|  | /* Compute remainder and a congruent to the quotient. | 
|  | Copyright (C) 1997-2018 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and | 
|  | Jakub Jelinek <jj@ultra.linux.cz>, 1999. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 zero = 0.0; | 
|  |  | 
|  |  | 
|  | __float128 | 
|  | remquoq (__float128 x, __float128 y, int *quo) | 
|  | { | 
|  | int64_t hx,hy; | 
|  | uint64_t sx,lx,ly,qs; | 
|  | int cquo; | 
|  |  | 
|  | GET_FLT128_WORDS64 (hx, lx, x); | 
|  | GET_FLT128_WORDS64 (hy, ly, y); | 
|  | sx = hx & 0x8000000000000000ULL; | 
|  | qs = sx ^ (hy & 0x8000000000000000ULL); | 
|  | hy &= 0x7fffffffffffffffLL; | 
|  | hx &= 0x7fffffffffffffffLL; | 
|  |  | 
|  | /* Purge off exception values.  */ | 
|  | if ((hy | ly) == 0) | 
|  | return (x * y) / (x * y); 			/* y = 0 */ | 
|  | if ((hx >= 0x7fff000000000000LL)		/* x not finite */ | 
|  | || ((hy >= 0x7fff000000000000LL)		/* y is NaN */ | 
|  | && (((hy - 0x7fff000000000000LL) | ly) != 0))) | 
|  | return (x * y) / (x * y); | 
|  |  | 
|  | if (hy <= 0x7ffbffffffffffffLL) | 
|  | x = fmodq (x, 8 * y);              /* now x < 8y */ | 
|  |  | 
|  | if (((hx - hy) | (lx - ly)) == 0) | 
|  | { | 
|  | *quo = qs ? -1 : 1; | 
|  | return zero * x; | 
|  | } | 
|  |  | 
|  | x  = fabsq (x); | 
|  | y  = fabsq (y); | 
|  | cquo = 0; | 
|  |  | 
|  | if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y) | 
|  | { | 
|  | x -= 4 * y; | 
|  | cquo += 4; | 
|  | } | 
|  | if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y) | 
|  | { | 
|  | x -= 2 * y; | 
|  | cquo += 2; | 
|  | } | 
|  |  | 
|  | if (hy < 0x0002000000000000LL) | 
|  | { | 
|  | if (x + x > y) | 
|  | { | 
|  | x -= y; | 
|  | ++cquo; | 
|  | if (x + x >= y) | 
|  | { | 
|  | x -= y; | 
|  | ++cquo; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | __float128 y_half = 0.5Q * y; | 
|  | if (x > y_half) | 
|  | { | 
|  | x -= y; | 
|  | ++cquo; | 
|  | if (x >= y_half) | 
|  | { | 
|  | x -= y; | 
|  | ++cquo; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *quo = qs ? -cquo : cquo; | 
|  |  | 
|  | /* Ensure correct sign of zero result in round-downward mode.  */ | 
|  | if (x == 0) | 
|  | x = 0; | 
|  | if (sx) | 
|  | x = -x; | 
|  | return x; | 
|  | } |