| /*							log1pq.c | 
 |  * | 
 |  *      Relative error logarithm | 
 |  *	Natural logarithm of 1+x, 128-bit long double precision | 
 |  * | 
 |  * | 
 |  * | 
 |  * SYNOPSIS: | 
 |  * | 
 |  * long double x, y, log1pq(); | 
 |  * | 
 |  * y = log1pq( x ); | 
 |  * | 
 |  * | 
 |  * | 
 |  * DESCRIPTION: | 
 |  * | 
 |  * Returns the base e (2.718...) logarithm of 1+x. | 
 |  * | 
 |  * The argument 1+x is separated into its exponent and fractional | 
 |  * parts.  If the exponent is between -1 and +1, the logarithm | 
 |  * of the fraction is approximated by | 
 |  * | 
 |  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). | 
 |  * | 
 |  * Otherwise, setting  z = 2(w-1)/(w+1), | 
 |  * | 
 |  *     log(w) = z + z^3 P(z)/Q(z). | 
 |  * | 
 |  * | 
 |  * | 
 |  * ACCURACY: | 
 |  * | 
 |  *                      Relative error: | 
 |  * arithmetic   domain     # trials      peak         rms | 
 |  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35 | 
 |  */ | 
 |  | 
 | /* Copyright 2001 by Stephen L. Moshier | 
 |  | 
 |     This library is free software; you can redistribute it and/or | 
 |     modify it under the terms of the GNU Lesser General Public | 
 |     License as published by the Free Software Foundation; either | 
 |     version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |     This library is distributed in the hope that it will be useful, | 
 |     but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |     Lesser General Public License for more details. | 
 |  | 
 |     You should have received a copy of the GNU Lesser General Public | 
 |     License along with this library; if not, see | 
 |     <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "quadmath-imp.h" | 
 |  | 
 | /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) | 
 |  * 1/sqrt(2) <= 1+x < sqrt(2) | 
 |  * Theoretical peak relative error = 5.3e-37, | 
 |  * relative peak error spread = 2.3e-14 | 
 |  */ | 
 | static const __float128 | 
 |   P12 = 1.538612243596254322971797716843006400388E-6Q, | 
 |   P11 = 4.998469661968096229986658302195402690910E-1Q, | 
 |   P10 = 2.321125933898420063925789532045674660756E1Q, | 
 |   P9 = 4.114517881637811823002128927449878962058E2Q, | 
 |   P8 = 3.824952356185897735160588078446136783779E3Q, | 
 |   P7 = 2.128857716871515081352991964243375186031E4Q, | 
 |   P6 = 7.594356839258970405033155585486712125861E4Q, | 
 |   P5 = 1.797628303815655343403735250238293741397E5Q, | 
 |   P4 = 2.854829159639697837788887080758954924001E5Q, | 
 |   P3 = 3.007007295140399532324943111654767187848E5Q, | 
 |   P2 = 2.014652742082537582487669938141683759923E5Q, | 
 |   P1 = 7.771154681358524243729929227226708890930E4Q, | 
 |   P0 = 1.313572404063446165910279910527789794488E4Q, | 
 |   /* Q12 = 1.000000000000000000000000000000000000000E0L, */ | 
 |   Q11 = 4.839208193348159620282142911143429644326E1Q, | 
 |   Q10 = 9.104928120962988414618126155557301584078E2Q, | 
 |   Q9 = 9.147150349299596453976674231612674085381E3Q, | 
 |   Q8 = 5.605842085972455027590989944010492125825E4Q, | 
 |   Q7 = 2.248234257620569139969141618556349415120E5Q, | 
 |   Q6 = 6.132189329546557743179177159925690841200E5Q, | 
 |   Q5 = 1.158019977462989115839826904108208787040E6Q, | 
 |   Q4 = 1.514882452993549494932585972882995548426E6Q, | 
 |   Q3 = 1.347518538384329112529391120390701166528E6Q, | 
 |   Q2 = 7.777690340007566932935753241556479363645E5Q, | 
 |   Q1 = 2.626900195321832660448791748036714883242E5Q, | 
 |   Q0 = 3.940717212190338497730839731583397586124E4Q; | 
 |  | 
 | /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), | 
 |  * where z = 2(x-1)/(x+1) | 
 |  * 1/sqrt(2) <= x < sqrt(2) | 
 |  * Theoretical peak relative error = 1.1e-35, | 
 |  * relative peak error spread 1.1e-9 | 
 |  */ | 
 | static const __float128 | 
 |   R5 = -8.828896441624934385266096344596648080902E-1Q, | 
 |   R4 = 8.057002716646055371965756206836056074715E1Q, | 
 |   R3 = -2.024301798136027039250415126250455056397E3Q, | 
 |   R2 = 2.048819892795278657810231591630928516206E4Q, | 
 |   R1 = -8.977257995689735303686582344659576526998E4Q, | 
 |   R0 = 1.418134209872192732479751274970992665513E5Q, | 
 |   /* S6 = 1.000000000000000000000000000000000000000E0L, */ | 
 |   S5 = -1.186359407982897997337150403816839480438E2Q, | 
 |   S4 = 3.998526750980007367835804959888064681098E3Q, | 
 |   S3 = -5.748542087379434595104154610899551484314E4Q, | 
 |   S2 = 4.001557694070773974936904547424676279307E5Q, | 
 |   S1 = -1.332535117259762928288745111081235577029E6Q, | 
 |   S0 = 1.701761051846631278975701529965589676574E6Q; | 
 |  | 
 | /* C1 + C2 = ln 2 */ | 
 | static const __float128 C1 = 6.93145751953125E-1Q; | 
 | static const __float128 C2 = 1.428606820309417232121458176568075500134E-6Q; | 
 |  | 
 | static const __float128 sqrth = 0.7071067811865475244008443621048490392848Q; | 
 | /* ln (2^16384 * (1 - 2^-113)) */ | 
 | static const __float128 zero = 0; | 
 |  | 
 | __float128 | 
 | log1pq (__float128 xm1) | 
 | { | 
 |   __float128 x, y, z, r, s; | 
 |   ieee854_float128 u; | 
 |   int32_t hx; | 
 |   int e; | 
 |  | 
 |   /* Test for NaN or infinity input. */ | 
 |   u.value = xm1; | 
 |   hx = u.words32.w0; | 
 |   if ((hx & 0x7fffffff) >= 0x7fff0000) | 
 |     return xm1 + fabsq (xm1); | 
 |  | 
 |   /* log1p(+- 0) = +- 0.  */ | 
 |   if (((hx & 0x7fffffff) == 0) | 
 |       && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) | 
 |     return xm1; | 
 |  | 
 |   if ((hx & 0x7fffffff) < 0x3f8e0000) | 
 |     { | 
 |       math_check_force_underflow (xm1); | 
 |       if ((int) xm1 == 0) | 
 | 	return xm1; | 
 |     } | 
 |  | 
 |   if (xm1 >= 0x1p113Q) | 
 |     x = xm1; | 
 |   else | 
 |     x = xm1 + 1; | 
 |  | 
 |   /* log1p(-1) = -inf */ | 
 |   if (x <= 0) | 
 |     { | 
 |       if (x == 0) | 
 | 	return (-1 / zero);  /* log1p(-1) = -inf */ | 
 |       else | 
 | 	return (zero / (x - x)); | 
 |     } | 
 |  | 
 |   /* Separate mantissa from exponent.  */ | 
 |  | 
 |   /* Use frexp used so that denormal numbers will be handled properly.  */ | 
 |   x = frexpq (x, &e); | 
 |  | 
 |   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), | 
 |      where z = 2(x-1)/x+1).  */ | 
 |   if ((e > 2) || (e < -2)) | 
 |     { | 
 |       if (x < sqrth) | 
 | 	{			/* 2( 2x-1 )/( 2x+1 ) */ | 
 | 	  e -= 1; | 
 | 	  z = x - 0.5Q; | 
 | 	  y = 0.5Q * z + 0.5Q; | 
 | 	} | 
 |       else | 
 | 	{			/*  2 (x-1)/(x+1)   */ | 
 | 	  z = x - 0.5Q; | 
 | 	  z -= 0.5Q; | 
 | 	  y = 0.5Q * x + 0.5Q; | 
 | 	} | 
 |       x = z / y; | 
 |       z = x * x; | 
 |       r = ((((R5 * z | 
 | 	      + R4) * z | 
 | 	     + R3) * z | 
 | 	    + R2) * z | 
 | 	   + R1) * z | 
 | 	+ R0; | 
 |       s = (((((z | 
 | 	       + S5) * z | 
 | 	      + S4) * z | 
 | 	     + S3) * z | 
 | 	    + S2) * z | 
 | 	   + S1) * z | 
 | 	+ S0; | 
 |       z = x * (z * r / s); | 
 |       z = z + e * C2; | 
 |       z = z + x; | 
 |       z = z + e * C1; | 
 |       return (z); | 
 |     } | 
 |  | 
 |  | 
 |   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ | 
 |  | 
 |   if (x < sqrth) | 
 |     { | 
 |       e -= 1; | 
 |       if (e != 0) | 
 | 	x = 2 * x - 1;	/*  2x - 1  */ | 
 |       else | 
 | 	x = xm1; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (e != 0) | 
 | 	x = x - 1; | 
 |       else | 
 | 	x = xm1; | 
 |     } | 
 |   z = x * x; | 
 |   r = (((((((((((P12 * x | 
 | 		 + P11) * x | 
 | 		+ P10) * x | 
 | 	       + P9) * x | 
 | 	      + P8) * x | 
 | 	     + P7) * x | 
 | 	    + P6) * x | 
 | 	   + P5) * x | 
 | 	  + P4) * x | 
 | 	 + P3) * x | 
 | 	+ P2) * x | 
 |        + P1) * x | 
 |     + P0; | 
 |   s = (((((((((((x | 
 | 		 + Q11) * x | 
 | 		+ Q10) * x | 
 | 	       + Q9) * x | 
 | 	      + Q8) * x | 
 | 	     + Q7) * x | 
 | 	    + Q6) * x | 
 | 	   + Q5) * x | 
 | 	  + Q4) * x | 
 | 	 + Q3) * x | 
 | 	+ Q2) * x | 
 |        + Q1) * x | 
 |     + Q0; | 
 |   y = x * (z * r / s); | 
 |   y = y + e * C2; | 
 |   z = y - 0.5Q * z; | 
 |   z = z + x; | 
 |   z = z + e * C1; | 
 |   return (z); | 
 | } |