| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the common interface used by the various execution engine | 
 | // subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ExecutionEngine/GenericValue.h" | 
 | #include "llvm/ExecutionEngine/JITEventListener.h" | 
 | #include "llvm/ExecutionEngine/ObjectCache.h" | 
 | #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Mangler.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/ValueHandle.h" | 
 | #include "llvm/Object/Archive.h" | 
 | #include "llvm/Object/ObjectFile.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/DynamicLibrary.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/Host.h" | 
 | #include "llvm/Support/MutexGuard.h" | 
 | #include "llvm/Support/TargetRegistry.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <cmath> | 
 | #include <cstring> | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "jit" | 
 |  | 
 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); | 
 | STATISTIC(NumGlobals  , "Number of global vars initialized"); | 
 |  | 
 | ExecutionEngine *(*ExecutionEngine::MCJITCtor)( | 
 |     std::unique_ptr<Module> M, std::string *ErrorStr, | 
 |     std::shared_ptr<MCJITMemoryManager> MemMgr, | 
 |     std::shared_ptr<LegacyJITSymbolResolver> Resolver, | 
 |     std::unique_ptr<TargetMachine> TM) = nullptr; | 
 |  | 
 | ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( | 
 |     std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, | 
 |     std::shared_ptr<LegacyJITSymbolResolver> Resolver, | 
 |     std::unique_ptr<TargetMachine> TM) = nullptr; | 
 |  | 
 | ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, | 
 |                                                 std::string *ErrorStr) =nullptr; | 
 |  | 
 | void JITEventListener::anchor() {} | 
 |  | 
 | void ObjectCache::anchor() {} | 
 |  | 
 | void ExecutionEngine::Init(std::unique_ptr<Module> M) { | 
 |   CompilingLazily         = false; | 
 |   GVCompilationDisabled   = false; | 
 |   SymbolSearchingDisabled = false; | 
 |  | 
 |   // IR module verification is enabled by default in debug builds, and disabled | 
 |   // by default in release builds. | 
 | #ifndef NDEBUG | 
 |   VerifyModules = true; | 
 | #else | 
 |   VerifyModules = false; | 
 | #endif | 
 |  | 
 |   assert(M && "Module is null?"); | 
 |   Modules.push_back(std::move(M)); | 
 | } | 
 |  | 
 | ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) | 
 |     : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { | 
 |   Init(std::move(M)); | 
 | } | 
 |  | 
 | ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) | 
 |     : DL(std::move(DL)), LazyFunctionCreator(nullptr) { | 
 |   Init(std::move(M)); | 
 | } | 
 |  | 
 | ExecutionEngine::~ExecutionEngine() { | 
 |   clearAllGlobalMappings(); | 
 | } | 
 |  | 
 | namespace { | 
 | /// Helper class which uses a value handler to automatically deletes the | 
 | /// memory block when the GlobalVariable is destroyed. | 
 | class GVMemoryBlock final : public CallbackVH { | 
 |   GVMemoryBlock(const GlobalVariable *GV) | 
 |     : CallbackVH(const_cast<GlobalVariable*>(GV)) {} | 
 |  | 
 | public: | 
 |   /// Returns the address the GlobalVariable should be written into.  The | 
 |   /// GVMemoryBlock object prefixes that. | 
 |   static char *Create(const GlobalVariable *GV, const DataLayout& TD) { | 
 |     Type *ElTy = GV->getValueType(); | 
 |     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); | 
 |     void *RawMemory = ::operator new( | 
 |         alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); | 
 |     new(RawMemory) GVMemoryBlock(GV); | 
 |     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); | 
 |   } | 
 |  | 
 |   void deleted() override { | 
 |     // We allocated with operator new and with some extra memory hanging off the | 
 |     // end, so don't just delete this.  I'm not sure if this is actually | 
 |     // required. | 
 |     this->~GVMemoryBlock(); | 
 |     ::operator delete(this); | 
 |   } | 
 | }; | 
 | }  // anonymous namespace | 
 |  | 
 | char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { | 
 |   return GVMemoryBlock::Create(GV, getDataLayout()); | 
 | } | 
 |  | 
 | void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { | 
 |   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | 
 | } | 
 |  | 
 | void | 
 | ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { | 
 |   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | 
 | } | 
 |  | 
 | void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { | 
 |   llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); | 
 | } | 
 |  | 
 | bool ExecutionEngine::removeModule(Module *M) { | 
 |   for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { | 
 |     Module *Found = I->get(); | 
 |     if (Found == M) { | 
 |       I->release(); | 
 |       Modules.erase(I); | 
 |       clearGlobalMappingsFromModule(M); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { | 
 |   for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | 
 |     Function *F = Modules[i]->getFunction(FnName); | 
 |     if (F && !F->isDeclaration()) | 
 |       return F; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { | 
 |   for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | 
 |     GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); | 
 |     if (GV && !GV->isDeclaration()) | 
 |       return GV; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { | 
 |   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); | 
 |   uint64_t OldVal; | 
 |  | 
 |   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the | 
 |   // GlobalAddressMap. | 
 |   if (I == GlobalAddressMap.end()) | 
 |     OldVal = 0; | 
 |   else { | 
 |     GlobalAddressReverseMap.erase(I->second); | 
 |     OldVal = I->second; | 
 |     GlobalAddressMap.erase(I); | 
 |   } | 
 |  | 
 |   return OldVal; | 
 | } | 
 |  | 
 | std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { | 
 |   assert(GV->hasName() && "Global must have name."); | 
 |  | 
 |   MutexGuard locked(lock); | 
 |   SmallString<128> FullName; | 
 |  | 
 |   const DataLayout &DL = | 
 |     GV->getParent()->getDataLayout().isDefault() | 
 |       ? getDataLayout() | 
 |       : GV->getParent()->getDataLayout(); | 
 |  | 
 |   Mangler::getNameWithPrefix(FullName, GV->getName(), DL); | 
 |   return FullName.str(); | 
 | } | 
 |  | 
