|  | /* Copyright (C) 2007-2016 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 3, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "bid_internal.h" | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | *    BID128 non-computational functions: | 
|  | *         - bid128_isSigned | 
|  | *         - bid128_isNormal | 
|  | *         - bid128_isSubnormal | 
|  | *         - bid128_isFinite | 
|  | *         - bid128_isZero | 
|  | *         - bid128_isInf | 
|  | *         - bid128_isSignaling | 
|  | *         - bid128_isCanonical | 
|  | *         - bid128_isNaN | 
|  | *         - bid128_copy | 
|  | *         - bid128_negate | 
|  | *         - bid128_abs | 
|  | *         - bid128_copySign | 
|  | *         - bid128_class | 
|  | *         - bid128_totalOrder | 
|  | *         - bid128_totalOrderMag | 
|  | *         - bid128_sameQuantum | 
|  | *         - bid128_radix | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isSigned (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isSigned (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  |  | 
|  | res = ((x.w[HIGH_128W] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // return 1 iff x is not zero, nor NaN nor subnormal nor infinity | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isNormal (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isNormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT64 x_exp, C1_hi, C1_lo; | 
|  | BID_UI64DOUBLE tmp1; | 
|  | int exp, q, x_nr_bits; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | // test for special values - infinity or NaN | 
|  | if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) { | 
|  | // x is special | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // unpack x | 
|  | x_exp = x.w[1] & MASK_EXP;	// biased and shifted left 49 bit positions | 
|  | C1_hi = x.w[1] & MASK_COEFF; | 
|  | C1_lo = x.w[0]; | 
|  | // test for zero | 
|  | if (C1_hi == 0 && C1_lo == 0) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // test for non-canonical values of the argument x | 
|  | if ((((C1_hi > 0x0001ed09bead87c0ull) | 
|  | || ((C1_hi == 0x0001ed09bead87c0ull) | 
|  | && (C1_lo > 0x378d8e63ffffffffull))) | 
|  | && ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) | 
|  | || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // x is subnormal or normal | 
|  | // determine the number of digits q in the significand | 
|  | // q = nr. of decimal digits in x | 
|  | // determine first the nr. of bits in x | 
|  | if (C1_hi == 0) { | 
|  | if (C1_lo >= 0x0020000000000000ull) {	// x >= 2^53 | 
|  | // split the 64-bit value in two 32-bit halves to avoid rounding errors | 
|  | if (C1_lo >= 0x0000000100000000ull) {	// x >= 2^32 | 
|  | tmp1.d = (double) (C1_lo >> 32);	// exact conversion | 
|  | x_nr_bits = | 
|  | 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } else {	// x < 2^32 | 
|  | tmp1.d = (double) (C1_lo);	// exact conversion | 
|  | x_nr_bits = | 
|  | 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | } else {	// if x < 2^53 | 
|  | tmp1.d = (double) C1_lo;	// exact conversion | 
|  | x_nr_bits = | 
|  | 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | } else {	// C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi) | 
|  | tmp1.d = (double) C1_hi;	// exact conversion | 
|  | x_nr_bits = | 
|  | 65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | q = nr_digits[x_nr_bits - 1].digits; | 
|  | if (q == 0) { | 
|  | q = nr_digits[x_nr_bits - 1].digits1; | 
|  | if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi || | 
|  | (C1_hi == nr_digits[x_nr_bits - 1].threshold_hi && | 
|  | C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo)) | 
|  | q++; | 
|  | } | 
|  | exp = (int) (x_exp >> 49) - 6176; | 
|  | // test for subnormal values of x | 
|  | if (exp + q <= -6143) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } | 
|  |  | 
|  | // return 1 iff x is not zero, nor NaN nor normal nor infinity | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isSubnormal (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isSubnormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT64 x_exp, C1_hi, C1_lo; | 
|  | BID_UI64DOUBLE tmp1; | 
|  | int exp, q, x_nr_bits; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | // test for special values - infinity or NaN | 
|  | if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) { | 
|  | // x is special | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // unpack x | 
|  | x_exp = x.w[1] & MASK_EXP;	// biased and shifted left 49 bit positions | 
|  | C1_hi = x.w[1] & MASK_COEFF; | 
|  | C1_lo = x.w[0]; | 
|  | // test for zero | 
|  | if (C1_hi == 0 && C1_lo == 0) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // test for non-canonical values of the argument x | 
|  | if ((((C1_hi > 0x0001ed09bead87c0ull) | 
|  | || ((C1_hi == 0x0001ed09bead87c0ull) | 
|  | && (C1_lo > 0x378d8e63ffffffffull))) | 
|  | && ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) | 
|  | || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // x is subnormal or normal | 
