|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package template | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "fmt" | 
|  | "io" | 
|  | "reflect" | 
|  | "runtime" | 
|  | "sort" | 
|  | "strings" | 
|  | "text/template/parse" | 
|  | ) | 
|  |  | 
|  | // maxExecDepth specifies the maximum stack depth of templates within | 
|  | // templates. This limit is only practically reached by accidentally | 
|  | // recursive template invocations. This limit allows us to return | 
|  | // an error instead of triggering a stack overflow. | 
|  | // For gccgo we make this 1000 rather than 100000 to avoid stack overflow | 
|  | // on non-split-stack systems. | 
|  | const maxExecDepth = 1000 | 
|  |  | 
|  | // state represents the state of an execution. It's not part of the | 
|  | // template so that multiple executions of the same template | 
|  | // can execute in parallel. | 
|  | type state struct { | 
|  | tmpl  *Template | 
|  | wr    io.Writer | 
|  | node  parse.Node // current node, for errors | 
|  | vars  []variable // push-down stack of variable values. | 
|  | depth int        // the height of the stack of executing templates. | 
|  | } | 
|  |  | 
|  | // variable holds the dynamic value of a variable such as $, $x etc. | 
|  | type variable struct { | 
|  | name  string | 
|  | value reflect.Value | 
|  | } | 
|  |  | 
|  | // push pushes a new variable on the stack. | 
|  | func (s *state) push(name string, value reflect.Value) { | 
|  | s.vars = append(s.vars, variable{name, value}) | 
|  | } | 
|  |  | 
|  | // mark returns the length of the variable stack. | 
|  | func (s *state) mark() int { | 
|  | return len(s.vars) | 
|  | } | 
|  |  | 
|  | // pop pops the variable stack up to the mark. | 
|  | func (s *state) pop(mark int) { | 
|  | s.vars = s.vars[0:mark] | 
|  | } | 
|  |  | 
|  | // setVar overwrites the top-nth variable on the stack. Used by range iterations. | 
|  | func (s *state) setVar(n int, value reflect.Value) { | 
|  | s.vars[len(s.vars)-n].value = value | 
|  | } | 
|  |  | 
|  | // varValue returns the value of the named variable. | 
|  | func (s *state) varValue(name string) reflect.Value { | 
|  | for i := s.mark() - 1; i >= 0; i-- { | 
|  | if s.vars[i].name == name { | 
|  | return s.vars[i].value | 
|  | } | 
|  | } | 
|  | s.errorf("undefined variable: %s", name) | 
|  | return zero | 
|  | } | 
|  |  | 
|  | var zero reflect.Value | 
|  |  | 
|  | // at marks the state to be on node n, for error reporting. | 
|  | func (s *state) at(node parse.Node) { | 
|  | s.node = node | 
|  | } | 
|  |  | 
|  | // doublePercent returns the string with %'s replaced by %%, if necessary, | 
|  | // so it can be used safely inside a Printf format string. | 
|  | func doublePercent(str string) string { | 
|  | if strings.Contains(str, "%") { | 
|  | str = strings.Replace(str, "%", "%%", -1) | 
|  | } | 
|  | return str | 
|  | } | 
|  |  | 
|  | // TODO: It would be nice if ExecError was more broken down, but | 
|  | // the way ErrorContext embeds the template name makes the | 
|  | // processing too clumsy. | 
|  |  | 
|  | // ExecError is the custom error type returned when Execute has an | 
|  | // error evaluating its template. (If a write error occurs, the actual | 
|  | // error is returned; it will not be of type ExecError.) | 
|  | type ExecError struct { | 
|  | Name string // Name of template. | 
|  | Err  error  // Pre-formatted error. | 
|  | } | 
|  |  | 
|  | func (e ExecError) Error() string { | 
|  | return e.Err.Error() | 
|  | } | 
|  |  | 
|  | // errorf records an ExecError and terminates processing. | 
|  | func (s *state) errorf(format string, args ...interface{}) { | 
|  | name := doublePercent(s.tmpl.Name()) | 
|  | if s.node == nil { | 
|  | format = fmt.Sprintf("template: %s: %s", name, format) | 
|  | } else { | 
|  | location, context := s.tmpl.ErrorContext(s.node) | 
|  | format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) | 
|  | } | 
|  | panic(ExecError{ | 
|  | Name: s.tmpl.Name(), | 
|  | Err:  fmt.Errorf(format, args...), | 
|  | }) | 
|  | } | 
|  |  | 
|  | // writeError is the wrapper type used internally when Execute has an | 