 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |   addGlobalMapping(getMangledName(GV), (uint64_t) Addr); | 
 | } | 
 |  | 
 | void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   assert(!Name.empty() && "Empty GlobalMapping symbol name!"); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); | 
 |   uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; | 
 |   assert((!CurVal || !Addr) && "GlobalMapping already established!"); | 
 |   CurVal = Addr; | 
 |  | 
 |   // If we are using the reverse mapping, add it too. | 
 |   if (!EEState.getGlobalAddressReverseMap().empty()) { | 
 |     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; | 
 |     assert((!V.empty() || !Name.empty()) && | 
 |            "GlobalMapping already established!"); | 
 |     V = Name; | 
 |   } | 
 | } | 
 |  | 
 | void ExecutionEngine::clearAllGlobalMappings() { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   EEState.getGlobalAddressMap().clear(); | 
 |   EEState.getGlobalAddressReverseMap().clear(); | 
 | } | 
 |  | 
 | void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   for (GlobalObject &GO : M->global_objects()) | 
 |     EEState.RemoveMapping(getMangledName(&GO)); | 
 | } | 
 |  | 
 | uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, | 
 |                                               void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |   return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); | 
 | } | 
 |  | 
 | uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   ExecutionEngineState::GlobalAddressMapTy &Map = | 
 |     EEState.getGlobalAddressMap(); | 
 |  | 
 |   // Deleting from the mapping? | 
 |   if (!Addr) | 
 |     return EEState.RemoveMapping(Name); | 
 |  | 
 |   uint64_t &CurVal = Map[Name]; | 
 |   uint64_t OldVal = CurVal; | 
 |  | 
 |   if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) | 
 |     EEState.getGlobalAddressReverseMap().erase(CurVal); | 
 |   CurVal = Addr; | 
 |  | 
 |   // If we are using the reverse mapping, add it too. | 
 |   if (!EEState.getGlobalAddressReverseMap().empty()) { | 
 |     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; | 
 |     assert((!V.empty() || !Name.empty()) && | 
 |            "GlobalMapping already established!"); | 
 |     V = Name; | 
 |   } | 
 |   return OldVal; | 
 | } | 
 |  | 
 | uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { | 
 |   MutexGuard locked(lock); | 
 |   uint64_t Address = 0; | 
 |   ExecutionEngineState::GlobalAddressMapTy::iterator I = | 
 |     EEState.getGlobalAddressMap().find(S); | 
 |   if (I != EEState.getGlobalAddressMap().end()) | 
 |     Address = I->second; | 
 |   return Address; | 
 | } | 
 |  | 
 |  | 
 | void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { | 
 |   MutexGuard locked(lock); | 
 |   if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) | 
 |     return Address; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { | 
 |   MutexGuard locked(lock); | 
 |   return getPointerToGlobalIfAvailable(getMangledName(GV)); | 
 | } | 
 |  | 
 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   // If we haven't computed the reverse mapping yet, do so first. | 
 |   if (EEState.getGlobalAddressReverseMap().empty()) { | 
 |     for (ExecutionEngineState::GlobalAddressMapTy::iterator | 
 |            I = EEState.getGlobalAddressMap().begin(), | 
 |            E = EEState.getGlobalAddressMap().end(); I != E; ++I) { | 
 |       StringRef Name = I->first(); | 
 |       uint64_t Addr = I->second; | 
 |       EEState.getGlobalAddressReverseMap().insert(std::make_pair( | 
 |                                                           Addr, Name)); | 
 |     } | 
 |   } | 
 |  | 
 |   std::map<uint64_t, std::string>::iterator I = | 
 |     EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); | 
 |  | 
 |   if (I != EEState.getGlobalAddressReverseMap().end()) { | 
 |     StringRef Name = I->second; | 
 |     for (unsigned i = 0, e = Modules.size(); i != e; ++i) | 
 |       if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) | 
 |         return GV; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | namespace { | 
 | class ArgvArray { | 
 |   std::unique_ptr<char[]> Array; | 
 |   std::vector<std::unique_ptr<char[]>> Values; | 
 | public: | 
 |   /// Turn a vector of strings into a nice argv style array of pointers to null | 
 |   /// terminated strings. | 
 |   void *reset(LLVMContext &C, ExecutionEngine *EE, | 
 |               const std::vector<std::string> &InputArgv); | 
 | }; | 
 | }  // anonymous namespace | 
 | void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, | 
 |                        const std::vector<std::string> &InputArgv) { | 
 |   Values.clear();  // Free the old contents. | 
 |   Values.reserve(InputArgv.size()); | 
 |   unsigned PtrSize = EE->getDataLayout().getPointerSize(); | 
 |   Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); | 
 |   Type *SBytePtr = Type::getInt8PtrTy(C); | 
 |  | 
 |   for (unsigned i = 0; i != InputArgv.size(); ++i) { | 
 |     unsigned Size = InputArgv[i].size()+1; | 
 |     auto Dest = make_unique<char[]>(Size); | 
 |     LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() | 
 |                       << "\n"); | 
 |  | 
 |     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); | 
 |     Dest[Size-1] = 0; | 
 |  | 
 |     // Endian safe: Array[i] = (PointerTy)Dest; | 
 |     EE->StoreValueToMemory(PTOGV(Dest.get()), | 
 |                            (GenericValue*)(&Array[i*PtrSize]), SBytePtr); | 
 |     Values.push_back(std::move(Dest)); | 
 |   } | 
 |  | 
 |   // Null terminate it | 
 |   EE->StoreValueToMemory(PTOGV(nullptr), | 
 |                          (GenericValue*)(&Array[InputArgv.size()*PtrSize]), | 
 |                          SBytePtr); | 
 |   return Array.get(); | 
 | } | 
 |  | 
 | void ExecutionEngine::runStaticConstructorsDestructors(Module &module, | 
 |                                                        bool isDtors) { | 
 |   StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); | 
 |   GlobalVariable *GV = module.getNamedGlobal(Name); | 
 |  | 
 |   // If this global has internal linkage, or if it has a use, then it must be | 
 |   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If | 
 |   // this is the case, don't execute any of the global ctors, __main will do | 
 |   // it. | 
 |   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; | 
 |  | 