|  | // determine the number of digits q in the significand | 
|  | // q = nr. of decimal digits in x | 
|  | // determine first the nr. of bits in x | 
|  | if (C1_hi == 0) { | 
|  | if (C1_lo >= 0x0020000000000000ull) {	// x >= 2^53 | 
|  | // split the 64-bit value in two 32-bit halves to avoid rounding errors | 
|  | if (C1_lo >= 0x0000000100000000ull) {	// x >= 2^32 | 
|  | tmp1.d = (double) (C1_lo >> 32);	// exact conversion | 
|  | x_nr_bits = | 
|  | 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } else {	// x < 2^32 | 
|  | tmp1.d = (double) (C1_lo);	// exact conversion | 
|  | x_nr_bits = | 
|  | 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | } else {	// if x < 2^53 | 
|  | tmp1.d = (double) C1_lo;	// exact conversion | 
|  | x_nr_bits = | 
|  | 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | } else {	// C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi) | 
|  | tmp1.d = (double) C1_hi;	// exact conversion | 
|  | x_nr_bits = | 
|  | 65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); | 
|  | } | 
|  | q = nr_digits[x_nr_bits - 1].digits; | 
|  | if (q == 0) { | 
|  | q = nr_digits[x_nr_bits - 1].digits1; | 
|  | if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi || | 
|  | (C1_hi == nr_digits[x_nr_bits - 1].threshold_hi && | 
|  | C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo)) | 
|  | q++; | 
|  | } | 
|  | exp = (int) (x_exp >> 49) - 6176; | 
|  | // test for subnormal values of x | 
|  | if (exp + q <= -6143) { | 
|  | res = 1; | 
|  | } else { | 
|  | res = 0; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isFinite (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isFinite (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | res = ((x.w[HIGH_128W] & MASK_INF) != MASK_INF); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isZero (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isZero (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT128 sig_x; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | if ((x.w[1] & MASK_INF) == MASK_INF) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; | 
|  | sig_x.w[0] = x.w[0]; | 
|  | if ((sig_x.w[1] > 0x0001ed09bead87c0ull) ||	// significand is non-canonical | 
|  | ((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) ||	// significand is non-canonical | 
|  | ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull && (x.w[1] & MASK_INF) != MASK_INF) ||	// significand is non-canonical | 
|  | (sig_x.w[1] == 0 && sig_x.w[0] == 0)) {	// significand is 0 | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isInf (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isInf (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | res = ((x.w[HIGH_128W] & MASK_INF) == MASK_INF) | 
|  | && ((x.w[HIGH_128W] & MASK_NAN) != MASK_NAN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isSignaling (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isSignaling (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  |  | 
|  | res = ((x.w[HIGH_128W] & MASK_SNAN) == MASK_SNAN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // return 1 iff x is a canonical number ,infinity, or NaN. | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isCanonical (int *pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isCanonical (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT128 sig_x; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | if ((x.w[1] & MASK_NAN) == MASK_NAN) {	// NaN | 
|  | if (x.w[1] & 0x01ffc00000000000ull) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | sig_x.w[1] = x.w[1] & 0x00003fffffffffffull;	// 46 bits | 
|  | sig_x.w[0] = x.w[0];	// 64 bits | 
|  | // payload must be < 10^33 = 0x0000314dc6448d93_38c15b0a00000000 | 
|  | if (sig_x.w[1] < 0x0000314dc6448d93ull | 
|  | || (sig_x.w[1] == 0x0000314dc6448d93ull | 
|  | && sig_x.w[0] < 0x38c15b0a00000000ull)) { | 
|  | res = 1; | 
|  | } else { | 
|  | res = 0; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } else if ((x.w[1] & MASK_INF) == MASK_INF) {	// infinity | 
|  | if ((x.w[1] & 0x03ffffffffffffffull) || x.w[0]) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = 1; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // not NaN or infinity; extract significand to ensure it is canonical | 
|  | sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; | 
|  | sig_x.w[0] = x.w[0]; | 
|  | // a canonical number has a coefficient < 10^34 | 
|  | //    (0x0001ed09_bead87c0_378d8e64_00000000) | 
|  | if ((sig_x.w[1] > 0x0001ed09bead87c0ull) ||	// significand is non-canonical | 
|  | ((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) ||	// significand is non-canonical | 
|  | ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = 1; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_isNaN (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_isNaN (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  |  | 
|  | res = ((x.w[HIGH_128W] & MASK_NAN) == MASK_NAN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // copies a floating-point operand x to destination y, with no change | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_copy (UINT128 * pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | UINT128 | 