|  | // error writing to its output. We strip the wrapper in errRecover. | 
|  | // Note that this is not an implementation of error, so it cannot escape | 
|  | // from the package as an error value. | 
|  | type writeError struct { | 
|  | Err error // Original error. | 
|  | } | 
|  |  | 
|  | func (s *state) writeError(err error) { | 
|  | panic(writeError{ | 
|  | Err: err, | 
|  | }) | 
|  | } | 
|  |  | 
|  | // errRecover is the handler that turns panics into returns from the top | 
|  | // level of Parse. | 
|  | func errRecover(errp *error) { | 
|  | e := recover() | 
|  | if e != nil { | 
|  | switch err := e.(type) { | 
|  | case runtime.Error: | 
|  | panic(e) | 
|  | case writeError: | 
|  | *errp = err.Err // Strip the wrapper. | 
|  | case ExecError: | 
|  | *errp = err // Keep the wrapper. | 
|  | default: | 
|  | panic(e) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ExecuteTemplate applies the template associated with t that has the given name | 
|  | // to the specified data object and writes the output to wr. | 
|  | // If an error occurs executing the template or writing its output, | 
|  | // execution stops, but partial results may already have been written to | 
|  | // the output writer. | 
|  | // A template may be executed safely in parallel. | 
|  | func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { | 
|  | var tmpl *Template | 
|  | if t.common != nil { | 
|  | tmpl = t.tmpl[name] | 
|  | } | 
|  | if tmpl == nil { | 
|  | return fmt.Errorf("template: no template %q associated with template %q", name, t.name) | 
|  | } | 
|  | return tmpl.Execute(wr, data) | 
|  | } | 
|  |  | 
|  | // Execute applies a parsed template to the specified data object, | 
|  | // and writes the output to wr. | 
|  | // If an error occurs executing the template or writing its output, | 
|  | // execution stops, but partial results may already have been written to | 
|  | // the output writer. | 
|  | // A template may be executed safely in parallel. | 
|  | // | 
|  | // If data is a reflect.Value, the template applies to the concrete | 
|  | // value that the reflect.Value holds, as in fmt.Print. | 
|  | func (t *Template) Execute(wr io.Writer, data interface{}) error { | 
|  | return t.execute(wr, data) | 
|  | } | 
|  |  | 
|  | func (t *Template) execute(wr io.Writer, data interface{}) (err error) { | 
|  | defer errRecover(&err) | 
|  | value, ok := data.(reflect.Value) | 
|  | if !ok { | 
|  | value = reflect.ValueOf(data) | 
|  | } | 
|  | state := &state{ | 
|  | tmpl: t, | 
|  | wr:   wr, | 
|  | vars: []variable{{"$", value}}, | 
|  | } | 
|  | if t.Tree == nil || t.Root == nil { | 
|  | state.errorf("%q is an incomplete or empty template", t.Name()) | 
|  | } | 
|  | state.walk(value, t.Root) | 
|  | return | 
|  | } | 
|  |  | 
|  | // DefinedTemplates returns a string listing the defined templates, | 
|  | // prefixed by the string "; defined templates are: ". If there are none, | 
|  | // it returns the empty string. For generating an error message here | 
|  | // and in html/template. | 
|  | func (t *Template) DefinedTemplates() string { | 
|  | if t.common == nil { | 
|  | return "" | 
|  | } | 
|  | var b bytes.Buffer | 
|  | for name, tmpl := range t.tmpl { | 
|  | if tmpl.Tree == nil || tmpl.Root == nil { | 
|  | continue | 
|  | } | 
|  | if b.Len() > 0 { | 
|  | b.WriteString(", ") | 
|  | } | 
|  | fmt.Fprintf(&b, "%q", name) | 
|  | } | 
|  | var s string | 
|  | if b.Len() > 0 { | 
|  | s = "; defined templates are: " + b.String() | 
|  | } | 
|  | return s | 
|  | } | 
|  |  | 
|  | // Walk functions step through the major pieces of the template structure, | 
|  | // generating output as they go. | 
|  | func (s *state) walk(dot reflect.Value, node parse.Node) { | 
|  | s.at(node) | 
|  | switch node := node.(type) { | 
|  | case *parse.ActionNode: | 
|  | // Do not pop variables so they persist until next end. | 
|  | // Also, if the action declares variables, don't print the result. | 
|  | val := s.evalPipeline(dot, node.Pipe) | 
|  | if len(node.Pipe.Decl) == 0 { | 
|  | s.printValue(node, val) | 
|  | } | 
|  | case *parse.IfNode: | 
|  | s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) | 