 |   // Should be an array of '{ i32, void ()* }' structs.  The first value is | 
 |   // the init priority, which we ignore. | 
 |   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); | 
 |   if (!InitList) | 
 |     return; | 
 |   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | 
 |     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); | 
 |     if (!CS) continue; | 
 |  | 
 |     Constant *FP = CS->getOperand(1); | 
 |     if (FP->isNullValue()) | 
 |       continue;  // Found a sentinal value, ignore. | 
 |  | 
 |     // Strip off constant expression casts. | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) | 
 |       if (CE->isCast()) | 
 |         FP = CE->getOperand(0); | 
 |  | 
 |     // Execute the ctor/dtor function! | 
 |     if (Function *F = dyn_cast<Function>(FP)) | 
 |       runFunction(F, None); | 
 |  | 
 |     // FIXME: It is marginally lame that we just do nothing here if we see an | 
 |     // entry we don't recognize. It might not be unreasonable for the verifier | 
 |     // to not even allow this and just assert here. | 
 |   } | 
 | } | 
 |  | 
 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { | 
 |   // Execute global ctors/dtors for each module in the program. | 
 |   for (std::unique_ptr<Module> &M : Modules) | 
 |     runStaticConstructorsDestructors(*M, isDtors); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. | 
 | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { | 
 |   unsigned PtrSize = EE->getDataLayout().getPointerSize(); | 
 |   for (unsigned i = 0; i < PtrSize; ++i) | 
 |     if (*(i + (uint8_t*)Loc)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 | #endif | 
 |  | 
 | int ExecutionEngine::runFunctionAsMain(Function *Fn, | 
 |                                        const std::vector<std::string> &argv, | 
 |                                        const char * const * envp) { | 
 |   std::vector<GenericValue> GVArgs; | 
 |   GenericValue GVArgc; | 
 |   GVArgc.IntVal = APInt(32, argv.size()); | 
 |  | 
 |   // Check main() type | 
 |   unsigned NumArgs = Fn->getFunctionType()->getNumParams(); | 
 |   FunctionType *FTy = Fn->getFunctionType(); | 
 |   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); | 
 |  | 
 |   // Check the argument types. | 
 |   if (NumArgs > 3) | 
 |     report_fatal_error("Invalid number of arguments of main() supplied"); | 
 |   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) | 
 |     report_fatal_error("Invalid type for third argument of main() supplied"); | 
 |   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) | 
 |     report_fatal_error("Invalid type for second argument of main() supplied"); | 
 |   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) | 
 |     report_fatal_error("Invalid type for first argument of main() supplied"); | 
 |   if (!FTy->getReturnType()->isIntegerTy() && | 
 |       !FTy->getReturnType()->isVoidTy()) | 
 |     report_fatal_error("Invalid return type of main() supplied"); | 
 |  | 
 |   ArgvArray CArgv; | 
 |   ArgvArray CEnv; | 
 |   if (NumArgs) { | 
 |     GVArgs.push_back(GVArgc); // Arg #0 = argc. | 
 |     if (NumArgs > 1) { | 
 |       // Arg #1 = argv. | 
 |       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); | 
 |       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && | 
 |              "argv[0] was null after CreateArgv"); | 
 |       if (NumArgs > 2) { | 
 |         std::vector<std::string> EnvVars; | 
 |         for (unsigned i = 0; envp[i]; ++i) | 
 |           EnvVars.emplace_back(envp[i]); | 
 |         // Arg #2 = envp. | 
 |         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return runFunction(Fn, GVArgs).IntVal.getZExtValue(); | 
 | } | 
 |  | 
 | EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} | 
 |  | 
 | EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) | 
 |     : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), | 
 |       OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), | 
 |       UseOrcMCJITReplacement(false) { | 
 | // IR module verification is enabled by default in debug builds, and disabled | 
 | // by default in release builds. | 
 | #ifndef NDEBUG | 
 |   VerifyModules = true; | 
 | #else | 
 |   VerifyModules = false; | 
 | #endif | 
 | } | 
 |  | 
 | EngineBuilder::~EngineBuilder() = default; | 
 |  | 
 | EngineBuilder &EngineBuilder::setMCJITMemoryManager( | 
 |                                    std::unique_ptr<RTDyldMemoryManager> mcjmm) { | 
 |   auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); | 
 |   MemMgr = SharedMM; | 
 |   Resolver = SharedMM; | 
 |   return *this; | 
 | } | 
 |  | 
 | EngineBuilder& | 
 | EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { | 
 |   MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); | 
 |   return *this; | 
 | } | 
 |  | 
 | EngineBuilder & | 
 | EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { | 
 |   Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); | 
 |   return *this; | 
 | } | 
 |  | 
 | ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { | 
 |   std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. | 
 |  | 
 |   // Make sure we can resolve symbols in the program as well. The zero arg | 
 |   // to the function tells DynamicLibrary to load the program, not a library. | 
 |   if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) | 
 |     return nullptr; | 
 |  | 
 |   // If the user specified a memory manager but didn't specify which engine to | 
 |   // create, we assume they only want the JIT, and we fail if they only want | 
 |   // the interpreter. | 
 |   if (MemMgr) { | 
 |     if (WhichEngine & EngineKind::JIT) | 
 |       WhichEngine = EngineKind::JIT; | 
 |     else { | 
 |       if (ErrorStr) | 
 |         *ErrorStr = "Cannot create an interpreter with a memory manager."; | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   // Unless the interpreter was explicitly selected or the JIT is not linked, | 
 |   // try making a JIT. | 
 |   if ((WhichEngine & EngineKind::JIT) && TheTM) { | 
 |     if (!TM->getTarget().hasJIT()) { | 
 |       errs() << "WARNING: This target JIT is not designed for the host" | 
 |              << " you are running.  If bad things happen, please choose" | 
 |              << " a different -march switch.\n"; | 
 |     } | 
 |  | 
 |     ExecutionEngine *EE = nullptr; | 
 |     if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { | 
 |       EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), | 
 |                                                     std::move(Resolver), | 
 |                                                     std::move(TheTM)); | 
 |       EE->addModule(std::move(M)); | 
 |     } else if (ExecutionEngine::MCJITCtor) | 
 |       EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), | 
 |                                       std::move(Resolver), std::move(TheTM)); | 
 |  | 
 |     if (EE) { | 
 |       EE->setVerifyModules(VerifyModules); | 
 |       return EE; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we can't make a JIT and we didn't request one specifically, try making | 
 |   // an interpreter instead. | 
 |   if (WhichEngine & EngineKind::Interpreter) { | 
 |     if (ExecutionEngine::InterpCtor) | 
 |       return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); | 
 |     if (ErrorStr) | 
 |       *ErrorStr = "Interpreter has not been linked in."; | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { | 
 |     if (ErrorStr) | 
 |       *ErrorStr = "JIT has not been linked in."; | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { | 
 |   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) | 
 |     return getPointerToFunction(F); | 
 |  | 
 |   MutexGuard locked(lock); | 
 |   if (void* P = getPointerToGlobalIfAvailable(GV)) | 
 |     return P; | 
 |  | 
 |   // Global variable might have been added since interpreter started. | 
 |   if (GlobalVariable *GVar = | 
 |           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) | 
 |     EmitGlobalVariable(GVar); | 
 |   else | 
 |     llvm_unreachable("Global hasn't had an address allocated yet!"); | 
 |  | 
 |   return getPointerToGlobalIfAvailable(GV); | 
 | } | 
 |  | 
 | /// Converts a Constant* into a GenericValue, including handling of | 
 | /// ConstantExpr values. | 
 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { | 
 |   // If its undefined, return the garbage. | 
 |   if (isa<UndefValue>(C)) { | 
 |     GenericValue Result; | 
 |     switch (C->getType()->getTypeID()) { | 
 |     default: | 
 |       break; | 
 |     case Type::IntegerTyID: | 
 |     case Type::X86_FP80TyID: | 
 |     case Type::FP128TyID: | 
 |     case Type::PPC_FP128TyID: | 
 |       // Although the value is undefined, we still have to construct an APInt | 
 |       // with the correct bit width. | 
 |       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); | 
 |       break; | 
 |     case Type::StructTyID: { | 
 |       // if the whole struct is 'undef' just reserve memory for the value. | 
 |       if(StructType *STy = dyn_cast<StructType>(C->getType())) { | 
 |         unsigned int elemNum = STy->getNumElements(); | 
 |         Result.AggregateVal.resize(elemNum); | 
 |         for (unsigned int i = 0; i < elemNum; ++i) { | 
 |           Type *ElemTy = STy->getElementType(i); | 
 |           if (ElemTy->isIntegerTy()) | 
 |             Result.AggregateVal[i].IntVal = | 
 |               APInt(ElemTy->getPrimitiveSizeInBits(), 0); | 
 |           else if (ElemTy->isAggregateType()) { | 
 |               const Constant *ElemUndef = UndefValue::get(ElemTy); | 
 |               Result.AggregateVal[i] = getConstantValue(ElemUndef); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |       break; | 
 |     case Type::VectorTyID: | 
 |       // if the whole vector is 'undef' just reserve memory for the value. | 
 |       auto* VTy = dyn_cast<VectorType>(C->getType()); | 
 |       Type *ElemTy = VTy->getElementType(); | 
 |       unsigned int elemNum = VTy->getNumElements(); | 
 |       Result.AggregateVal.resize(elemNum); | 
 |       if (ElemTy->isIntegerTy()) | 
 |         for (unsigned int i = 0; i < elemNum; ++i) | 
 |           Result.AggregateVal[i].IntVal = | 
 |             APInt(ElemTy->getPrimitiveSizeInBits(), 0); | 
 |       break; | 
 |     } | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Otherwise, if the value is a ConstantExpr... | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
 |     Constant *Op0 = CE->getOperand(0); | 
 |     switch (CE->getOpcode()) { | 
 |     case Instruction::GetElementPtr: { | 
 |       // Compute the index | 
 |       GenericValue Result = getConstantValue(Op0); | 
 |       APInt Offset(DL.getPointerSizeInBits(), 0); | 
 |       cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); | 
 |  | 
 |       char* tmp = (char*) Result.PointerVal; | 
 |       Result = PTOGV(tmp + Offset.getSExtValue()); | 
 |       return Result; | 
 |     } | 
 |     case Instruction::Trunc: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.trunc(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::ZExt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.zext(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::SExt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.sext(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPTrunc: { | 
 |       // FIXME long double | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       GV.FloatVal = float(GV.DoubleVal); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPExt:{ | 
 |       // FIXME long double | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       GV.DoubleVal = double(GV.FloatVal); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::UIToFP: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       if (CE->getType()->isFloatTy()) | 
 |         GV.FloatVal = float(GV.IntVal.roundToDouble()); | 
 |       else if (CE->getType()->isDoubleTy()) | 
 |         GV.DoubleVal = GV.IntVal.roundToDouble(); | 
 |       else if (CE->getType()->isX86_FP80Ty()) { | 
 |         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); | 
 |         (void)apf.convertFromAPInt(GV.IntVal, | 
 |                                    false, | 
 |                                    APFloat::rmNearestTiesToEven); | 
 |         GV.IntVal = apf.bitcastToAPInt(); | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::SIToFP: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       if (CE->getType()->isFloatTy()) | 
 |         GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); | 
 |       else if (CE->getType()->isDoubleTy()) | 
 |         GV.DoubleVal = GV.IntVal.signedRoundToDouble(); | 
 |       else if (CE->getType()->isX86_FP80Ty()) { | 
 |         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); | 
 |         (void)apf.convertFromAPInt(GV.IntVal, | 
