|  | /* s_tanhl.c -- long double version of s_tanh.c. | 
|  | * Conversion to long double by Ulrich Drepper, | 
|  | * Cygnus Support, drepper@cygnus.com. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* Changes for 128-bit long double contributed by | 
|  | Stephen L. Moshier <moshier@na-net.ornl.gov> */ | 
|  |  | 
|  | /* tanhq(x) | 
|  | * Return the Hyperbolic Tangent of x | 
|  | * | 
|  | * Method : | 
|  | *                                      x    -x | 
|  | *                                     e  - e | 
|  | *      0. tanhq(x) is defined to be ----------- | 
|  | *                                      x    -x | 
|  | *                                     e  + e | 
|  | *      1. reduce x to non-negative by tanhq(-x) = -tanhq(x). | 
|  | *      2.  0      <= x <= 2**-57 : tanhq(x) := x*(one+x) | 
|  | *                                               -t | 
|  | *          2**-57 <  x <=  1     : tanhq(x) := -----; t = expm1q(-2x) | 
|  | *                                              t + 2 | 
|  | *                                                    2 | 
|  | *          1      <= x <=  40.0  : tanhq(x) := 1-  ----- ; t=expm1q(2x) | 
|  | *                                                  t + 2 | 
|  | *          40.0   <  x <= INF    : tanhq(x) := 1. | 
|  | * | 
|  | * Special cases: | 
|  | *      tanhq(NaN) is NaN; | 
|  | *      only tanhq(0)=0 is exact for finite argument. | 
|  | */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 one = 1.0, two = 2.0, tiny = 1.0e-4900Q; | 
|  |  | 
|  | __float128 | 
|  | tanhq (__float128 x) | 
|  | { | 
|  | __float128 t, z; | 
|  | uint32_t jx, ix; | 
|  | ieee854_float128 u; | 
|  |  | 
|  | /* Words of |x|. */ | 
|  | u.value = x; | 
|  | jx = u.words32.w0; | 
|  | ix = jx & 0x7fffffff; | 
|  | /* x is INF or NaN */ | 
|  | if (ix >= 0x7fff0000) | 
|  | { | 
|  | /* for NaN it's not important which branch: tanhq(NaN) = NaN */ | 
|  | if (jx & 0x80000000) | 
|  | return one / x - one;	/* tanhq(-inf)= -1; */ | 
|  | else | 
|  | return one / x + one;	/* tanhq(+inf)=+1 */ | 
|  | } | 
|  |  | 
|  | /* |x| < 40 */ | 
|  | if (ix < 0x40044000) | 
|  | { | 
|  | if (u.value == 0) | 
|  | return x;		/* x == +- 0 */ | 
|  | if (ix < 0x3fc60000)	/* |x| < 2^-57 */ | 
|  | { | 
|  | math_check_force_underflow (x); | 
|  | return x * (one + tiny); /* tanh(small) = small */ | 
|  | } | 
|  | u.words32.w0 = ix;	/* Absolute value of x.  */ | 
|  | if (ix >= 0x3fff0000) | 
|  | {			/* |x| >= 1  */ | 
|  | t = expm1q (two * u.value); | 
|  | z = one - two / (t + two); | 
|  | } | 
|  | else | 
|  | { | 
|  | t = expm1q (-two * u.value); | 
|  | z = -t / (t + two); | 
|  | } | 
|  | /* |x| > 40, return +-1 */ | 
|  | } | 
|  | else | 
|  | { | 
|  | z = one - tiny;		/* raised inexact flag */ | 
|  | } | 
|  | return (jx & 0x80000000) ? -z : z; | 
|  | } |