|  | case *parse.ListNode: | 
|  | for _, node := range node.Nodes { | 
|  | s.walk(dot, node) | 
|  | } | 
|  | case *parse.RangeNode: | 
|  | s.walkRange(dot, node) | 
|  | case *parse.TemplateNode: | 
|  | s.walkTemplate(dot, node) | 
|  | case *parse.TextNode: | 
|  | if _, err := s.wr.Write(node.Text); err != nil { | 
|  | s.writeError(err) | 
|  | } | 
|  | case *parse.WithNode: | 
|  | s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) | 
|  | default: | 
|  | s.errorf("unknown node: %s", node) | 
|  | } | 
|  | } | 
|  |  | 
|  | // walkIfOrWith walks an 'if' or 'with' node. The two control structures | 
|  | // are identical in behavior except that 'with' sets dot. | 
|  | func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { | 
|  | defer s.pop(s.mark()) | 
|  | val := s.evalPipeline(dot, pipe) | 
|  | truth, ok := isTrue(val) | 
|  | if !ok { | 
|  | s.errorf("if/with can't use %v", val) | 
|  | } | 
|  | if truth { | 
|  | if typ == parse.NodeWith { | 
|  | s.walk(val, list) | 
|  | } else { | 
|  | s.walk(dot, list) | 
|  | } | 
|  | } else if elseList != nil { | 
|  | s.walk(dot, elseList) | 
|  | } | 
|  | } | 
|  |  | 
|  | // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, | 
|  | // and whether the value has a meaningful truth value. This is the definition of | 
|  | // truth used by if and other such actions. | 
|  | func IsTrue(val interface{}) (truth, ok bool) { | 
|  | return isTrue(reflect.ValueOf(val)) | 
|  | } | 
|  |  | 
|  | func isTrue(val reflect.Value) (truth, ok bool) { | 
|  | if !val.IsValid() { | 
|  | // Something like var x interface{}, never set. It's a form of nil. | 
|  | return false, true | 
|  | } | 
|  | switch val.Kind() { | 
|  | case reflect.Array, reflect.Map, reflect.Slice, reflect.String: | 
|  | truth = val.Len() > 0 | 
|  | case reflect.Bool: | 
|  | truth = val.Bool() | 
|  | case reflect.Complex64, reflect.Complex128: | 
|  | truth = val.Complex() != 0 | 
|  | case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: | 
|  | truth = !val.IsNil() | 
|  | case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
|  | truth = val.Int() != 0 | 
|  | case reflect.Float32, reflect.Float64: | 
|  | truth = val.Float() != 0 | 
|  | case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
|  | truth = val.Uint() != 0 | 
|  | case reflect.Struct: | 
|  | truth = true // Struct values are always true. | 
|  | default: | 
|  | return | 
|  | } | 
|  | return truth, true | 
|  | } | 
|  |  | 
|  | func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { | 
|  | s.at(r) | 
|  | defer s.pop(s.mark()) | 
|  | val, _ := indirect(s.evalPipeline(dot, r.Pipe)) | 
|  | // mark top of stack before any variables in the body are pushed. | 
|  | mark := s.mark() | 
|  | oneIteration := func(index, elem reflect.Value) { | 
|  | // Set top var (lexically the second if there are two) to the element. | 
|  | if len(r.Pipe.Decl) > 0 { | 
|  | s.setVar(1, elem) | 
|  | } | 
|  | // Set next var (lexically the first if there are two) to the index. | 
|  | if len(r.Pipe.Decl) > 1 { | 
|  | s.setVar(2, index) | 
|  | } | 
|  | s.walk(elem, r.List) | 
|  | s.pop(mark) | 
|  | } | 
|  | switch val.Kind() { | 
|  | case reflect.Array, reflect.Slice: | 
|  | if val.Len() == 0 { | 
|  | break | 
|  | } | 
|  | for i := 0; i < val.Len(); i++ { | 
|  | oneIteration(reflect.ValueOf(i), val.Index(i)) | 
|  | } | 
|  | return | 
|  | case reflect.Map: | 
|  | if val.Len() == 0 { | 
|  | break | 
|  | } | 
|  | for _, key := range sortKeys(val.MapKeys()) { | 
|  | oneIteration(key, val.MapIndex(key)) | 
|  | } | 
|  | return | 
|  | case reflect.Chan: | 
|  | if val.IsNil() { | 
|  | break | 
|  | } | 
|  | i := 0 | 
|  | for ; ; i++ { | 
|  | elem, ok := val.Recv() | 
|  | if !ok { | 
|  | break | 
|  | } | 
|  | oneIteration(reflect.ValueOf(i), elem) | 
|  | } | 
|  | if i == 0 { | 
|  | break | 
|  | } | 
|  | return | 
|  | case reflect.Invalid: | 
|  | break // An invalid value is likely a nil map, etc. and acts like an empty map. | 
|  | default: | 
|  | s.errorf("range can't iterate over %v", val) | 
|  | } | 
|  | if r.ElseList != nil { | 