 |                                    true, | 
 |                                    APFloat::rmNearestTiesToEven); | 
 |         GV.IntVal = apf.bitcastToAPInt(); | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPToUI: // double->APInt conversion handles sign | 
 |     case Instruction::FPToSI: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       if (Op0->getType()->isFloatTy()) | 
 |         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); | 
 |       else if (Op0->getType()->isDoubleTy()) | 
 |         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); | 
 |       else if (Op0->getType()->isX86_FP80Ty()) { | 
 |         APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); | 
 |         uint64_t v; | 
 |         bool ignored; | 
 |         (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, | 
 |                                    CE->getOpcode()==Instruction::FPToSI, | 
 |                                    APFloat::rmTowardZero, &ignored); | 
 |         GV.IntVal = v; // endian? | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::PtrToInt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); | 
 |       assert(PtrWidth <= 64 && "Bad pointer width"); | 
 |       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); | 
 |       uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); | 
 |       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::IntToPtr: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); | 
 |       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); | 
 |       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); | 
 |       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::BitCast: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       Type* DestTy = CE->getType(); | 
 |       switch (Op0->getType()->getTypeID()) { | 
 |         default: llvm_unreachable("Invalid bitcast operand"); | 
 |         case Type::IntegerTyID: | 
 |           assert(DestTy->isFloatingPointTy() && "invalid bitcast"); | 
 |           if (DestTy->isFloatTy()) | 
 |             GV.FloatVal = GV.IntVal.bitsToFloat(); | 
 |           else if (DestTy->isDoubleTy()) | 
 |             GV.DoubleVal = GV.IntVal.bitsToDouble(); | 
 |           break; | 
 |         case Type::FloatTyID: | 
 |           assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); | 
 |           GV.IntVal = APInt::floatToBits(GV.FloatVal); | 
 |           break; | 
 |         case Type::DoubleTyID: | 
 |           assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); | 
 |           GV.IntVal = APInt::doubleToBits(GV.DoubleVal); | 
 |           break; | 
 |         case Type::PointerTyID: | 
 |           assert(DestTy->isPointerTy() && "Invalid bitcast"); | 
 |           break; // getConstantValue(Op0)  above already converted it | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::Add: | 
 |     case Instruction::FAdd: | 
 |     case Instruction::Sub: | 
 |     case Instruction::FSub: | 
 |     case Instruction::Mul: | 
 |     case Instruction::FMul: | 
 |     case Instruction::UDiv: | 
 |     case Instruction::SDiv: | 
 |     case Instruction::URem: | 
 |     case Instruction::SRem: | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: { | 
 |       GenericValue LHS = getConstantValue(Op0); | 
 |       GenericValue RHS = getConstantValue(CE->getOperand(1)); | 
 |       GenericValue GV; | 
 |       switch (CE->getOperand(0)->getType()->getTypeID()) { | 
 |       default: llvm_unreachable("Bad add type!"); | 
 |       case Type::IntegerTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: llvm_unreachable("Invalid integer opcode"); | 
 |           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; | 
 |           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; | 
 |           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; | 
 |           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; | 
 |           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; | 
 |           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; | 
 |           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; | 
 |           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; | 
 |           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break; | 
 |           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; | 
 |         } | 
 |         break; | 
 |       case Type::FloatTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: llvm_unreachable("Invalid float opcode"); | 
 |           case Instruction::FAdd: | 
 |             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; | 
 |           case Instruction::FSub: | 
 |             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; | 
 |           case Instruction::FMul: | 
 |             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; | 
 |           case Instruction::FDiv: | 
 |             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; | 
 |           case Instruction::FRem: | 
 |             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; | 
 |         } | 
 |         break; | 
 |       case Type::DoubleTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: llvm_unreachable("Invalid double opcode"); | 
 |           case Instruction::FAdd: | 
 |             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; | 
 |           case Instruction::FSub: | 
 |             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; | 
 |           case Instruction::FMul: | 
 |             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; | 
 |           case Instruction::FDiv: | 
 |             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; | 
 |           case Instruction::FRem: | 
 |             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; | 
 |         } | 
 |         break; | 
 |       case Type::X86_FP80TyID: | 
 |       case Type::PPC_FP128TyID: | 
 |       case Type::FP128TyID: { | 
 |         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); | 
 |         APFloat apfLHS = APFloat(Sem, LHS.IntVal); | 
 |         switch (CE->getOpcode()) { | 
 |           default: llvm_unreachable("Invalid long double opcode"); | 
 |           case Instruction::FAdd: | 
 |             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.bitcastToAPInt(); | 
 |             break; | 
 |           case Instruction::FSub: | 
 |             apfLHS.subtract(APFloat(Sem, RHS.IntVal), | 
 |                             APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.bitcastToAPInt(); | 
 |             break; | 
 |           case Instruction::FMul: | 
 |             apfLHS.multiply(APFloat(Sem, RHS.IntVal), | 
 |                             APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.bitcastToAPInt(); | 
 |             break; | 
 |           case Instruction::FDiv: | 
 |             apfLHS.divide(APFloat(Sem, RHS.IntVal), | 
 |                           APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.bitcastToAPInt(); | 
 |             break; | 
 |           case Instruction::FRem: | 
 |             apfLHS.mod(APFloat(Sem, RHS.IntVal)); | 
 |             GV.IntVal = apfLHS.bitcastToAPInt(); | 
 |             break; | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |     SmallString<256> Msg; | 
 |     raw_svector_ostream OS(Msg); | 
 |     OS << "ConstantExpr not handled: " << *CE; | 
 |     report_fatal_error(OS.str()); | 
 |   } | 
 |  | 
 |   // Otherwise, we have a simple constant. | 
 |   GenericValue Result; | 
 |   switch (C->getType()->getTypeID()) { | 
 |   case Type::FloatTyID: | 
 |     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); | 
 |     break; | 
 |   case Type::X86_FP80TyID: | 
 |   case Type::FP128TyID: | 
 |   case Type::PPC_FP128TyID: | 
 |     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); | 
 |     break; | 
 |   case Type::IntegerTyID: | 
 |     Result.IntVal = cast<ConstantInt>(C)->getValue(); | 
 |     break; | 
 |   case Type::PointerTyID: | 
 |     while (auto *A = dyn_cast<GlobalAlias>(C)) { | 
 |       C = A->getAliasee(); | 
 |     } | 
 |     if (isa<ConstantPointerNull>(C)) | 
 |       Result.PointerVal = nullptr; | 
 |     else if (const Function *F = dyn_cast<Function>(C)) | 
 |       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); | 
 |     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) | 
 |       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); | 
 |     else | 
 |       llvm_unreachable("Unknown constant pointer type!"); | 
 |     break; | 
 |   case Type::VectorTyID: { | 
 |     unsigned elemNum; | 
 |     Type* ElemTy; | 
 |     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); | 
 |     const ConstantVector *CV = dyn_cast<ConstantVector>(C); | 
 |     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); | 
 |  | 
 |     if (CDV) { | 
 |         elemNum = CDV->getNumElements(); | 
 |         ElemTy = CDV->getElementType(); | 
 |     } else if (CV || CAZ) { | 
 |         VectorType* VTy = dyn_cast<VectorType>(C->getType()); | 
 |         elemNum = VTy->getNumElements(); | 
 |         ElemTy = VTy->getElementType(); | 
 |     } else { | 
 |         llvm_unreachable("Unknown constant vector type!"); | 
 |     } | 
 |  | 
 |     Result.AggregateVal.resize(elemNum); | 
 |     // Check if vector holds floats. | 
 |     if(ElemTy->isFloatTy()) { | 
 |       if (CAZ) { | 
 |         GenericValue floatZero; | 
 |         floatZero.FloatVal = 0.f; | 
 |         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
 |                   floatZero); | 
 |         break; | 
 |       } | 
 |       if(CV) { | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           if (!isa<UndefValue>(CV->getOperand(i))) | 
 |             Result.AggregateVal[i].FloatVal = cast<ConstantFP>( | 
 |               CV->getOperand(i))->getValueAPF().convertToFloat(); | 
 |         break; | 
 |       } | 
 |       if(CDV) | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); | 
 |  | 
 |       break; | 
 |     } | 
 |     // Check if vector holds doubles. | 
 |     if (ElemTy->isDoubleTy()) { | 
 |       if (CAZ) { | 
 |         GenericValue doubleZero; | 
 |         doubleZero.DoubleVal = 0.0; | 
 |         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
 |                   doubleZero); | 
 |         break; | 
 |       } | 
 |       if(CV) { | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           if (!isa<UndefValue>(CV->getOperand(i))) | 
 |             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( | 
 |               CV->getOperand(i))->getValueAPF().convertToDouble(); | 
 |         break; | 
 |       } | 
 |       if(CDV) | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); | 
 |  | 
 |       break; | 
 |     } | 
 |     // Check if vector holds integers. | 
 |     if (ElemTy->isIntegerTy()) { | 
 |       if (CAZ) { | 
 |         GenericValue intZero; | 
 |         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); | 
 |         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
 |                   intZero); | 
 |         break; | 
 |       } | 
 |       if(CV) { | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           if (!isa<UndefValue>(CV->getOperand(i))) | 
 |             Result.AggregateVal[i].IntVal = cast<ConstantInt>( | 
 |                                             CV->getOperand(i))->getValue(); | 
 |           else { | 
 |             Result.AggregateVal[i].IntVal = | 
 |               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); | 
 |           } | 
 |         break; | 
 |       } | 
 |       if(CDV) | 
 |         for (unsigned i = 0; i < elemNum; ++i) | 
 |           Result.AggregateVal[i].IntVal = APInt( | 
 |             CDV->getElementType()->getPrimitiveSizeInBits(), | 
 |             CDV->getElementAsInteger(i)); | 
 |  | 
 |       break; | 
 |     } | 
 |     llvm_unreachable("Unknown constant pointer type!"); | 
 |   } | 
 |   break; | 
 |  | 
 |   default: | 
 |     SmallString<256> Msg; | 
 |     raw_svector_ostream OS(Msg); | 
 |     OS << "ERROR: Constant unimplemented for type: " << *C->getType(); | 
 |     report_fatal_error(OS.str()); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | 
 | /// with the integer held in IntVal. | 
 | static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | 
 |                              unsigned StoreBytes) { | 
 |   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); | 
 |   const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); | 
 |  | 
 |   if (sys::IsLittleEndianHost) { | 
 |     // Little-endian host - the source is ordered from LSB to MSB.  Order the | 
 |     // destination from LSB to MSB: Do a straight copy. | 
 |     memcpy(Dst, Src, StoreBytes); | 
 |   } else { | 
 |     // Big-endian host - the source is an array of 64 bit words ordered from | 
