| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package strings | 
 |  | 
 | import ( | 
 | 	"io" | 
 | 	"sync" | 
 | ) | 
 |  | 
 | // Replacer replaces a list of strings with replacements. | 
 | // It is safe for concurrent use by multiple goroutines. | 
 | type Replacer struct { | 
 | 	once   sync.Once // guards buildOnce method | 
 | 	r      replacer | 
 | 	oldnew []string | 
 | } | 
 |  | 
 | // replacer is the interface that a replacement algorithm needs to implement. | 
 | type replacer interface { | 
 | 	Replace(s string) string | 
 | 	WriteString(w io.Writer, s string) (n int, err error) | 
 | } | 
 |  | 
 | // NewReplacer returns a new Replacer from a list of old, new string | 
 | // pairs. Replacements are performed in the order they appear in the | 
 | // target string, without overlapping matches. The old string | 
 | // comparisons are done in argument order. | 
 | // | 
 | // NewReplacer panics if given an odd number of arguments. | 
 | func NewReplacer(oldnew ...string) *Replacer { | 
 | 	if len(oldnew)%2 == 1 { | 
 | 		panic("strings.NewReplacer: odd argument count") | 
 | 	} | 
 | 	return &Replacer{oldnew: append([]string(nil), oldnew...)} | 
 | } | 
 |  | 
 | func (r *Replacer) buildOnce() { | 
 | 	r.r = r.build() | 
 | 	r.oldnew = nil | 
 | } | 
 |  | 
 | func (b *Replacer) build() replacer { | 
 | 	oldnew := b.oldnew | 
 | 	if len(oldnew) == 2 && len(oldnew[0]) > 1 { | 
 | 		return makeSingleStringReplacer(oldnew[0], oldnew[1]) | 
 | 	} | 
 |  | 
 | 	allNewBytes := true | 
 | 	for i := 0; i < len(oldnew); i += 2 { | 
 | 		if len(oldnew[i]) != 1 { | 
 | 			return makeGenericReplacer(oldnew) | 
 | 		} | 
 | 		if len(oldnew[i+1]) != 1 { | 
 | 			allNewBytes = false | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if allNewBytes { | 
 | 		r := byteReplacer{} | 
 | 		for i := range r { | 
 | 			r[i] = byte(i) | 
 | 		} | 
 | 		// The first occurrence of old->new map takes precedence | 
 | 		// over the others with the same old string. | 
 | 		for i := len(oldnew) - 2; i >= 0; i -= 2 { | 
 | 			o := oldnew[i][0] | 
 | 			n := oldnew[i+1][0] | 
 | 			r[o] = n | 
 | 		} | 
 | 		return &r | 
 | 	} | 
 |  | 
 | 	r := byteStringReplacer{toReplace: make([]string, 0, len(oldnew)/2)} | 
 | 	// The first occurrence of old->new map takes precedence | 
 | 	// over the others with the same old string. | 
 | 	for i := len(oldnew) - 2; i >= 0; i -= 2 { | 
 | 		o := oldnew[i][0] | 
 | 		n := oldnew[i+1] | 
 | 		// To avoid counting repetitions multiple times. | 
 | 		if r.replacements[o] == nil { | 
 | 			// We need to use string([]byte{o}) instead of string(o), | 
 | 			// to avoid utf8 encoding of o. | 
 | 			// E. g. byte(150) produces string of length 2. | 
 | 			r.toReplace = append(r.toReplace, string([]byte{o})) | 
 | 		} | 
 | 		r.replacements[o] = []byte(n) | 
 |  | 
 | 	} | 
 | 	return &r | 
 | } | 
 |  | 
 | // Replace returns a copy of s with all replacements performed. | 
 | func (r *Replacer) Replace(s string) string { | 
 | 	r.once.Do(r.buildOnce) | 
 | 	return r.r.Replace(s) | 
 | } | 
 |  | 
 | // WriteString writes s to w with all replacements performed. | 
 | func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) { | 
 | 	r.once.Do(r.buildOnce) | 
 | 	return r.r.WriteString(w, s) | 
 | } | 
 |  | 
 | // trieNode is a node in a lookup trie for prioritized key/value pairs. Keys | 
 | // and values may be empty. For example, the trie containing keys "ax", "ay", | 
 | // "bcbc", "x" and "xy" could have eight nodes: | 
 | // | 
 | //  n0  - | 
 | //  n1  a- | 
 | //  n2  .x+ | 
 | //  n3  .y+ | 
 | //  n4  b- | 
 | //  n5  .cbc+ | 
 | //  n6  x+ | 
 | //  n7  .y+ | 
 | // | 
 | // n0 is the root node, and its children are n1, n4 and n6; n1's children are | 
 | // n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked | 
 | // with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7 | 
 | // (marked with a trailing "+") are complete keys. | 
 | type trieNode struct { | 
 | 	// value is the value of the trie node's key/value pair. It is empty if | 
 | 	// this node is not a complete key. | 
 | 	value string | 
 | 	// priority is the priority (higher is more important) of the trie node's | 
 | 	// key/value pair; keys are not necessarily matched shortest- or longest- | 
 | 	// first. Priority is positive if this node is a complete key, and zero | 
 | 	// otherwise. In the example above, positive/zero priorities are marked | 
 | 	// with a trailing "+" or "-". | 
 | 	priority int | 
 |  | 
 | 	// A trie node may have zero, one or more child nodes: | 
 | 	//  * if the remaining fields are zero, there are no children. | 
 | 	//  * if prefix and next are non-zero, there is one child in next. | 
 | 	//  * if table is non-zero, it defines all the children. | 
 | 	// | 
 | 	// Prefixes are preferred over tables when there is one child, but the | 
 | 	// root node always uses a table for lookup efficiency. | 
 |  | 
 | 	// prefix is the difference in keys between this trie node and the next. | 
 | 	// In the example above, node n4 has prefix "cbc" and n4's next node is n5. | 
 | 	// Node n5 has no children and so has zero prefix, next and table fields. | 
 | 	prefix string | 
 | 	next   *trieNode | 
 |  | 
 | 	// table is a lookup table indexed by the next byte in the key, after | 
 | 	// remapping that byte through genericReplacer.mapping to create a dense | 
 | 	// index. In the example above, the keys only use 'a', 'b', 'c', 'x' and | 
 | 	// 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and | 
 | 	// genericReplacer.tableSize will be 5. Node n0's table will be | 
 | 	// []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped | 
 | 	// 'a', 'b' and 'x'. | 
 | 	table []*trieNode | 
 | } | 
 |  | 
 | func (t *trieNode) add(key, val string, priority int, r *genericReplacer) { | 
 | 	if key == "" { | 
 | 		if t.priority == 0 { | 
 | 			t.value = val | 
 | 			t.priority = priority | 
 | 		} | 
 | 		return | 
 | 	} | 
 |  | 
 | 	if t.prefix != "" { | 
 | 		// Need to split the prefix among multiple nodes. | 
 | 		var n int // length of the longest common prefix | 
 | 		for ; n < len(t.prefix) && n < len(key); n++ { | 
 | 			if t.prefix[n] != key[n] { | 
 | 				break | 
 | 			} | 
 | 		} | 
 | 		if n == len(t.prefix) { | 
 | 			t.next.add(key[n:], val, priority, r) | 
 | 		} else if n == 0 { | 
 | 			// First byte differs, start a new lookup table here. Looking up | 
 | 			// what is currently t.prefix[0] will lead to prefixNode, and | 
 | 			// looking up key[0] will lead to keyNode. | 
 | 			var prefixNode *trieNode | 
 | 			if len(t.prefix) == 1 { | 
 | 				prefixNode = t.next | 
 | 			} else { | 
 | 				prefixNode = &trieNode{ | 
 | 					prefix: t.prefix[1:], | 
 | 					next:   t.next, | 
 | 				} | 
 | 			} | 
 | 			keyNode := new(trieNode) | 
 | 			t.table = make([]*trieNode, r.tableSize) | 
 | 			t.table[r.mapping[t.prefix[0]]] = prefixNode | 
 | 			t.table[r.mapping[key[0]]] = keyNode | 
 | 			t.prefix = "" | 
 | 			t.next = nil | 
 | 			keyNode.add(key[1:], val, priority, r) | 
 | 		} else { | 
 | 			// Insert new node after the common section of the prefix. | 
 | 			next := &trieNode{ | 
 | 				prefix: t.prefix[n:], | 
 | 				next:   t.next, | 
 | 			} | 
 | 			t.prefix = t.prefix[:n] | 
 | 			t.next = next | 
 | 			next.add(key[n:], val, priority, r) | 
 | 		} | 
 | 	} else if t.table != nil { | 
 | 		// Insert into existing table. | 
 | 		m := r.mapping[key[0]] | 
 | 		if t.table[m] == nil { | 
 | 			t.table[m] = new(trieNode) | 
 | 		} | 
 | 		t.table[m].add(key[1:], val, priority, r) | 
 | 	} else { | 
 | 		t.prefix = key | 
 | 		t.next = new(trieNode) | 
 | 		t.next.add("", val, priority, r) | 
 | 	} | 
 | } | 
 |  | 
 | func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) { | 
 | 	// Iterate down the trie to the end, and grab the value and keylen with | 
 | 	// the highest priority. | 
 | 	bestPriority := 0 | 
 | 	node := &r.root | 
 | 	n := 0 | 
 | 	for node != nil { | 
 | 		if node.priority > bestPriority && !(ignoreRoot && node == &r.root) { | 
 | 			bestPriority = node.priority | 
 | 			val = node.value | 
 | 			keylen = n | 
 | 			found = true | 
 | 		} | 
 |  | 
 | 		if s == "" { | 
 | 			break | 
 | 		} | 
 | 		if node.table != nil { | 
 | 			index := r.mapping[s[0]] | 
 | 			if int(index) == r.tableSize { | 
 | 				break | 
 | 			} | 
 | 			node = node.table[index] | 
 | 			s = s[1:] | 
 | 			n++ | 
 | 		} else if node.prefix != "" && HasPrefix(s, node.prefix) { | 
 | 			n += len(node.prefix) | 
 | 			s = s[len(node.prefix):] | 
 | 			node = node.next | 
 | 		} else { | 
 | 			break | 
 | 		} | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // genericReplacer is the fully generic algorithm. | 
 | // It's used as a fallback when nothing faster can be used. | 
 | type genericReplacer struct { | 
 | 	root trieNode | 
 | 	// tableSize is the size of a trie node's lookup table. It is the number | 
 | 	// of unique key bytes. | 
 | 	tableSize int | 
 | 	// mapping maps from key bytes to a dense index for trieNode.table. | 
 | 	mapping [256]byte | 
 | } | 
 |  | 
 | func makeGenericReplacer(oldnew []string) *genericReplacer { | 
 | 	r := new(genericReplacer) | 
 | 	// Find each byte used, then assign them each an index. | 
 | 	for i := 0; i < len(oldnew); i += 2 { | 
 | 		key := oldnew[i] | 
 | 		for j := 0; j < len(key); j++ { | 
 | 			r.mapping[key[j]] = 1 | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for _, b := range r.mapping { | 
 | 		r.tableSize += int(b) | 
 | 	} | 
 |  | 
 | 	var index byte | 
 | 	for i, b := range r.mapping { | 
 | 		if b == 0 { | 
 | 			r.mapping[i] = byte(r.tableSize) | 
 | 		} else { | 
 | 			r.mapping[i] = index | 
 | 			index++ | 
 | 		} | 
 | 	} | 
 | 	// Ensure root node uses a lookup table (for performance). | 
 | 	r.root.table = make([]*trieNode, r.tableSize) | 
 |  | 
 | 	for i := 0; i < len(oldnew); i += 2 { | 
 | 		r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r) | 
 | 	} | 
 | 	return r | 
 | } | 
 |  | 
 | type appendSliceWriter []byte | 
 |  | 
 | // Write writes to the buffer to satisfy io.Writer. | 
 | func (w *appendSliceWriter) Write(p []byte) (int, error) { | 
 | 	*w = append(*w, p...) | 
 | 	return len(p), nil | 
 | } | 
 |  | 
 | // WriteString writes to the buffer without string->[]byte->string allocations. | 
 | func (w *appendSliceWriter) WriteString(s string) (int, error) { | 
 | 	*w = append(*w, s...) | 
 | 	return len(s), nil | 
 | } | 
 |  | 
 | type stringWriter struct { | 
 | 	w io.Writer | 
 | } | 
 |  | 
 | func (w stringWriter) WriteString(s string) (int, error) { | 
 | 	return w.w.Write([]byte(s)) | 
 | } | 
 |  | 
 | func getStringWriter(w io.Writer) io.StringWriter { | 
 | 	sw, ok := w.(io.StringWriter) | 
 | 	if !ok { | 
 | 		sw = stringWriter{w} | 
 | 	} | 
 | 	return sw | 
 | } | 
 |  | 
 | func (r *genericReplacer) Replace(s string) string { | 
 | 	buf := make(appendSliceWriter, 0, len(s)) | 
 | 	r.WriteString(&buf, s) | 
 | 	return string(buf) | 
 | } | 
 |  | 
 | func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
 | 	sw := getStringWriter(w) | 
 | 	var last, wn int | 
 | 	var prevMatchEmpty bool | 
 | 	for i := 0; i <= len(s); { | 
 | 		// Fast path: s[i] is not a prefix of any pattern. | 
 | 		if i != len(s) && r.root.priority == 0 { | 
 | 			index := int(r.mapping[s[i]]) | 
 | 			if index == r.tableSize || r.root.table[index] == nil { | 
 | 				i++ | 
 | 				continue | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Ignore the empty match iff the previous loop found the empty match. | 
 | 		val, keylen, match := r.lookup(s[i:], prevMatchEmpty) | 
 | 		prevMatchEmpty = match && keylen == 0 | 
 | 		if match { | 
 | 			wn, err = sw.WriteString(s[last:i]) | 
 | 			n += wn | 
 | 			if err != nil { | 
 | 				return | 
 | 			} | 
 | 			wn, err = sw.WriteString(val) | 
 | 			n += wn | 
 | 			if err != nil { | 
 | 				return | 
 | 			} | 
 | 			i += keylen | 
 | 			last = i | 
 | 			continue | 
 | 		} | 
 | 		i++ | 
 | 	} | 
 | 	if last != len(s) { | 
 | 		wn, err = sw.WriteString(s[last:]) | 
 | 		n += wn | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // singleStringReplacer is the implementation that's used when there is only | 
 | // one string to replace (and that string has more than one byte). | 
 | type singleStringReplacer struct { | 
 | 	finder *stringFinder | 
 | 	// value is the new string that replaces that pattern when it's found. | 
 | 	value string | 
 | } | 
 |  | 
 | func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer { | 
 | 	return &singleStringReplacer{finder: makeStringFinder(pattern), value: value} | 
 | } | 
 |  | 
 | func (r *singleStringReplacer) Replace(s string) string { | 
 | 	var buf []byte | 
 | 	i, matched := 0, false | 
 | 	for { | 
 | 		match := r.finder.next(s[i:]) | 
 | 		if match == -1 { | 
 | 			break | 
 | 		} | 
 | 		matched = true | 
 | 		buf = append(buf, s[i:i+match]...) | 
 | 		buf = append(buf, r.value...) | 
 | 		i += match + len(r.finder.pattern) | 
 | 	} | 
 | 	if !matched { | 
 | 		return s | 
 | 	} | 
 | 	buf = append(buf, s[i:]...) | 
 | 	return string(buf) | 
 | } | 
 |  | 
 | func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
 | 	sw := getStringWriter(w) | 
 | 	var i, wn int | 
 | 	for { | 
 | 		match := r.finder.next(s[i:]) | 
 | 		if match == -1 { | 
 | 			break | 
 | 		} | 
 | 		wn, err = sw.WriteString(s[i : i+match]) | 
 | 		n += wn | 
 | 		if err != nil { | 
 | 			return | 
 | 		} | 
 | 		wn, err = sw.WriteString(r.value) | 
 | 		n += wn | 
 | 		if err != nil { | 
 | 			return | 
 | 		} | 
 | 		i += match + len(r.finder.pattern) | 
 | 	} | 
 | 	wn, err = sw.WriteString(s[i:]) | 
 | 	n += wn | 
 | 	return | 
 | } | 
 |  | 
 | // byteReplacer is the implementation that's used when all the "old" | 
 | // and "new" values are single ASCII bytes. | 
 | // The array contains replacement bytes indexed by old byte. | 
 | type byteReplacer [256]byte | 
 |  | 
 | func (r *byteReplacer) Replace(s string) string { | 
 | 	var buf []byte // lazily allocated | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		b := s[i] | 
 | 		if r[b] != b { | 
 | 			if buf == nil { | 
 | 				buf = []byte(s) | 
 | 			} | 
 | 			buf[i] = r[b] | 
 | 		} | 
 | 	} | 
 | 	if buf == nil { | 
 | 		return s | 
 | 	} | 
 | 	return string(buf) | 
 | } | 
 |  | 