|  | bid128_copy (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | UINT128 res; | 
|  |  | 
|  | res = x; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // copies a floating-point operand x to destination y, reversing the sign | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_negate (UINT128 * pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | UINT128 | 
|  | bid128_negate (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | UINT128 res; | 
|  |  | 
|  | x.w[HIGH_128W] ^= MASK_SIGN; | 
|  | res = x; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // copies a floating-point operand x to destination y, changing the sign to positive | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_abs (UINT128 * pres, | 
|  | UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | UINT128 | 
|  | bid128_abs (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | UINT128 res; | 
|  |  | 
|  | x.w[HIGH_128W] &= ~MASK_SIGN; | 
|  | res = x; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // copies operand x to destination in the same format as x, but with the sign of y | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_copySign (UINT128 * pres, UINT128 * px, | 
|  | UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | UINT128 y = *py; | 
|  | #else | 
|  | UINT128 | 
|  | bid128_copySign (UINT128 x, UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | UINT128 res; | 
|  |  | 
|  | x.w[HIGH_128W] = | 
|  | (x.w[HIGH_128W] & ~MASK_SIGN) | (y.w[HIGH_128W] & MASK_SIGN); | 
|  | res = x; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_class (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_class (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT256 sig_x_prime256; | 
|  | UINT192 sig_x_prime192; | 
|  | UINT128 sig_x; | 
|  | int exp_x; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | if ((x.w[1] & MASK_NAN) == MASK_NAN) { | 
|  | if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { | 
|  | res = signalingNaN; | 
|  | } else { | 
|  | res = quietNaN; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  | if ((x.w[1] & MASK_INF) == MASK_INF) { | 
|  | if ((x.w[1] & MASK_SIGN) == MASK_SIGN) { | 
|  | res = negativeInfinity; | 
|  | } else { | 
|  | res = positiveInfinity; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // decode number into exponent and significand | 
|  | sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; | 
|  | sig_x.w[0] = x.w[0]; | 
|  | // check for zero or non-canonical | 
|  | if ((sig_x.w[1] > 0x0001ed09bead87c0ull) | 
|  | || ((sig_x.w[1] == 0x0001ed09bead87c0ull) | 
|  | && (sig_x.w[0] > 0x378d8e63ffffffffull)) | 
|  | || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) | 
|  | || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { | 
|  | if ((x.w[1] & MASK_SIGN) == MASK_SIGN) { | 
|  | res = negativeZero; | 
|  | } else { | 
|  | res = positiveZero; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } | 
|  | exp_x = (x.w[1] >> 49) & 0x000000000003fffull; | 
|  | // if exponent is less than -6176, the number may be subnormal | 
|  | // (less than the smallest normal value) | 
|  | //  the smallest normal value is 1 x 10^-6143 = 10^33 x 10^-6176 | 
|  | //  if (exp_x - 6176 < -6143) | 
|  | if (exp_x < 33) {	// sig_x * 10^exp_x | 
|  | if (exp_x > 19) { | 
|  | __mul_128x128_to_256 (sig_x_prime256, sig_x, | 
|  | ten2k128[exp_x - 20]); | 
|  | // 10^33 = 0x0000314dc6448d93_38c15b0a00000000 | 
|  | if ((sig_x_prime256.w[3] == 0) && (sig_x_prime256.w[2] == 0) | 
|  | && ((sig_x_prime256.w[1] < 0x0000314dc6448d93ull) | 
|  | || ((sig_x_prime256.w[1] == 0x0000314dc6448d93ull) | 
|  | && (sig_x_prime256.w[0] < 0x38c15b0a00000000ull)))) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal : | 
|  | positiveSubnormal; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } else { | 
|  | __mul_64x128_to_192 (sig_x_prime192, ten2k64[exp_x], sig_x); | 
|  | // 10^33 = 0x0000314dc6448d93_38c15b0a00000000 | 
|  | if ((sig_x_prime192.w[2] == 0) | 
|  | && ((sig_x_prime192.w[1] < 0x0000314dc6448d93ull) | 
|  | || ((sig_x_prime192.w[1] == 0x0000314dc6448d93ull) | 
|  | && (sig_x_prime192.w[0] < 0x38c15b0a00000000ull)))) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal : | 
|  | positiveSubnormal; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } | 
|  | } | 
|  | // otherwise, normal number, determine the sign | 
|  | res = | 
|  | ((x.w[1] & MASK_SIGN) == | 
|  | MASK_SIGN) ? negativeNormal : positiveNormal; | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | // true if the exponents of x and y are the same, false otherwise. | 
|  | // The special cases of sameQuantum(NaN, NaN) and sameQuantum(Inf, Inf) are true | 
|  | // If exactly one operand is infinite or exactly one operand is NaN, then false | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_sameQuantum (int *pres, UINT128 * px, | 
|  | UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | UINT128 y = *py; | 
|  | #else | 
|  | int | 
|  | bid128_sameQuantum (UINT128 x, | 
|  | UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | UINT64 x_exp, y_exp; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | BID_SWAP128 (y); | 
|  | // if both operands are NaN, return true | 
|  | if ((x.w[1] & MASK_NAN) == MASK_NAN | 
|  | || ((y.w[1] & MASK_NAN) == MASK_NAN)) { | 
|  | res = ((x.w[1] & MASK_NAN) == MASK_NAN | 
|  | && (y.w[1] & MASK_NAN) == MASK_NAN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if both operands are INF, return true | 
|  | if ((x.w[1] & MASK_INF) == MASK_INF | 
|  | || (y.w[1] & MASK_INF) == MASK_INF) { | 
|  | res = ((x.w[1] & MASK_INF) == MASK_INF) | 
|  | && ((y.w[1] & MASK_INF) == MASK_INF); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // decode exponents for both numbers, and return true if they match | 
|  | if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {	// G0_G1=11 | 
|  | x_exp = (x.w[1] << 2) & MASK_EXP;	// biased and shifted left 49 bits | 
|  | } else {	// G0_G1 != 11 | 
|  | x_exp = x.w[1] & MASK_EXP;	// biased and shifted left 49 bits | 
|  | } | 
|  | if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {	// G0_G1=11 | 
|  | y_exp = (y.w[1] << 2) & MASK_EXP;	// biased and shifted left 49 bits | 
|  | } else {	// G0_G1 != 11 | 
|  | y_exp = y.w[1] & MASK_EXP;	// biased and shifted left 49 bits | 
|  | } | 
|  | res = (x_exp == y_exp); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_totalOrder (int *pres, UINT128 * px, | 
|  | UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | UINT128 y = *py; | 
|  | #else | 
|  | int | 
|  | bid128_totalOrder (UINT128 x, | 
|  | UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | int exp_x, exp_y; | 
|  | UINT128 sig_x, sig_y, pyld_y, pyld_x; | 
|  | UINT192 sig_n_prime192; | 
|  | UINT256 sig_n_prime256; | 
|  | char x_is_zero = 0, y_is_zero = 0; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | BID_SWAP128 (y); | 
|  | // NaN (CASE 1) | 
|  | // if x and y are unordered numerically because either operand is NaN | 
|  | //    (1) totalOrder(-NaN, number) is true | 
|  | //    (2) totalOrder(number, +NaN) is true | 
|  | //    (3) if x and y are both NaN: | 
|  | //       i) negative sign bit < positive sign bit | 
|  | //       ii) signaling < quiet for +NaN, reverse for -NaN | 
|  | //       iii) lesser payload < greater payload for +NaN (reverse for -NaN) | 
|  | //       iv) else if bitwise identical (in canonical form), return 1 | 
|  | if ((x.w[1] & MASK_NAN) == MASK_NAN) { | 
|  | // if x is -NaN | 
|  | if ((x.w[1] & MASK_SIGN) == MASK_SIGN) { | 
|  | // return true, unless y is -NaN also | 
|  | if ((y.w[1] & MASK_NAN) != MASK_NAN | 
|  | || (y.w[1] & MASK_SIGN) != MASK_SIGN) { | 
|  | res = 1;	// y is a number, return 1 | 
|  | BID_RETURN (res); | 
|  | } else {	// if y and x are both -NaN | 
|  | pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull; | 
|  | pyld_x.w[0] = x.w[0]; | 
|  | pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull; | 
|  | pyld_y.w[0] = y.w[0]; | 
|  | if ((pyld_x.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_x.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_x.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_x.w[1] = 0; | 
|  | pyld_x.w[0] = 0; | 
|  | } | 
|  | if ((pyld_y.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_y.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_y.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_y.w[1] = 0; | 
|  | pyld_y.w[0] = 0; | 
|  | } | 
|  | // if x and y are both -SNaN or both -QNaN, we have to compare payloads | 
|  | // this statement evaluates to true if both are SNaN or QNaN | 
|  | if (! | 
|  | (((y.w[1] & MASK_SNAN) == MASK_SNAN) ^ | 
|  | ((x.w[1] & MASK_SNAN) == MASK_SNAN))) { | 
|  | // it comes down to the payload.  we want to return true if x has a | 
|  | // larger payload, or if the payloads are equal (canonical forms | 
|  | // are bitwise identical) | 
|  | if ((pyld_x.w[1] > pyld_y.w[1]) || | 
|  | ((pyld_x.w[1] == pyld_y.w[1]) | 
|  | && (pyld_x.w[0] >= pyld_y.w[0]))) | 
|  | res = 1; | 
|  | else | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // either x = -SNaN and y = -QNaN or x = -QNaN and y = -SNaN | 
|  | res = ((y.w[1] & MASK_SNAN) == MASK_SNAN); | 
|  | // totalOrder (-QNaN, -SNaN) == 1 | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } | 
|  | } else {	// x is +NaN | 
|  | // return false, unless y is +NaN also | 
|  | if ((y.w[1] & MASK_NAN) != MASK_NAN | 
|  | || (y.w[1] & MASK_SIGN) == MASK_SIGN) { | 
|  | res = 0;	// y is a number, return 1 | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // x and y are both +NaN; | 
|  | pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull; | 
|  | pyld_x.w[0] = x.w[0]; | 
|  | pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull; | 
|  | pyld_y.w[0] = y.w[0]; | 
|  | if ((pyld_x.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_x.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_x.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_x.w[1] = 0; | 
|  | pyld_x.w[0] = 0; | 
|  | } | 
