt) | 
|  | return lowerTailCall(MIRBuilder, Info, OutArgs); | 
|  |  | 
|  | // Find out which ABI gets to decide where things go. | 
|  | CCAssignFn *AssignFnFixed; | 
|  | CCAssignFn *AssignFnVarArg; | 
|  | std::tie(AssignFnFixed, AssignFnVarArg) = | 
|  | getAssignFnsForCC(Info.CallConv, TLI); | 
|  |  | 
|  | MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) | 
|  | .addImm(0) | 
|  | .addImm(0); | 
|  |  | 
|  | // Create a temporarily-floating call instruction so we can add the implicit | 
|  | // uses of arg registers. | 
|  | unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, Info.CallConv); | 
|  |  | 
|  | auto MIB = MIRBuilder.buildInstrNoInsert(Opc); | 
|  | MIB.addDef(TRI->getReturnAddressReg(MF)); | 
|  |  | 
|  | if (!addCallTargetOperands(MIB, MIRBuilder, Info)) | 
|  | return false; | 
|  |  | 
|  | // Tell the call which registers are clobbered. | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); | 
|  | MIB.addRegMask(Mask); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); | 
|  |  | 
|  | // We could pass MIB and directly add the implicit uses to the call | 
|  | // now. However, as an aesthetic choice, place implicit argument operands | 
|  | // after the ordinary user argument registers. | 
|  | SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; | 
|  |  | 
|  | if (Info.CallConv != CallingConv::AMDGPU_Gfx) { | 
|  | // With a fixed ABI, allocate fixed registers before user arguments. | 
|  | if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do the actual argument marshalling. | 
|  | SmallVector<Register, 8> PhysRegs; | 
|  |  | 
|  | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); | 
|  | if (!determineAssignments(Assigner, OutArgs, CCInfo)) | 
|  | return false; | 
|  |  | 
|  | AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); | 
|  | if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) | 
|  | return false; | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getStackSize(); | 
|  |  | 
|  | // If Callee is a reg, since it is used by a target specific | 
|  | // instruction, it must have a register class matching the | 
|  | // constraint of that instruction. | 
|  |  | 
|  | // FIXME: We should define regbankselectable call instructions to handle | 
|  | // divergent call targets. | 
|  | if (MIB->getOperand(1).isReg()) { | 
|  | MIB->getOperand(1).setReg(constrainOperandRegClass( | 
|  | MF, *TRI, MRI, *ST.getInstrInfo(), | 
|  | *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), | 
|  | 1)); | 
|  | } | 
|  |  | 
|  | // Now we can add the actual call instruction to the correct position. | 
|  | MIRBuilder.insertInstr(MIB); | 
|  |  | 
|  | // Finally we can copy the returned value back into its virtual-register. In | 
|  | // symmetry with the arguments, the physical register must be an | 
|  | // implicit-define of the call instruction. | 
|  | if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { | 
|  | CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, | 
|  | Info.IsVarArg); | 
|  | IncomingValueAssigner Assigner(RetAssignFn); | 
|  | CallReturnHandler Handler(MIRBuilder, MRI, MIB); | 
|  | if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, | 
|  | Info.CallConv, Info.IsVarArg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t CalleePopBytes = NumBytes; | 
|  |  | 
|  | MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) | 
|  | .addImm(0) | 
|  | .addImm(CalleePopBytes); | 
|  |  | 
|  | if (!Info.CanLowerReturn) { | 
|  | insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, | 
|  | Info.DemoteRegister, Info.DemoteStackIndex); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |