| ; This test contains extremely tricky call graph structures for the inliner to | 
 | ; handle correctly. They form cycles where the inliner introduces code that is | 
 | ; immediately or can eventually be transformed back into the original code. And | 
 | ; each step changes the call graph and so will trigger iteration. This requires | 
 | ; some out-of-band way to prevent infinitely re-inlining and re-transforming the | 
 | ; code. | 
 | ; | 
 | ; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s | 
 |  | 
 |  | 
 | ; The `test1_*` collection of functions form a directly cycling pattern. | 
 |  | 
 | define void @test1_a(i8** %ptr) { | 
 | ; CHECK-LABEL: define void @test1_a( | 
 | entry: | 
 |   call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0) | 
 | ; Inlining and simplifying this call will reliably produce the exact same call, | 
 | ; over and over again. However, each inlining increments the count, and so we | 
 | ; expect this test case to stop after one round of inlining with a final | 
 | ; argument of '1'. | 
 | ; CHECK-NOT:     call | 
 | ; CHECK:         call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1) | 
 | ; CHECK-NOT:     call | 
 |  | 
 |   ret void | 
 | } | 
 |  | 
 | define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) { | 
 | ; CHECK-LABEL: define void @test1_b( | 
 | entry: | 
 |   %a = alloca i8* | 
 |   store i8* %arg, i8** %a | 
 | ; This alloca and store should remain through any optimization. | 
 | ; CHECK:         %[[A:.*]] = alloca | 
 | ; CHECK:         store i8* %arg, i8** %[[A]] | 
 |  | 
 |   br i1 %flag, label %bb1, label %bb2 | 
 |  | 
 | bb1: | 
 |   call void @test1_a(i8** %a) noinline | 
 |   br label %bb2 | 
 |  | 
 | bb2: | 
 |   %cast = bitcast i8** %a to void (i8*, i1, i32)** | 
 |   %p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast | 
 |   %inline_count_inc = add i32 %inline_count, 1 | 
 |   call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc) | 
 | ; And we should continue to load and call indirectly through optimization. | 
 | ; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)** | 
 | ; CHECK:         %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]] | 
 | ; CHECK:         call void %[[P]]( | 
 |  | 
 |   ret void | 
 | } | 
 |  | 
 | define void @test2_a(i8** %ptr) { | 
 | ; CHECK-LABEL: define void @test2_a( | 
 | entry: | 
 |   call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0) | 
 | ; Inlining and simplifying this call will reliably produce the exact same call, | 
 | ; but only after doing two rounds if inlining, first from @test2_b then | 
 | ; @test2_c. We check the exact number of inlining rounds before we cut off to | 
 | ; break the cycle by inspecting the last paramater that gets incremented with | 
 | ; each inlined function body. | 
 | ; CHECK-NOT:     call | 
 | ; CHECK:         call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2) | 
 | ; CHECK-NOT:     call | 
 |   ret void | 
 | } | 
 |  | 
 | define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { | 
 | ; CHECK-LABEL: define void @test2_b( | 
 | entry: | 
 |   %a = alloca i8* | 
 |   store i8* %arg2, i8** %a | 
 | ; This alloca and store should remain through any optimization. | 
 | ; CHECK:         %[[A:.*]] = alloca | 
 | ; CHECK:         store i8* %arg2, i8** %[[A]] | 
 |  | 
 |   br i1 %flag, label %bb1, label %bb2 | 
 |  | 
 | bb1: | 
 |   call void @test2_a(i8** %a) noinline | 
 |   br label %bb2 | 
 |  | 
 | bb2: | 
 |   %p = load i8*, i8** %a | 
 |   %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* | 
 |   %inline_count_inc = add i32 %inline_count, 1 | 
 |   call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) | 
 | ; And we should continue to load and call indirectly through optimization. | 
 | ; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** | 
 | ; CHECK:         %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] | 
 | ; CHECK:         call void %[[P]]( | 
 |  | 
 |   ret void | 
 | } | 
 |  | 
 | define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { | 
 | ; CHECK-LABEL: define void @test2_c( | 
 | entry: | 
 |   %a = alloca i8* | 
 |   store i8* %arg1, i8** %a | 
 | ; This alloca and store should remain through any optimization. | 
 | ; CHECK:         %[[A:.*]] = alloca | 
 | ; CHECK:         store i8* %arg1, i8** %[[A]] | 
 |  | 
 |   br i1 %flag, label %bb1, label %bb2 | 