|  | if ((pyld_y.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_y.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_y.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_y.w[1] = 0; | 
|  | pyld_y.w[0] = 0; | 
|  | } | 
|  | // if x and y are both +SNaN or both +QNaN, we have to compare payloads | 
|  | // this statement evaluates to true if both are SNaN or QNaN | 
|  | if (! | 
|  | (((y.w[1] & MASK_SNAN) == MASK_SNAN) ^ | 
|  | ((x.w[1] & MASK_SNAN) == MASK_SNAN))) { | 
|  | // it comes down to the payload.  we want to return true if x has a | 
|  | // smaller payload, or if the payloads are equal (canonical forms | 
|  | // are bitwise identical) | 
|  | if ((pyld_x.w[1] < pyld_y.w[1]) || | 
|  | ((pyld_x.w[1] == pyld_y.w[1]) | 
|  | && (pyld_x.w[0] <= pyld_y.w[0]))) | 
|  | res = 1; | 
|  | else | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // either x = SNaN and y = QNaN or x = QNaN and y = SNaN | 
|  | res = ((x.w[1] & MASK_SNAN) == MASK_SNAN); | 
|  | // totalOrder (-QNaN, -SNaN) == 1 | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if ((y.w[1] & MASK_NAN) == MASK_NAN) { | 
|  | // x is certainly not NAN in this case. | 
|  | // return true if y is positive | 
|  | res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // SIMPLE (CASE 2) | 
|  | // if all the bits are the same, the numbers are equal. | 
|  | if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // OPPOSITE SIGNS (CASE 3) | 
|  | // if signs are opposite, return 1 if x is negative | 
|  | // (if x < y, totalOrder is true) | 
|  | if (((x.w[1] & MASK_SIGN) == MASK_SIGN) ^ ((y.w[1] & MASK_SIGN) == | 
|  | MASK_SIGN)) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // INFINITY (CASE 4) | 
|  | if ((x.w[1] & MASK_INF) == MASK_INF) { | 
|  | // if x == neg_inf, return (y == neg_inf); | 
|  | if ((x.w[1] & MASK_SIGN) == MASK_SIGN) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // x is positive infinity, only return1 if y is positive infinity as well | 
|  | res = ((y.w[1] & MASK_INF) == MASK_INF); | 
|  | BID_RETURN (res); | 
|  | // && (y & MASK_SIGN) != MASK_SIGN); (we know y has same sign as x) | 
|  | } | 
|  | } else if ((y.w[1] & MASK_INF) == MASK_INF) { | 
|  | // x is finite, so: | 
|  | //    if y is +inf, x<y | 
|  | //    if y is -inf, x>y | 
|  | res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // CONVERT x | 
|  | sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; | 
|  | sig_x.w[0] = x.w[0]; | 
|  | exp_x = (x.w[1] >> 49) & 0x000000000003fffull; | 
|  |  | 
|  | // CHECK IF x IS CANONICAL | 
|  | // 9999999999999999999999999999999999 (decimal) = | 
|  | //     1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) | 
|  | // [0, 10^34) is the 754r supported canonical range. | 
|  | // If the value exceeds that, it is interpreted as 0. | 
|  | if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) || | 
|  | ((sig_x.w[1] == 0x0001ed09bead87c0ull) && | 
|  | (sig_x.w[0] > 0x378d8e63ffffffffull))) && | 
|  | ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) || | 
|  | ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) || | 
|  | ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { | 
|  | x_is_zero = 1; | 
|  | // check for the case where the exponent is shifted right by 2 bits! | 
|  | if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { | 
|  | exp_x = (x.w[1] >> 47) & 0x000000000003fffull; | 
|  | } | 
|  | } | 
|  | // CONVERT y | 
|  | exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; | 
|  | sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; | 
|  | sig_y.w[0] = y.w[0]; | 
|  |  | 
|  | // CHECK IF y IS CANONICAL | 
|  | // 9999999999999999999999999999999999(decimal) = | 
|  | //     1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) | 
|  | // [0, 10^34) is the 754r supported canonical range. | 
|  | // If the value exceeds that, it is interpreted as 0. | 
|  | if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) || | 
|  | ((sig_y.w[1] == 0x0001ed09bead87c0ull) && | 
|  | (sig_y.w[0] > 0x378d8e63ffffffffull))) && | 
|  | ((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) || | 
|  | ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) || | 
|  | ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { | 
|  | y_is_zero = 1; | 
|  | // check for the case where the exponent is shifted right by 2 bits! | 
|  | if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { | 
|  | exp_y = (y.w[1] >> 47) & 0x000000000003fffull; | 
|  | } | 
|  | } | 
|  | // ZERO (CASE 5) | 
|  | // if x and y represent the same entities, and both are negative | 
|  | // return true iff exp_x <= exp_y | 
|  | if (x_is_zero && y_is_zero) { | 
|  | // we know that signs must be the same because we would have caught it | 
|  | // in case3 if signs were different | 
|  | // totalOrder(x,y) iff exp_x >= exp_y for negative numbers | 
|  | // totalOrder(x,y) iff exp_x <= exp_y for positive numbers | 
|  | if (exp_x == exp_y) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if x is zero and y isn't, clearly x has the smaller payload | 
|  | if (x_is_zero) { | 
|  | res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if y is zero, and x isn't, clearly y has the smaller payload | 
|  | if (y_is_zero) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // REDUNDANT REPRESENTATIONS (CASE 6) | 
|  | // if both components are either bigger or smaller | 
|  | if (((sig_x.w[1] > sig_y.w[1]) | 
|  | || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) | 
|  | && exp_x >= exp_y) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | if (((sig_x.w[1] < sig_y.w[1]) | 
|  | || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) | 
|  | && exp_x <= exp_y) { | 
|  | res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if |exp_x - exp_y| < 33, it comes down to the compensated significand | 
|  | if (exp_x > exp_y) { | 
|  | // if exp_x is 33 greater than exp_y, it is definitely larger, | 
|  | // so no need for compensation | 
|  | if (exp_x - exp_y > 33) { | 
|  | res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | // difference cannot be greater than 10^33 | 
|  | } | 
|  | // otherwise adjust the x significand upwards | 
|  | if (exp_x - exp_y > 19) { | 
|  | __mul_128x128_to_256 (sig_n_prime256, sig_x, | 
|  | ten2k128[exp_x - exp_y - 20]); | 
|  | // the compensated significands are equal (ie "x and y represent the same | 
|  | // entities") return 1 if (negative && expx > expy) || | 
|  | // (positive && expx < expy) | 
|  | if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && (sig_n_prime256.w[1] == sig_y.w[1]) | 
|  | && (sig_n_prime256.w[0] == sig_y.w[0])) { | 
|  | // the case exp_x == exp_y  cannot occur, because all bits must be | 
|  | // the same - would have been caught if (x == y) | 
|  | res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if positive, return 1 if adjusted x is smaller than y | 
|  | res = (((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && ((sig_n_prime256.w[1] < sig_y.w[1]) | 
|  | || (sig_n_prime256.w[1] == sig_y.w[1] | 
|  | && sig_n_prime256.w[0] < | 
|  | sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) == | 
|  | MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | __mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x); | 
|  | // if positive, return whichever significand is larger | 
|  | // (converse if negative) | 
|  | if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] | 
|  | && (sig_n_prime192.w[0] == sig_y.w[0])) { | 
|  | res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = (((sig_n_prime192.w[2] == 0) | 
|  | && ((sig_n_prime192.w[1] < sig_y.w[1]) | 
|  | || (sig_n_prime192.w[1] == sig_y.w[1] | 
|  | && sig_n_prime192.w[0] < | 
|  | sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) == | 
|  | MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if exp_x is 33 less than exp_y, it is definitely smaller, | 
|  | // no need for compensation | 
|  | if (exp_y - exp_x > 33) { | 
|  | res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | if (exp_y - exp_x > 19) { | 
|  | // adjust the y significand upwards | 
|  | __mul_128x128_to_256 (sig_n_prime256, sig_y, | 
|  | ten2k128[exp_y - exp_x - 20]); | 
|  | // if x and y represent the same entities and both are negative | 
|  | // return true iff exp_x <= exp_y | 
|  | if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && (sig_n_prime256.w[1] == sig_x.w[1]) | 
|  | && (sig_n_prime256.w[0] == sig_x.w[0])) { | 
|  | res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // values are not equal, for positive numbers return 1 if x is less than y | 
|  | // and 0 otherwise | 
|  | res = (((sig_n_prime256.w[3] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime256.w[2] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime256.w[1] > sig_x.w[1]) || | 
|  | // if compensated y is bigger, y is bigger | 
|  | (sig_n_prime256.w[1] == sig_x.w[1] | 
|  | && sig_n_prime256.w[0] > | 
|  | sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | __mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y); | 
|  | if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1]) | 
|  | && (sig_n_prime192.w[0] == sig_x.w[0])) { | 
|  | res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = (((sig_n_prime192.w[2] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime192.w[1] > sig_x.w[1]) || | 
|  | // if compensated y is bigger, y is bigger | 
|  | (sig_n_prime192.w[1] == sig_x.w[1] | 
|  | && sig_n_prime192.w[0] > | 
|  | sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_totalOrderMag (int *pres, UINT128 * px, | 
|  | UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | UINT128 y = *py; | 
|  | #else | 
|  | int | 
|  | bid128_totalOrderMag (UINT128 x, | 
|  | UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | int exp_x, exp_y; | 
|  | UINT128 sig_x, sig_y, pyld_y, pyld_x; | 
|  | UINT192 sig_n_prime192; | 
|  | UINT256 sig_n_prime256; | 
|  | char x_is_zero = 0, y_is_zero = 0; | 
|  |  | 
|  | BID_SWAP128 (x); | 
|  | BID_SWAP128 (y); | 
|  | x.w[1] = x.w[1] & 0x7fffffffffffffffull; | 
|  | y.w[1] = y.w[1] & 0x7fffffffffffffffull; | 
|  |  | 
|  | // NaN (CASE 1) | 
|  | // if x and y are unordered numerically because either operand is NaN | 
|  | //    (1) totalOrder(number, +NaN) is true | 