|  | s.walk(dot, r.ElseList) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { | 
|  | s.at(t) | 
|  | tmpl := s.tmpl.tmpl[t.Name] | 
|  | if tmpl == nil { | 
|  | s.errorf("template %q not defined", t.Name) | 
|  | } | 
|  | if s.depth == maxExecDepth { | 
|  | s.errorf("exceeded maximum template depth (%v)", maxExecDepth) | 
|  | } | 
|  | // Variables declared by the pipeline persist. | 
|  | dot = s.evalPipeline(dot, t.Pipe) | 
|  | newState := *s | 
|  | newState.depth++ | 
|  | newState.tmpl = tmpl | 
|  | // No dynamic scoping: template invocations inherit no variables. | 
|  | newState.vars = []variable{{"$", dot}} | 
|  | newState.walk(dot, tmpl.Root) | 
|  | } | 
|  |  | 
|  | // Eval functions evaluate pipelines, commands, and their elements and extract | 
|  | // values from the data structure by examining fields, calling methods, and so on. | 
|  | // The printing of those values happens only through walk functions. | 
|  |  | 
|  | // evalPipeline returns the value acquired by evaluating a pipeline. If the | 
|  | // pipeline has a variable declaration, the variable will be pushed on the | 
|  | // stack. Callers should therefore pop the stack after they are finished | 
|  | // executing commands depending on the pipeline value. | 
|  | func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { | 
|  | if pipe == nil { | 
|  | return | 
|  | } | 
|  | s.at(pipe) | 
|  | for _, cmd := range pipe.Cmds { | 
|  | value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. | 
|  | // If the object has type interface{}, dig down one level to the thing inside. | 
|  | if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { | 
|  | value = reflect.ValueOf(value.Interface()) // lovely! | 
|  | } | 
|  | } | 
|  | for _, variable := range pipe.Decl { | 
|  | s.push(variable.Ident[0], value) | 
|  | } | 
|  | return value | 
|  | } | 
|  |  | 
|  | func (s *state) notAFunction(args []parse.Node, final reflect.Value) { | 
|  | if len(args) > 1 || final.IsValid() { | 
|  | s.errorf("can't give argument to non-function %s", args[0]) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { | 
|  | firstWord := cmd.Args[0] | 
|  | switch n := firstWord.(type) { | 
|  | case *parse.FieldNode: | 
|  | return s.evalFieldNode(dot, n, cmd.Args, final) | 
|  | case *parse.ChainNode: | 
|  | return s.evalChainNode(dot, n, cmd.Args, final) | 
|  | case *parse.IdentifierNode: | 
|  | // Must be a function. | 
|  | return s.evalFunction(dot, n, cmd, cmd.Args, final) | 
|  | case *parse.PipeNode: | 
|  | // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. | 
|  | return s.evalPipeline(dot, n) | 
|  | case *parse.VariableNode: | 
|  | return s.evalVariableNode(dot, n, cmd.Args, final) | 
|  | } | 
|  | s.at(firstWord) | 
|  | s.notAFunction(cmd.Args, final) | 
|  | switch word := firstWord.(type) { | 
|  | case *parse.BoolNode: | 
|  | return reflect.ValueOf(word.True) | 
|  | case *parse.DotNode: | 
|  | return dot | 
|  | case *parse.NilNode: | 
|  | s.errorf("nil is not a command") | 
|  | case *parse.NumberNode: | 
|  | return s.idealConstant(word) | 
|  | case *parse.StringNode: | 
|  | return reflect.ValueOf(word.Text) | 
|  | } | 
|  | s.errorf("can't evaluate command %q", firstWord) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | // idealConstant is called to return the value of a number in a context where | 
|  | // we don't know the type. In that case, the syntax of the number tells us | 
|  | // its type, and we use Go rules to resolve. Note there is no such thing as | 
|  | // a uint ideal constant in this situation - the value must be of int type. | 
|  | func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { | 
|  | // These are ideal constants but we don't know the type | 
|  | // and we have no context.  (If it was a method argument, | 
|  | // we'd know what we need.) The syntax guides us to some extent. | 
|  | s.at(constant) | 
|  | switch { | 
|  | case constant.IsComplex: | 
|  | return reflect.ValueOf(constant.Complex128) // incontrovertible. | 
|  | case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"): | 
|  | return reflect.ValueOf(constant.Float64) | 
|  | case constant.IsInt: | 
|  | n := int(constant.Int64) | 
|  | if int64(n) != constant.Int64 { | 
|  | s.errorf("%s overflows int", constant.Text) | 
|  | } | 
|  | return reflect.ValueOf(n) | 
|  | case constant.IsUint: | 
|  | s.errorf("%s overflows int", constant.Text) | 
|  | } | 
|  | return zero | 
|  | } | 
|  |  | 
|  | func isHexConstant(s string) bool { | 
|  | return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') | 
|  | } | 
|  |  | 
|  | func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | s.at(field) | 
|  | return s.evalFieldChain(dot, dot, field, field.Ident, args, final) | 
|  | } | 
|  |  | 
|  | func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | s.at(chain) | 
|  | if len(chain.Field) == 0 { | 
|  | s.errorf("internal error: no fields in evalChainNode") | 
|  | } | 
|  | if chain.Node.Type() == parse.NodeNil { | 
|  | s.errorf("indirection through explicit nil in %s", chain) | 
|  | } | 
|  | // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. | 
|  | pipe := s.evalArg(dot, nil, chain.Node) | 
|  | return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) | 
|  | } | 
|  |  | 
|  | func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. | 
|  | s.at(variable) | 
|  | value := s.varValue(variable.Ident[0]) | 
|  | if len(variable.Ident) == 1 { | 
|  | s.notAFunction(args, final) | 
|  | return value | 
|  | } | 
|  | return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) | 
|  | } | 
|  |  | 
|  | // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. | 
|  | // dot is the environment in which to evaluate arguments, while | 
|  | // receiver is the value being walked along the chain. | 
|  | func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | n := len(ident) | 
|  | for i := 0; i < n-1; i++ { | 
|  | receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) | 
|  | } | 
|  | // Now if it's a method, it gets the arguments. | 
|  | return s.evalField(dot, ident[n-1], node, args, final, receiver) | 
|  | } | 
|  |  | 
|  | func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | s.at(node) | 
|  | name := node.Ident | 
|  | function, ok := findFunction(name, s.tmpl) | 
|  | if !ok { | 
|  | s.errorf("%q is not a defined function", name) | 
|  | } | 
|  | return s.evalCall(dot, function, cmd, name, args, final) | 
|  | } | 
|  |  | 
|  | // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). | 
|  | // The 'final' argument represents the return value from the preceding | 
|  | // value of the pipeline, if any. | 
|  | func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { | 
|  | if !receiver.IsValid() { | 
|  | if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. | 
|  | s.errorf("nil data; no entry for key %q", fieldName) | 
|  | } | 
|  | return zero | 
|  | } | 
|  | typ := receiver.Type() | 
|  | receiver, isNil := indirect(receiver) | 
|  | // Unless it's an interface, need to get to a value of type *T to guarantee | 
|  | // we see all methods of T and *T. | 
|  | ptr := receiver | 
|  | if ptr.Kind() != reflect.Interface && ptr.CanAddr() { | 
|  | ptr = ptr.Addr() | 
|  | } | 
|  | if method := ptr.MethodByName(fieldName); method.IsValid() { | 
|  | return s.evalCall(dot, method, node, fieldName, args, final) | 
|  | } | 
|  | hasArgs := len(args) > 1 || final.IsValid() | 
|  | // It's not a method; must be a field of a struct or an element of a map. | 
|  | switch receiver.Kind() { | 
|  | case reflect.Struct: | 
|  | tField, ok := receiver.Type().FieldByName(fieldName) | 
|  | if ok { | 
|  | if isNil { | 
|  | s.errorf("nil pointer evaluating %s.%s", typ, fieldName) | 
|  | } | 
|  | field := receiver.FieldByIndex(tField.Index) | 
|  | if tField.PkgPath != "" { // field is unexported | 
|  | s.errorf("%s is an unexported field of struct type %s", fieldName, typ) | 
|  | } | 
|  | // If it's a function, we must call it. | 
|  | if hasArgs { | 
|  | s.errorf("%s has arguments but cannot be invoked as function", fieldName) | 
|  | } | 
|  | return field | 
|  | } | 
|  | case reflect.Map: | 
|  | if isNil { | 
|  | s.errorf("nil pointer evaluating %s.%s", typ, fieldName) | 
|  | } | 
|  | // If it's a map, attempt to use the field name as a key. | 
|  | nameVal := reflect.ValueOf(fieldName) | 