 |     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination | 
 |     // from MSB to LSB: Reverse the word order, but not the bytes in a word. | 
 |     while (StoreBytes > sizeof(uint64_t)) { | 
 |       StoreBytes -= sizeof(uint64_t); | 
 |       // May not be aligned so use memcpy. | 
 |       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | 
 |       Src += sizeof(uint64_t); | 
 |     } | 
 |  | 
 |     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | 
 |   } | 
 | } | 
 |  | 
 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, | 
 |                                          GenericValue *Ptr, Type *Ty) { | 
 |   const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); | 
 |  | 
 |   switch (Ty->getTypeID()) { | 
 |   default: | 
 |     dbgs() << "Cannot store value of type " << *Ty << "!\n"; | 
 |     break; | 
 |   case Type::IntegerTyID: | 
 |     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); | 
 |     break; | 
 |   case Type::FloatTyID: | 
 |     *((float*)Ptr) = Val.FloatVal; | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     *((double*)Ptr) = Val.DoubleVal; | 
 |     break; | 
 |   case Type::X86_FP80TyID: | 
 |     memcpy(Ptr, Val.IntVal.getRawData(), 10); | 
 |     break; | 
 |   case Type::PointerTyID: | 
 |     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. | 
 |     if (StoreBytes != sizeof(PointerTy)) | 
 |       memset(&(Ptr->PointerVal), 0, StoreBytes); | 
 |  | 
 |     *((PointerTy*)Ptr) = Val.PointerVal; | 
 |     break; | 
 |   case Type::VectorTyID: | 
 |     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { | 
 |       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) | 
 |         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; | 
 |       if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) | 
 |         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; | 
 |       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { | 
 |         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; | 
 |         StoreIntToMemory(Val.AggregateVal[i].IntVal, | 
 |           (uint8_t*)Ptr + numOfBytes*i, numOfBytes); | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) | 
 |     // Host and target are different endian - reverse the stored bytes. | 
 |     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); | 
 | } | 
 |  | 
 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | 
 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | 
 | static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { | 
 |   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); | 
 |   uint8_t *Dst = reinterpret_cast<uint8_t *>( | 
 |                    const_cast<uint64_t *>(IntVal.getRawData())); | 
 |  | 
 |   if (sys::IsLittleEndianHost) | 
 |     // Little-endian host - the destination must be ordered from LSB to MSB. | 
 |     // The source is ordered from LSB to MSB: Do a straight copy. | 
 |     memcpy(Dst, Src, LoadBytes); | 
 |   else { | 
 |     // Big-endian - the destination is an array of 64 bit words ordered from | 
 |     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is | 
 |     // ordered from MSB to LSB: Reverse the word order, but not the bytes in | 
 |     // a word. | 
 |     while (LoadBytes > sizeof(uint64_t)) { | 
 |       LoadBytes -= sizeof(uint64_t); | 
 |       // May not be aligned so use memcpy. | 
 |       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | 
 |       Dst += sizeof(uint64_t); | 
 |     } | 
 |  | 
 |     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | 
 |   } | 
 | } | 
 |  | 
 | /// FIXME: document | 
 | /// | 
 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, | 
 |                                           GenericValue *Ptr, | 
 |                                           Type *Ty) { | 
 |   const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); | 
 |  | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::IntegerTyID: | 
 |     // An APInt with all words initially zero. | 
 |     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); | 
 |     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); | 
 |     break; | 
 |   case Type::FloatTyID: | 
 |     Result.FloatVal = *((float*)Ptr); | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     Result.DoubleVal = *((double*)Ptr); | 
 |     break; | 
 |   case Type::PointerTyID: | 
 |     Result.PointerVal = *((PointerTy*)Ptr); | 
 |     break; | 
 |   case Type::X86_FP80TyID: { | 
 |     // This is endian dependent, but it will only work on x86 anyway. | 
 |     // FIXME: Will not trap if loading a signaling NaN. | 
 |     uint64_t y[2]; | 
 |     memcpy(y, Ptr, 10); | 
 |     Result.IntVal = APInt(80, y); | 
 |     break; | 
 |   } | 
 |   case Type::VectorTyID: { | 
 |     auto *VT = cast<VectorType>(Ty); | 
 |     Type *ElemT = VT->getElementType(); | 
 |     const unsigned numElems = VT->getNumElements(); | 
 |     if (ElemT->isFloatTy()) { | 
 |       Result.AggregateVal.resize(numElems); | 
 |       for (unsigned i = 0; i < numElems; ++i) | 
 |         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); | 
 |     } | 
 |     if (ElemT->isDoubleTy()) { | 
 |       Result.AggregateVal.resize(numElems); | 
 |       for (unsigned i = 0; i < numElems; ++i) | 
 |         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); | 
 |     } | 
 |     if (ElemT->isIntegerTy()) { | 
 |       GenericValue intZero; | 
 |       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); | 
 |       intZero.IntVal = APInt(elemBitWidth, 0); | 
 |       Result.AggregateVal.resize(numElems, intZero); | 
 |       for (unsigned i = 0; i < numElems; ++i) | 
 |         LoadIntFromMemory(Result.AggregateVal[i].IntVal, | 
 |           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); | 
 |     } | 
 |   break; | 
 |   } | 
 |   default: | 
 |     SmallString<256> Msg; | 
 |     raw_svector_ostream OS(Msg); | 
 |     OS << "Cannot load value of type " << *Ty << "!"; | 
 |     report_fatal_error(OS.str()); | 
 |   } | 
 | } | 
 |  | 
 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { | 
 |   LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); | 
 |   LLVM_DEBUG(Init->dump()); | 
 |   if (isa<UndefValue>(Init)) | 
 |     return; | 
 |  | 
 |   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { | 
 |     unsigned ElementSize = | 
