|  | /*                                                      log2l.c | 
|  | *      Base 2 logarithm, 128-bit long double precision | 
|  | * | 
|  | * | 
|  | * | 
|  | * SYNOPSIS: | 
|  | * | 
|  | * long double x, y, log2l(); | 
|  | * | 
|  | * y = log2l( x ); | 
|  | * | 
|  | * | 
|  | * | 
|  | * DESCRIPTION: | 
|  | * | 
|  | * Returns the base 2 logarithm of x. | 
|  | * | 
|  | * The argument is separated into its exponent and fractional | 
|  | * parts.  If the exponent is between -1 and +1, the (natural) | 
|  | * logarithm of the fraction is approximated by | 
|  | * | 
|  | *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). | 
|  | * | 
|  | * Otherwise, setting  z = 2(x-1)/x+1), | 
|  | * | 
|  | *     log(x) = z + z^3 P(z)/Q(z). | 
|  | * | 
|  | * | 
|  | * | 
|  | * ACCURACY: | 
|  | * | 
|  | *                      Relative error: | 
|  | * arithmetic   domain     # trials      peak         rms | 
|  | *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35 | 
|  | *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35 | 
|  | * | 
|  | * In the tests over the interval exp(+-10000), the logarithms | 
|  | * of the random arguments were uniformly distributed over | 
|  | * [-10000, +10000]. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Cephes Math Library Release 2.2:  January, 1991 | 
|  | Copyright 1984, 1991 by Stephen L. Moshier | 
|  | Adapted for glibc November, 2001 | 
|  |  | 
|  | This library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | This library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) | 
|  | * 1/sqrt(2) <= x < sqrt(2) | 
|  | * Theoretical peak relative error = 5.3e-37, | 
|  | * relative peak error spread = 2.3e-14 | 
|  | */ | 
|  | static const __float128 P[13] = | 
|  | { | 
|  | 1.313572404063446165910279910527789794488E4Q, | 
|  | 7.771154681358524243729929227226708890930E4Q, | 
|  | 2.014652742082537582487669938141683759923E5Q, | 
|  | 3.007007295140399532324943111654767187848E5Q, | 
|  | 2.854829159639697837788887080758954924001E5Q, | 
|  | 1.797628303815655343403735250238293741397E5Q, | 
|  | 7.594356839258970405033155585486712125861E4Q, | 
|  | 2.128857716871515081352991964243375186031E4Q, | 
|  | 3.824952356185897735160588078446136783779E3Q, | 
|  | 4.114517881637811823002128927449878962058E2Q, | 
|  | 2.321125933898420063925789532045674660756E1Q, | 
|  | 4.998469661968096229986658302195402690910E-1Q, | 
|  | 1.538612243596254322971797716843006400388E-6Q | 
|  | }; | 
|  | static const __float128 Q[12] = | 
|  | { | 
|  | 3.940717212190338497730839731583397586124E4Q, | 
|  | 2.626900195321832660448791748036714883242E5Q, | 
|  | 7.777690340007566932935753241556479363645E5Q, | 
|  | 1.347518538384329112529391120390701166528E6Q, | 
|  | 1.514882452993549494932585972882995548426E6Q, | 
|  | 1.158019977462989115839826904108208787040E6Q, | 
|  | 6.132189329546557743179177159925690841200E5Q, | 
|  | 2.248234257620569139969141618556349415120E5Q, | 
|  | 5.605842085972455027590989944010492125825E4Q, | 
|  | 9.147150349299596453976674231612674085381E3Q, | 
|  | 9.104928120962988414618126155557301584078E2Q, | 
|  | 4.839208193348159620282142911143429644326E1Q | 
|  | /* 1.000000000000000000000000000000000000000E0L, */ | 
|  | }; | 
|  |  | 
|  | /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), | 
|  | * where z = 2(x-1)/(x+1) | 
|  | * 1/sqrt(2) <= x < sqrt(2) | 
|  | * Theoretical peak relative error = 1.1e-35, | 
|  | * relative peak error spread 1.1e-9 | 
|  | */ | 
|  | static const __float128 R[6] = | 
|  | { | 
|  | 1.418134209872192732479751274970992665513E5Q, | 
|  | -8.977257995689735303686582344659576526998E4Q, | 
|  | 2.048819892795278657810231591630928516206E4Q, | 
|  | -2.024301798136027039250415126250455056397E3Q, | 
|  | 8.057002716646055371965756206836056074715E1Q, | 
|  | -8.828896441624934385266096344596648080902E-1Q | 
|  | }; | 
|  | static const __float128 S[6] = | 
|  | { | 
|  | 1.701761051846631278975701529965589676574E6Q, | 
|  | -1.332535117259762928288745111081235577029E6Q, | 
|  | 4.001557694070773974936904547424676279307E5Q, | 
|  | -5.748542087379434595104154610899551484314E4Q, | 
|  | 3.998526750980007367835804959888064681098E3Q, | 
|  | -1.186359407982897997337150403816839480438E2Q | 
|  | /* 1.000000000000000000000000000000000000000E0L, */ | 
|  | }; | 
|  |  | 
|  | static const __float128 | 
|  | /* log2(e) - 1 */ | 
|  | LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q, | 
|  | /* sqrt(2)/2 */ | 
|  | SQRTH = 7.071067811865475244008443621048490392848359E-1Q; | 
|  |  | 
|  |  | 
|  | /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */ | 
|  |  | 
|  | static __float128 | 
|  | neval (__float128 x, const __float128 *p, int n) | 
|  | { | 
|  | __float128 y; | 
|  |  | 
|  | p += n; | 
|  | y = *p--; | 
|  | do | 
|  | { | 
|  | y = y * x + *p--; | 
|  | } | 
|  | while (--n > 0); | 
|  | return y; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */ | 
|  |  | 
|  | static __float128 | 
|  | deval (__float128 x, const __float128 *p, int n) | 
|  | { | 
|  | __float128 y; | 
|  |  | 
|  | p += n; | 
|  | y = x + *p--; | 
|  | do | 
|  | { | 
|  | y = y * x + *p--; | 
|  | } | 
|  | while (--n > 0); | 
|  | return y; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | __float128 | 
|  | log2q (__float128 x) | 
|  | { | 
|  | __float128 z; | 
|  | __float128 y; | 
|  | int e; | 
|  | int64_t hx, lx; | 
|  |  | 
|  | /* Test for domain */ | 
|  | GET_FLT128_WORDS64 (hx, lx, x); | 
|  | if (((hx & 0x7fffffffffffffffLL) | lx) == 0) | 
|  | return (-1 / fabsq (x));		/* log2l(+-0)=-inf  */ | 
|  | if (hx < 0) | 
|  | return (x - x) / (x - x); | 
|  | if (hx >= 0x7fff000000000000LL) | 
|  | return (x + x); | 
|  |  | 
|  | if (x == 1) | 
|  | return 0; | 
|  |  | 
|  | /* separate mantissa from exponent */ | 
|  |  | 
|  | /* Note, frexp is used so that denormal numbers | 
|  | * will be handled properly. | 
|  | */ | 
|  | x = frexpq (x, &e); | 
|  |  | 
|  |  | 
|  | /* logarithm using log(x) = z + z**3 P(z)/Q(z), | 
|  | * where z = 2(x-1)/x+1) | 
|  | */ | 
|  | if ((e > 2) || (e < -2)) | 
|  | { | 
|  | if (x < SQRTH) | 
|  | {			/* 2( 2x-1 )/( 2x+1 ) */ | 
|  | e -= 1; | 
|  | z = x - 0.5Q; | 
|  | y = 0.5Q * z + 0.5Q; | 
|  | } | 
|  | else | 
|  | {			/*  2 (x-1)/(x+1)   */ | 
|  | z = x - 0.5Q; | 
|  | z -= 0.5Q; | 
|  | y = 0.5Q * x + 0.5Q; | 
|  | } | 
|  | x = z / y; | 
|  | z = x * x; | 
|  | y = x * (z * neval (z, R, 5) / deval (z, S, 5)); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ | 
|  |  | 
|  | if (x < SQRTH) | 
|  | { | 
|  | e -= 1; | 
|  | x = 2.0 * x - 1;	/*  2x - 1  */ | 
|  | } | 
|  | else | 
|  | { | 
|  | x = x - 1; | 
|  | } | 
|  | z = x * x; | 
|  | y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); | 
|  | y = y - 0.5 * z; | 
|  |  | 
|  | done: | 
|  |  | 
|  | /* Multiply log of fraction by log2(e) | 
|  | * and base 2 exponent by 1 | 
|  | */ | 
|  | z = y * LOG2EA; | 
|  | z += x * LOG2EA; | 
|  | z += y; | 
|  | z += x; | 
|  | z += e; | 
|  | return (z); | 
|  | } |