|  | //    (2) if x and y are both NaN: | 
|  | //       i) signaling < quiet for +NaN | 
|  | //       ii) lesser payload < greater payload for +NaN | 
|  | //       iii) else if bitwise identical (in canonical form), return 1 | 
|  | if ((x.w[1] & MASK_NAN) == MASK_NAN) { | 
|  | // x is +NaN | 
|  | // return false, unless y is +NaN also | 
|  | if ((y.w[1] & MASK_NAN) != MASK_NAN) { | 
|  | res = 0;	// y is a number, return 0 | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // x and y are both +NaN; | 
|  | pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull; | 
|  | pyld_x.w[0] = x.w[0]; | 
|  | pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull; | 
|  | pyld_y.w[0] = y.w[0]; | 
|  | if ((pyld_x.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_x.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_x.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_x.w[1] = 0; | 
|  | pyld_x.w[0] = 0; | 
|  | } | 
|  | if ((pyld_y.w[1] > 0x0000314dc6448d93ull) | 
|  | || ((pyld_y.w[1] == 0x0000314dc6448d93ull) | 
|  | && (pyld_y.w[0] > 0x38c15b09ffffffffull))) { | 
|  | pyld_y.w[1] = 0; | 
|  | pyld_y.w[0] = 0; | 
|  | } | 
|  | // if x and y are both +SNaN or both +QNaN, we have to compare payloads | 
|  | // this statement evaluates to true if both are SNaN or QNaN | 
|  | if (! | 
|  | (((y.w[1] & MASK_SNAN) == MASK_SNAN) ^ | 
|  | ((x.w[1] & MASK_SNAN) == MASK_SNAN))) { | 
|  | // it comes down to the payload.  we want to return true if x has a | 
|  | // smaller payload, or if the payloads are equal (canonical forms | 
|  | // are bitwise identical) | 
|  | if ((pyld_x.w[1] < pyld_y.w[1]) || | 
|  | ((pyld_x.w[1] == pyld_y.w[1]) | 
|  | && (pyld_x.w[0] <= pyld_y.w[0]))) { | 
|  | res = 1; | 
|  | } else { | 
|  | res = 0; | 
|  | } | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | // either x = SNaN and y = QNaN or x = QNaN and y = SNaN | 
|  | res = ((x.w[1] & MASK_SNAN) == MASK_SNAN); | 
|  | // totalOrder (-QNaN, -SNaN) == 1 | 
|  | BID_RETURN (res); | 
|  | } | 
|  | } | 
|  | } else if ((y.w[1] & MASK_NAN) == MASK_NAN) { | 
|  | // x is certainly not NAN in this case. | 
|  | // return true because y is positive | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // SIMPLE (CASE 2) | 
|  | // if all the bits are the same, the numbers are equal. | 
|  | if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // INFINITY (CASE 3) | 
|  | if ((x.w[1] & MASK_INF) == MASK_INF) { | 
|  | // x is positive infinity, only return 1 if y is positive infinity as well | 
|  | res = ((y.w[1] & MASK_INF) == MASK_INF); | 
|  | BID_RETURN (res); | 
|  | // (we know y has same sign as x) | 
|  | } else if ((y.w[1] & MASK_INF) == MASK_INF) { | 
|  | // x is finite, so: | 
|  | //    since y is +inf, x<y | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } else { | 
|  | ;	// continue | 
|  | } | 
|  |  | 
|  | // CONVERT x | 
|  | sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; | 
|  | sig_x.w[0] = x.w[0]; | 
|  | exp_x = (x.w[1] >> 49) & 0x000000000003fffull; | 
|  |  | 
|  | // CHECK IF x IS CANONICAL | 
|  | // 9999999999999999999999999999999999 (decimal) = | 
|  | //     1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) | 
|  | // [0, 10^34) is the 754r supported canonical range. | 
|  | // If the value exceeds that, it is interpreted as 0. | 
|  | if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) || | 
|  | ((sig_x.w[1] == 0x0001ed09bead87c0ull) && | 
|  | (sig_x.w[0] > 0x378d8e63ffffffffull))) && | 
|  | ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) || | 
|  | ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) || | 
|  | ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { | 
|  | x_is_zero = 1; | 
|  | // check for the case where the exponent is shifted right by 2 bits! | 
|  | if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { | 
|  | exp_x = (x.w[1] >> 47) & 0x000000000003fffull; | 
|  | } | 
|  | } | 
|  | // CONVERT y | 
|  | exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; | 
|  | sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; | 
|  | sig_y.w[0] = y.w[0]; | 
|  |  | 
|  | // CHECK IF y IS CANONICAL | 
|  | // 9999999999999999999999999999999999(decimal) = | 
|  | //     1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) | 
|  | // [0, 10^34) is the 754r supported canonical range. | 
|  | // If the value exceeds that, it is interpreted as 0. | 
|  | if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) || | 
|  | ((sig_y.w[1] == 0x0001ed09bead87c0ull) && | 
|  | (sig_y.w[0] > 0x378d8e63ffffffffull))) && | 
|  | ((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) || | 
|  | ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) || | 
|  | ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { | 
|  | y_is_zero = 1; | 
|  | // check for the case where the exponent is shifted right by 2 bits! | 
|  | if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { | 
|  | exp_y = (y.w[1] >> 47) & 0x000000000003fffull; | 
|  | } | 
|  | } | 
|  | // ZERO (CASE 4) | 
|  | if (x_is_zero && y_is_zero) { | 
