|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Long double expansions are | 
|  | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> | 
|  | and are incorporated herein by permission of the author.  The author | 
|  | reserves the right to distribute this material elsewhere under different | 
|  | copying permissions.  These modifications are distributed here under | 
|  | the following terms: | 
|  |  | 
|  | This library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | This library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* __quadmath_kernel_tanq( x, y, k ) | 
|  | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 | 
|  | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|  | * Input y is the tail of x. | 
|  | * Input k indicates whether tan (if k=1) or | 
|  | * -1/tan (if k= -1) is returned. | 
|  | * | 
|  | * Algorithm | 
|  | *	1. Since tan(-x) = -tan(x), we need only to consider positive x. | 
|  | *	2. if x < 2^-57, return x with inexact if x!=0. | 
|  | *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) | 
|  | *          on [0,0.67433]. | 
|  | * | 
|  | *	   Note: tan(x+y) = tan(x) + tan'(x)*y | 
|  | *		          ~ tan(x) + (1+x*x)*y | 
|  | *	   Therefore, for better accuracy in computing tan(x+y), let | 
|  | *		r = x^3 * R(x^2) | 
|  | *	   then | 
|  | *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) | 
|  | * | 
|  | *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then | 
|  | *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) | 
|  | *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) | 
|  | */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 | 
|  | one = 1, | 
|  | pio4hi = 7.8539816339744830961566084581987569936977E-1Q, | 
|  | pio4lo = 2.1679525325309452561992610065108379921906E-35Q, | 
|  |  | 
|  | /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) | 
|  | 0 <= x <= 0.6743316650390625 | 
|  | Peak relative error 8.0e-36  */ | 
|  | TH =  3.333333333333333333333333333333333333333E-1Q, | 
|  | T0 = -1.813014711743583437742363284336855889393E7Q, | 
|  | T1 =  1.320767960008972224312740075083259247618E6Q, | 
|  | T2 = -2.626775478255838182468651821863299023956E4Q, | 
|  | T3 =  1.764573356488504935415411383687150199315E2Q, | 
|  | T4 = -3.333267763822178690794678978979803526092E-1Q, | 
|  |  | 
|  | U0 = -1.359761033807687578306772463253710042010E8Q, | 
|  | U1 =  6.494370630656893175666729313065113194784E7Q, | 
|  | U2 = -4.180787672237927475505536849168729386782E6Q, | 
|  | U3 =  8.031643765106170040139966622980914621521E4Q, | 
|  | U4 = -5.323131271912475695157127875560667378597E2Q; | 
|  | /* 1.000000000000000000000000000000000000000E0 */ | 
|  |  | 
|  |  | 
|  | __float128 | 
|  | __quadmath_kernel_tanq (__float128 x, __float128 y, int iy) | 
|  | { | 
|  | __float128 z, r, v, w, s; | 
|  | int32_t ix, sign; | 
|  | ieee854_float128 u, u1; | 
|  |  | 
|  | u.value = x; | 
|  | ix = u.words32.w0 & 0x7fffffff; | 
|  | if (ix < 0x3fc60000)		/* x < 2**-57 */ | 
|  | { | 
|  | if ((int) x == 0) | 
|  | {			/* generate inexact */ | 
|  | if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3 | 
|  | | (iy + 1)) == 0) | 
|  | return one / fabsq (x); | 
|  | else if (iy == 1) | 
|  | { | 
|  | math_check_force_underflow (x); | 
|  | return x; | 
|  | } | 
|  | else | 
|  | return -one / x; | 
|  | } | 
|  | } | 
|  | if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ | 
|  | { | 
|  | if ((u.words32.w0 & 0x80000000) != 0) | 
|  | { | 
|  | x = -x; | 
|  | y = -y; | 
|  | sign = -1; | 
|  | } | 
|  | else | 
|  | sign = 1; | 
|  | z = pio4hi - x; | 
|  | w = pio4lo - y; | 
|  | x = z + w; | 
|  | y = 0.0; | 
|  | } | 
|  | z = x * x; | 
|  | r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); | 
|  | v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); | 
|  | r = r / v; | 
|  |  | 
|  | s = z * x; | 
|  | r = y + z * (s * r + y); | 
|  | r += TH * s; | 
|  | w = x + r; | 
|  | if (ix >= 0x3ffe5942) | 
|  | { | 
|  | v = (__float128) iy; | 
|  | w = (v - 2.0 * (x - (w * w / (w + v) - r))); | 
|  | /* SIGN is set for arguments that reach this code, but not | 
|  | otherwise, resulting in warnings that it may be used | 
|  | uninitialized although in the cases where it is used it has | 
|  | always been set.  */ | 
|  |  | 
|  |  | 
|  | if (sign < 0) | 
|  | w = -w; | 
|  |  | 
|  | return w; | 
|  | } | 
|  | if (iy == 1) | 
|  | return w; | 
|  | else | 
|  | {				/* if allow error up to 2 ulp, | 
|  | simply return -1.0/(x+r) here */ | 
|  | /*  compute -1.0/(x+r) accurately */ | 
|  | u1.value = w; | 
|  | u1.words32.w2 = 0; | 
|  | u1.words32.w3 = 0; | 
|  | v = r - (u1.value - x);		/* u1+v = r+x */ | 
|  | z = -1.0 / w; | 
|  | u.value = z; | 
|  | u.words32.w2 = 0; | 
|  | u.words32.w3 = 0; | 
|  | s = 1.0 + u.value * u1.value; | 
|  | return u.value + z * (s + u.value * v); | 
|  | } | 
|  | } |