 |         getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); | 
 |     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (isa<ConstantAggregateZero>(Init)) { | 
 |     memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { | 
 |     unsigned ElementSize = | 
 |         getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); | 
 |     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { | 
 |     const StructLayout *SL = | 
 |         getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); | 
 |     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ConstantDataSequential *CDS = | 
 |                dyn_cast<ConstantDataSequential>(Init)) { | 
 |     // CDS is already laid out in host memory order. | 
 |     StringRef Data = CDS->getRawDataValues(); | 
 |     memcpy(Addr, Data.data(), Data.size()); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Init->getType()->isFirstClassType()) { | 
 |     GenericValue Val = getConstantValue(Init); | 
 |     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); | 
 |     return; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); | 
 |   llvm_unreachable("Unknown constant type to initialize memory with!"); | 
 | } | 
 |  | 
 | /// EmitGlobals - Emit all of the global variables to memory, storing their | 
 | /// addresses into GlobalAddress.  This must make sure to copy the contents of | 
 | /// their initializers into the memory. | 
 | void ExecutionEngine::emitGlobals() { | 
 |   // Loop over all of the global variables in the program, allocating the memory | 
 |   // to hold them.  If there is more than one module, do a prepass over globals | 
 |   // to figure out how the different modules should link together. | 
 |   std::map<std::pair<std::string, Type*>, | 
 |            const GlobalValue*> LinkedGlobalsMap; | 
 |  | 
 |   if (Modules.size() != 1) { | 
 |     for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
 |       Module &M = *Modules[m]; | 
 |       for (const auto &GV : M.globals()) { | 
 |         if (GV.hasLocalLinkage() || GV.isDeclaration() || | 
 |             GV.hasAppendingLinkage() || !GV.hasName()) | 
 |           continue;// Ignore external globals and globals with internal linkage. | 
 |  | 
 |         const GlobalValue *&GVEntry = | 
 |           LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; | 
 |  | 
 |         // If this is the first time we've seen this global, it is the canonical | 
 |         // version. | 
 |         if (!GVEntry) { | 
 |           GVEntry = &GV; | 
 |           continue; | 
 |         } | 
 |  | 
 |         // If the existing global is strong, never replace it. | 
 |         if (GVEntry->hasExternalLinkage()) | 
 |           continue; | 
 |  | 
 |         // Otherwise, we know it's linkonce/weak, replace it if this is a strong | 
 |         // symbol.  FIXME is this right for common? | 
 |         if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) | 
 |           GVEntry = &GV; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   std::vector<const GlobalValue*> NonCanonicalGlobals; | 
 |   for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
 |     Module &M = *Modules[m]; | 
 |     for (const auto &GV : M.globals()) { | 
 |       // In the multi-module case, see what this global maps to. | 
 |       if (!LinkedGlobalsMap.empty()) { | 
 |         if (const GlobalValue *GVEntry = | 
 |               LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { | 
 |           // If something else is the canonical global, ignore this one. | 
 |           if (GVEntry != &GV) { | 
 |             NonCanonicalGlobals.push_back(&GV); | 
 |             continue; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       if (!GV.isDeclaration()) { | 
 |         addGlobalMapping(&GV, getMemoryForGV(&GV)); | 
 |       } else { | 
 |         // External variable reference. Try to use the dynamic loader to | 
 |         // get a pointer to it. | 
 |         if (void *SymAddr = | 
 |             sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) | 
 |           addGlobalMapping(&GV, SymAddr); | 
 |         else { | 
 |           report_fatal_error("Could not resolve external global address: " | 
 |                             +GV.getName()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // If there are multiple modules, map the non-canonical globals to their | 
 |     // canonical location. | 
 |     if (!NonCanonicalGlobals.empty()) { | 
 |       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { | 
 |         const GlobalValue *GV = NonCanonicalGlobals[i]; | 
 |         const GlobalValue *CGV = | 
 |           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; | 
 |         void *Ptr = getPointerToGlobalIfAvailable(CGV); | 
 |         assert(Ptr && "Canonical global wasn't codegen'd!"); | 
 |         addGlobalMapping(GV, Ptr); | 
 |       } | 
 |     } | 
 |  | 
 |     // Now that all of the globals are set up in memory, loop through them all | 
 |     // and initialize their contents. | 
 |     for (const auto &GV : M.globals()) { | 
 |       if (!GV.isDeclaration()) { | 
 |         if (!LinkedGlobalsMap.empty()) { | 
 |           if (const GlobalValue *GVEntry = | 
 |                 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) | 
 |             if (GVEntry != &GV)  // Not the canonical variable. | 
 |               continue; | 
 |         } | 
 |         EmitGlobalVariable(&GV); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // EmitGlobalVariable - This method emits the specified global variable to the | 
 | // address specified in GlobalAddresses, or allocates new memory if it's not | 
 | // already in the map. | 
 | void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { | 
 |   void *GA = getPointerToGlobalIfAvailable(GV); | 
 |  | 
 |   if (!GA) { | 
 |     // If it's not already specified, allocate memory for the global. | 
 |     GA = getMemoryForGV(GV); | 
 |  | 
 |     // If we failed to allocate memory for this global, return. | 
 |     if (!GA) return; | 
 |  | 
 |     addGlobalMapping(GV, GA); | 
 |   } | 
 |  | 
 |   // Don't initialize if it's thread local, let the client do it. | 
 |   if (!GV->isThreadLocal()) | 
 |     InitializeMemory(GV->getInitializer(), GA); | 
 |  | 
 |   Type *ElTy = GV->getValueType(); | 
 |   size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); | 
 |   NumInitBytes += (unsigned)GVSize; | 
 |   ++NumGlobals; | 
 | } |