|  | // we know that signs must be the same because we would have caught it | 
|  | // in case3 if signs were different | 
|  | // totalOrder(x,y) iff exp_x <= exp_y for positive numbers | 
|  | if (exp_x == exp_y) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = (exp_x <= exp_y); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if x is zero and y isn't, clearly x has the smaller payload | 
|  | if (x_is_zero) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if y is zero, and x isn't, clearly y has the smaller payload | 
|  | if (y_is_zero) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // REDUNDANT REPRESENTATIONS (CASE 5) | 
|  | // if both components are either bigger or smaller | 
|  | if (((sig_x.w[1] > sig_y.w[1]) | 
|  | || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) | 
|  | && exp_x >= exp_y) { | 
|  | res = 0; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | if (((sig_x.w[1] < sig_y.w[1]) | 
|  | || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) | 
|  | && exp_x <= exp_y) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if |exp_x - exp_y| < 33, it comes down to the compensated significand | 
|  | if (exp_x > exp_y) { | 
|  | // if exp_x is 33 greater than exp_y, it is definitely larger, | 
|  | // so no need for compensation | 
|  | if (exp_x - exp_y > 33) { | 
|  | res = 0;	// difference cannot be greater than 10^33 | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // otherwise adjust the x significand upwards | 
|  | if (exp_x - exp_y > 19) { | 
|  | __mul_128x128_to_256 (sig_n_prime256, sig_x, | 
|  | ten2k128[exp_x - exp_y - 20]); | 
|  | // the compensated significands are equal (ie "x and y represent the same | 
|  | // entities") return 1 if (negative && expx > expy) || | 
|  | // (positive && expx < expy) | 
|  | if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && (sig_n_prime256.w[1] == sig_y.w[1]) | 
|  | && (sig_n_prime256.w[0] == sig_y.w[0])) { | 
|  | // the case (exp_x == exp_y) cannot occur, because all bits must be | 
|  | // the same - would have been caught if (x == y) | 
|  | res = (exp_x <= exp_y); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // since positive, return 1 if adjusted x is smaller than y | 
|  | res = ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && ((sig_n_prime256.w[1] < sig_y.w[1]) | 
|  | || (sig_n_prime256.w[1] == sig_y.w[1] | 
|  | && sig_n_prime256.w[0] < sig_y.w[0]))); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | __mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x); | 
|  | // if positive, return whichever significand is larger | 
|  | // (converse if negative) | 
|  | if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] | 
|  | && (sig_n_prime192.w[0] == sig_y.w[0])) { | 
|  | res = (exp_x <= exp_y); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = ((sig_n_prime192.w[2] == 0) | 
|  | && ((sig_n_prime192.w[1] < sig_y.w[1]) | 
|  | || (sig_n_prime192.w[1] == sig_y.w[1] | 
|  | && sig_n_prime192.w[0] < sig_y.w[0]))); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // if exp_x is 33 less than exp_y, it is definitely smaller, | 
|  | // no need for compensation | 
|  | if (exp_y - exp_x > 33) { | 
|  | res = 1; | 
|  | BID_RETURN (res); | 
|  | } | 
|  | if (exp_y - exp_x > 19) { | 
|  | // adjust the y significand upwards | 
|  | __mul_128x128_to_256 (sig_n_prime256, sig_y, | 
|  | ten2k128[exp_y - exp_x - 20]); | 
|  | if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) | 
|  | && (sig_n_prime256.w[1] == sig_x.w[1]) | 
|  | && (sig_n_prime256.w[0] == sig_x.w[0])) { | 
|  | res = (exp_x <= exp_y); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | // values are not equal, for positive numbers return 1 if x is less than y | 
|  | // and 0 otherwise | 
|  | res = ((sig_n_prime256.w[3] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime256.w[2] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime256.w[1] > sig_x.w[1]) || | 
|  | // if compensated y is bigger, y is bigger | 
|  | (sig_n_prime256.w[1] == sig_x.w[1] | 
|  | && sig_n_prime256.w[0] > sig_x.w[0])); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | __mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y); | 
|  | if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1]) | 
|  | && (sig_n_prime192.w[0] == sig_x.w[0])) { | 
|  | res = (exp_x <= exp_y); | 
|  | BID_RETURN (res); | 
|  | } | 
|  | res = ((sig_n_prime192.w[2] != 0) || | 
|  | // if upper128 bits of compensated y are non-zero, y is bigger | 
|  | (sig_n_prime192.w[1] > sig_x.w[1]) || | 
|  | // if compensated y is bigger, y is bigger | 
|  | (sig_n_prime192.w[1] == sig_x.w[1] | 
|  | && sig_n_prime192.w[0] > sig_x.w[0])); | 
|  | BID_RETURN (res); | 
|  | } | 
|  |  | 
|  | #if DECIMAL_CALL_BY_REFERENCE | 
|  | void | 
|  | bid128_radix (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | UINT128 x = *px; | 
|  | #else | 
|  | int | 
|  | bid128_radix (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | 
|  | #endif | 
|  | int res; | 
|  | if (x.w[LOW_128W])	// dummy test | 
|  | res = 10; | 
|  | else | 
|  | res = 10; | 
|  | BID_RETURN (res); | 
|  | } |