|  | if nameVal.Type().AssignableTo(receiver.Type().Key()) { | 
|  | if hasArgs { | 
|  | s.errorf("%s is not a method but has arguments", fieldName) | 
|  | } | 
|  | result := receiver.MapIndex(nameVal) | 
|  | if !result.IsValid() { | 
|  | switch s.tmpl.option.missingKey { | 
|  | case mapInvalid: | 
|  | // Just use the invalid value. | 
|  | case mapZeroValue: | 
|  | result = reflect.Zero(receiver.Type().Elem()) | 
|  | case mapError: | 
|  | s.errorf("map has no entry for key %q", fieldName) | 
|  | } | 
|  | } | 
|  | return result | 
|  | } | 
|  | } | 
|  | s.errorf("can't evaluate field %s in type %s", fieldName, typ) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | var ( | 
|  | errorType        = reflect.TypeOf((*error)(nil)).Elem() | 
|  | fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() | 
|  | reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() | 
|  | ) | 
|  |  | 
|  | // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so | 
|  | // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] | 
|  | // as the function itself. | 
|  | func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { | 
|  | if args != nil { | 
|  | args = args[1:] // Zeroth arg is function name/node; not passed to function. | 
|  | } | 
|  | typ := fun.Type() | 
|  | numIn := len(args) | 
|  | if final.IsValid() { | 
|  | numIn++ | 
|  | } | 
|  | numFixed := len(args) | 
|  | if typ.IsVariadic() { | 
|  | numFixed = typ.NumIn() - 1 // last arg is the variadic one. | 
|  | if numIn < numFixed { | 
|  | s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) | 
|  | } | 
|  | } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { | 
|  | s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) | 
|  | } | 
|  | if !goodFunc(typ) { | 
|  | // TODO: This could still be a confusing error; maybe goodFunc should provide info. | 
|  | s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) | 
|  | } | 
|  | // Build the arg list. | 
|  | argv := make([]reflect.Value, numIn) | 
|  | // Args must be evaluated. Fixed args first. | 
|  | i := 0 | 
|  | for ; i < numFixed && i < len(args); i++ { | 
|  | argv[i] = s.evalArg(dot, typ.In(i), args[i]) | 
|  | } | 
|  | // Now the ... args. | 
|  | if typ.IsVariadic() { | 
|  | argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. | 
|  | for ; i < len(args); i++ { | 
|  | argv[i] = s.evalArg(dot, argType, args[i]) | 
|  | } | 
|  | } | 
|  | // Add final value if necessary. | 
|  | if final.IsValid() { | 
|  | t := typ.In(typ.NumIn() - 1) | 
|  | if typ.IsVariadic() { | 
|  | if numIn-1 < numFixed { | 
|  | // The added final argument corresponds to a fixed parameter of the function. | 
|  | // Validate against the type of the actual parameter. | 
|  | t = typ.In(numIn - 1) | 
|  | } else { | 
|  | // The added final argument corresponds to the variadic part. | 
|  | // Validate against the type of the elements of the variadic slice. | 
|  | t = t.Elem() | 
|  | } | 
|  | } | 
|  | argv[i] = s.validateType(final, t) | 
|  | } | 
|  | result := fun.Call(argv) | 
|  | // If we have an error that is not nil, stop execution and return that error to the caller. | 
|  | if len(result) == 2 && !result[1].IsNil() { | 
|  | s.at(node) | 
|  | s.errorf("error calling %s: %s", name, result[1].Interface().(error)) | 
|  | } | 
|  | v := result[0] | 
|  | if v.Type() == reflectValueType { | 
|  | v = v.Interface().(reflect.Value) | 
|  | } | 
|  | return v | 
|  | } | 
|  |  | 
|  | // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. | 
|  | func canBeNil(typ reflect.Type) bool { | 
|  | switch typ.Kind() { | 
|  | case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: | 
|  | return true | 
|  | case reflect.Struct: | 
|  | return typ == reflectValueType | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | // validateType guarantees that the value is valid and assignable to the type. | 
|  | func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { | 
|  | if !value.IsValid() { | 
|  | if typ == nil || canBeNil(typ) { | 
|  | // An untyped nil interface{}. Accept as a proper nil value. | 
|  | return reflect.Zero(typ) | 
|  | } | 
|  | s.errorf("invalid value; expected %s", typ) | 
|  | } | 