 |  | 
 | bb1: | 
 |   call void @test2_a(i8** %a) noinline | 
 |   br label %bb2 | 
 |  | 
 | bb2: | 
 |   %p = load i8*, i8** %a | 
 |   %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* | 
 |   %inline_count_inc = add i32 %inline_count, 1 | 
 |   call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) | 
 | ; And we should continue to load and call indirectly through optimization. | 
 | ; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** | 
 | ; CHECK:         %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] | 
 | ; CHECK:         call void %[[P]]( | 
 |  | 
 |   ret void | 
 | } | 
 |  | 
 | ; Another infinite inlining case. The initial callgraph is like following: | 
 | ; | 
 | ;         test3_a <---> test3_b | 
 | ;             |         ^ | 
 | ;             v         | | 
 | ;         test3_c <---> test3_d | 
 | ; | 
 | ; For all the call edges in the call graph, only test3_c and test3_d can be | 
 | ; inlined into test3_a, and no other call edge can be inlined. | 
 | ; | 
 | ; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c | 
 | ; will be removed, a new call edge will be added and the call graph becomes: | 
 | ; | 
 | ;            test3_a <---> test3_b | 
 | ;                  \      ^ | 
 | ;                   v    / | 
 | ;     test3_c <---> test3_d | 
 | ; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC. | 
 | ; | 
 | ; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to | 
 | ; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and | 
 | ; {test3_a, test3_b}, immediately after the newly added ref edge | 
 | ; test3_a->test3_c will be converted to a call edge, and the two SCCs will be | 
 | ; merged into the original one again. During this cycle, the original SCC will | 
 | ; be added into UR.CWorklist again and this creates an infinite loop. | 
 |  | 
 | @a = global i64 0 | 
 | @b = global i64 0 | 
 |  | 
 | define void @test3_c(i32 %i) { | 
 | entry: | 
 |   %cmp = icmp eq i32 %i, 5 | 
 |   br i1 %cmp, label %if.end, label %if.then | 
 |  | 
 | if.then:                                          ; preds = %entry | 
 |   %call = tail call i64 @random() | 
 |   %t0 = load i64, i64* @a | 
 |   %add = add nsw i64 %t0, %call | 
 |   store i64 %add, i64* @a | 
 |   br label %if.end | 
 |  | 
 | if.end:                                           ; preds = %entry, %if.then | 
 |   tail call void @test3_d(i32 %i) | 
 |   %t6 = load i64, i64* @a | 
 |   %add85 = add nsw i64 %t6, 1 | 
 |   store i64 %add85, i64* @a | 
 |   ret void | 
 | } | 
 |  | 
 | declare i64 @random() | 
 |  | 
 | define void @test3_d(i32 %i) { | 
 | entry: | 
 |   %cmp = icmp eq i32 %i, 5 | 
 |   br i1 %cmp, label %if.end, label %if.then | 
 |  | 
 | if.then:                                          ; preds = %entry | 
 |   %call = tail call i64 @random() | 
 |   %t0 = load i64, i64* @a | 
 |   %add = add nsw i64 %t0, %call | 
 |   store i64 %add, i64* @a | 
 |   br label %if.end | 
 |  | 
 | if.end:                                           ; preds = %entry, %if.then | 
 |   tail call void @test3_c(i32 %i) | 
 |   tail call void @test3_b() | 
 |   %t6 = load i64, i64* @a | 
 |   %add79 = add nsw i64 %t6, 3 | 
 |   store i64 %add79, i64* @a | 
 |   ret void | 
 | } | 
 |  | 
 | ; Function Attrs: noinline | 
 | define void @test3_b() #0 { | 
 | entry: | 
 |   tail call void @test3_a() | 
 |   %t0 = load i64, i64* @a | 
 |   %add = add nsw i64 %t0, 2 | 
 |   store i64 %add, i64* @a | 
 |   ret void | 
 | } | 
 |  | 
 | ; Check test3_c is inlined into test3_a once and only once. | 
 | ; CHECK-LABEL: @test3_a( | 
 | ; CHECK: tail call void @test3_b() | 
 | ; CHECK-NEXT: tail call void @test3_d(i32 5) | 
 | ; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a | 
 | ; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1 | 
 | ; CHECK-NEXT: store i64 %[[ADD1]], i64* @a | 
 | ; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b | 
 | ; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5 | 
 | ; CHECK-NEXT: store i64 %[[ADD2]], i64* @b | 
 | ; CHECK-NEXT: ret void | 
 |  | 
 | ; Function Attrs: noinline | 
 | define void @test3_a() #0 { | 
 | entry: | 
 |   tail call void @test3_b() | 
 |   tail call void @test3_c(i32 5) | 
 |   %t0 = load i64, i64* @b | 
 |   %add = add nsw i64 %t0, 5 | 
 |   store i64 %add, i64* @b | 
 |   ret void | 
 | } | 
 |  | 
 | attributes #0 = { noinline } |