 | func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
 | 	// TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation. | 
 | 	bufsize := 32 << 10 | 
 | 	if len(s) < bufsize { | 
 | 		bufsize = len(s) | 
 | 	} | 
 | 	buf := make([]byte, bufsize) | 
 |  | 
 | 	for len(s) > 0 { | 
 | 		ncopy := copy(buf, s) | 
 | 		s = s[ncopy:] | 
 | 		for i, b := range buf[:ncopy] { | 
 | 			buf[i] = r[b] | 
 | 		} | 
 | 		wn, err := w.Write(buf[:ncopy]) | 
 | 		n += wn | 
 | 		if err != nil { | 
 | 			return n, err | 
 | 		} | 
 | 	} | 
 | 	return n, nil | 
 | } | 
 |  | 
 | // byteStringReplacer is the implementation that's used when all the | 
 | // "old" values are single ASCII bytes but the "new" values vary in size. | 
 | type byteStringReplacer struct { | 
 | 	// replacements contains replacement byte slices indexed by old byte. | 
 | 	// A nil []byte means that the old byte should not be replaced. | 
 | 	replacements [256][]byte | 
 | 	// toReplace keeps a list of bytes to replace. Depending on length of toReplace | 
 | 	// and length of target string it may be faster to use Count, or a plain loop. | 
 | 	// We store single byte as a string, because Count takes a string. | 
 | 	toReplace []string | 
 | } | 
 |  | 
 | // countCutOff controls the ratio of a string length to a number of replacements | 
 | // at which (*byteStringReplacer).Replace switches algorithms. | 
 | // For strings with higher ration of length to replacements than that value, | 
 | // we call Count, for each replacement from toReplace. | 
 | // For strings, with a lower ratio we use simple loop, because of Count overhead. | 
 | // countCutOff is an empirically determined overhead multiplier. | 
 | // TODO(tocarip) revisit once we have register-based abi/mid-stack inlining. | 
 | const countCutOff = 8 | 
 |  | 
 | func (r *byteStringReplacer) Replace(s string) string { | 
 | 	newSize := len(s) | 
 | 	anyChanges := false | 
 | 	// Is it faster to use Count? | 
 | 	if len(r.toReplace)*countCutOff <= len(s) { | 
 | 		for _, x := range r.toReplace { | 
 | 			if c := Count(s, x); c != 0 { | 
 | 				// The -1 is because we are replacing 1 byte with len(replacements[b]) bytes. | 
 | 				newSize += c * (len(r.replacements[x[0]]) - 1) | 
 | 				anyChanges = true | 
 | 			} | 
 |  | 
 | 		} | 
 | 	} else { | 
 | 		for i := 0; i < len(s); i++ { | 
 | 			b := s[i] | 
 | 			if r.replacements[b] != nil { | 
 | 				// See above for explanation of -1 | 
 | 				newSize += len(r.replacements[b]) - 1 | 
 | 				anyChanges = true | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if !anyChanges { | 
 | 		return s | 
 | 	} | 
 | 	buf := make([]byte, newSize) | 
 | 	j := 0 | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		b := s[i] | 
 | 		if r.replacements[b] != nil { | 
 | 			j += copy(buf[j:], r.replacements[b]) | 
 | 		} else { | 
 | 			buf[j] = b | 
 | 			j++ | 
 | 		} | 
 | 	} | 
 | 	return string(buf) | 
 | } | 
 |  | 
 | func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
 | 	sw := getStringWriter(w) | 
 | 	last := 0 | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		b := s[i] | 
 | 		if r.replacements[b] == nil { | 
 | 			continue | 
 | 		} | 
 | 		if last != i { | 
 | 			nw, err := sw.WriteString(s[last:i]) | 
 | 			n += nw | 
 | 			if err != nil { | 
 | 				return n, err | 
 | 			} | 
 | 		} | 
 | 		last = i + 1 | 
 | 		nw, err := w.Write(r.replacements[b]) | 
 | 		n += nw | 
 | 		if err != nil { | 
 | 			return n, err | 
 | 		} | 
 | 	} | 
 | 	if last != len(s) { | 
 | 		var nw int | 
 | 		nw, err = sw.WriteString(s[last:]) | 
 | 		n += nw | 
 | 	} | 
 | 	return | 
 | } |