|  | if typ == reflectValueType && value.Type() != typ { | 
|  | return reflect.ValueOf(value) | 
|  | } | 
|  | if typ != nil && !value.Type().AssignableTo(typ) { | 
|  | if value.Kind() == reflect.Interface && !value.IsNil() { | 
|  | value = value.Elem() | 
|  | if value.Type().AssignableTo(typ) { | 
|  | return value | 
|  | } | 
|  | // fallthrough | 
|  | } | 
|  | // Does one dereference or indirection work? We could do more, as we | 
|  | // do with method receivers, but that gets messy and method receivers | 
|  | // are much more constrained, so it makes more sense there than here. | 
|  | // Besides, one is almost always all you need. | 
|  | switch { | 
|  | case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): | 
|  | value = value.Elem() | 
|  | if !value.IsValid() { | 
|  | s.errorf("dereference of nil pointer of type %s", typ) | 
|  | } | 
|  | case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): | 
|  | value = value.Addr() | 
|  | default: | 
|  | s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) | 
|  | } | 
|  | } | 
|  | return value | 
|  | } | 
|  |  | 
|  | func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | switch arg := n.(type) { | 
|  | case *parse.DotNode: | 
|  | return s.validateType(dot, typ) | 
|  | case *parse.NilNode: | 
|  | if canBeNil(typ) { | 
|  | return reflect.Zero(typ) | 
|  | } | 
|  | s.errorf("cannot assign nil to %s", typ) | 
|  | case *parse.FieldNode: | 
|  | return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) | 
|  | case *parse.VariableNode: | 
|  | return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) | 
|  | case *parse.PipeNode: | 
|  | return s.validateType(s.evalPipeline(dot, arg), typ) | 
|  | case *parse.IdentifierNode: | 
|  | return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) | 
|  | case *parse.ChainNode: | 
|  | return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) | 
|  | } | 
|  | switch typ.Kind() { | 
|  | case reflect.Bool: | 
|  | return s.evalBool(typ, n) | 
|  | case reflect.Complex64, reflect.Complex128: | 
|  | return s.evalComplex(typ, n) | 
|  | case reflect.Float32, reflect.Float64: | 
|  | return s.evalFloat(typ, n) | 
|  | case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
|  | return s.evalInteger(typ, n) | 
|  | case reflect.Interface: | 
|  | if typ.NumMethod() == 0 { | 
|  | return s.evalEmptyInterface(dot, n) | 
|  | } | 
|  | case reflect.Struct: | 
|  | if typ == reflectValueType { | 
|  | return reflect.ValueOf(s.evalEmptyInterface(dot, n)) | 
|  | } | 
|  | case reflect.String: | 
|  | return s.evalString(typ, n) | 
|  | case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
|  | return s.evalUnsignedInteger(typ, n) | 
|  | } | 
|  | s.errorf("can't handle %s for arg of type %s", n, typ) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | if n, ok := n.(*parse.BoolNode); ok { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetBool(n.True) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected bool; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | if n, ok := n.(*parse.StringNode); ok { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetString(n.Text) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected string; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | if n, ok := n.(*parse.NumberNode); ok && n.IsInt { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetInt(n.Int64) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected integer; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | if n, ok := n.(*parse.NumberNode); ok && n.IsUint { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetUint(n.Uint64) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected unsigned integer; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetFloat(n.Float64) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected float; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { | 
|  | if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { | 
|  | value := reflect.New(typ).Elem() | 
|  | value.SetComplex(n.Complex128) | 
|  | return value | 
|  | } | 
|  | s.errorf("expected complex; found %s", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { | 
|  | s.at(n) | 
|  | switch n := n.(type) { | 
|  | case *parse.BoolNode: | 
|  | return reflect.ValueOf(n.True) | 
|  | case *parse.DotNode: | 
|  | return dot | 
|  | case *parse.FieldNode: | 
|  | return s.evalFieldNode(dot, n, nil, zero) | 
|  | case *parse.IdentifierNode: | 
|  | return s.evalFunction(dot, n, n, nil, zero) | 
|  | case *parse.NilNode: | 
|  | // NilNode is handled in evalArg, the only place that calls here. | 
|  | s.errorf("evalEmptyInterface: nil (can't happen)") | 
|  | case *parse.NumberNode: | 
|  | return s.idealConstant(n) | 
|  | case *parse.StringNode: | 
|  | return reflect.ValueOf(n.Text) | 
|  | case *parse.VariableNode: | 
|  | return s.evalVariableNode(dot, n, nil, zero) | 
|  | case *parse.PipeNode: | 
|  | return s.evalPipeline(dot, n) | 
|  | } | 
|  | s.errorf("can't handle assignment of %s to empty interface argument", n) | 
|  | panic("not reached") | 
|  | } | 
|  |  | 
|  | // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. | 
|  | func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { | 
|  | for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { | 
|  | if v.IsNil() { | 
|  | return v, true | 
|  | } | 
|  | } | 
|  | return v, false | 
|  | } | 
|  |  | 
|  | // indirectInterface returns the concrete value in an interface value, | 
|  | // or else the zero reflect.Value. | 
|  | // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): | 
|  | // the fact that x was an interface value is forgotten. | 
|  | func indirectInterface(v reflect.Value) reflect.Value { | 
|  | if v.Kind() != reflect.Interface { | 
|  | return v | 
|  | } | 
|  | if v.IsNil() { | 
|  | return reflect.Value{} | 
|  | } | 
|  | return v.Elem() | 
|  | } | 
|  |  | 
|  | // printValue writes the textual representation of the value to the output of | 
|  | // the template. | 
|  | func (s *state) printValue(n parse.Node, v reflect.Value) { | 
|  | s.at(n) | 
|  | iface, ok := printableValue(v) | 
|  | if !ok { | 
|  | s.errorf("can't print %s of type %s", n, v.Type()) | 
|  | } | 
|  | _, err := fmt.Fprint(s.wr, iface) | 
|  | if err != nil { | 
|  | s.writeError(err) | 
|  | } | 
|  | } | 
|  |  | 
|  | // printableValue returns the, possibly indirected, interface value inside v that | 
|  | // is best for a call to formatted printer. | 
|  | func printableValue(v reflect.Value) (interface{}, bool) { | 
|  | if v.Kind() == reflect.Ptr { | 
|  | v, _ = indirect(v) // fmt.Fprint handles nil. | 
|  | } | 
|  | if !v.IsValid() { | 
|  | return "<no value>", true | 
|  | } | 
|  |  | 
|  | if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { | 
|  | if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { | 
|  | v = v.Addr() | 
|  | } else { | 
|  | switch v.Kind() { | 
|  | case reflect.Chan, reflect.Func: | 
|  | return nil, false | 
|  | } | 
|  | } | 
|  | } | 
|  | return v.Interface(), true | 
|  | } | 
|  |  | 
|  | // Types to help sort the keys in a map for reproducible output. | 
|  |  | 
|  | type rvs []reflect.Value | 
|  |  | 
|  | func (x rvs) Len() int      { return len(x) } | 
|  | func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } | 
|  |  | 
|  | type rvInts struct{ rvs } | 
|  |  | 
|  | func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } | 
|  |  | 
|  | type rvUints struct{ rvs } | 
|  |  | 
|  | func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } | 
|  |  | 
|  | type rvFloats struct{ rvs } | 
|  |  | 
|  | func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } | 
|  |  | 
|  | type rvStrings struct{ rvs } | 
|  |  | 
|  | func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } | 
|  |  | 
|  | // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. | 
|  | func sortKeys(v []reflect.Value) []reflect.Value { | 
|  | if len(v) <= 1 { | 
|  | return v | 
|  | } | 
|  | switch v[0].Kind() { | 
|  | case reflect.Float32, reflect.Float64: | 
|  | sort.Sort(rvFloats{v}) | 
|  | case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
|  | sort.Sort(rvInts{v}) | 
|  | case reflect.String: | 
|  | sort.Sort(rvStrings{v}) | 
|  | case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
|  | sort.Sort(rvUints{v}) | 
|  | } | 
|  | return v | 
|  | } |