| // Copyright 2021 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package strconv | 
 |  | 
 | import ( | 
 | 	"math/bits" | 
 | ) | 
 |  | 
 | // binary to decimal conversion using the Ryū algorithm. | 
 | // | 
 | // See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) | 
 | // | 
 | // Fixed precision formatting is a variant of the original paper's | 
 | // algorithm, where a single multiplication by 10^k is required, | 
 | // sharing the same rounding guarantees. | 
 |  | 
 | // ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits. | 
 | func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) { | 
 | 	if prec < 0 { | 
 | 		panic("ryuFtoaFixed32 called with negative prec") | 
 | 	} | 
 | 	if prec > 9 { | 
 | 		panic("ryuFtoaFixed32 called with prec > 9") | 
 | 	} | 
 | 	// Zero input. | 
 | 	if mant == 0 { | 
 | 		d.nd, d.dp = 0, 0 | 
 | 		return | 
 | 	} | 
 | 	// Renormalize to a 25-bit mantissa. | 
 | 	e2 := exp | 
 | 	if b := bits.Len32(mant); b < 25 { | 
 | 		mant <<= uint(25 - b) | 
 | 		e2 += int(b) - 25 | 
 | 	} | 
 | 	// Choose an exponent such that rounded mant*(2^e2)*(10^q) has | 
 | 	// at least prec decimal digits, i.e | 
 | 	//     mant*(2^e2)*(10^q) >= 10^(prec-1) | 
 | 	// Because mant >= 2^24, it is enough to choose: | 
 | 	//     2^(e2+24) >= 10^(-q+prec-1) | 
 | 	// or q = -mulByLog2Log10(e2+24) + prec - 1 | 
 | 	q := -mulByLog2Log10(e2+24) + prec - 1 | 
 |  | 
 | 	// Now compute mant*(2^e2)*(10^q). | 
 | 	// Is it an exact computation? | 
 | 	// Only small positive powers of 10 are exact (5^28 has 66 bits). | 
 | 	exact := q <= 27 && q >= 0 | 
 |  | 
 | 	di, dexp2, d0 := mult64bitPow10(mant, e2, q) | 
 | 	if dexp2 >= 0 { | 
 | 		panic("not enough significant bits after mult64bitPow10") | 
 | 	} | 
 | 	// As a special case, computation might still be exact, if exponent | 
 | 	// was negative and if it amounts to computing an exact division. | 
 | 	// In that case, we ignore all lower bits. | 
 | 	// Note that division by 10^11 cannot be exact as 5^11 has 26 bits. | 
 | 	if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) { | 
 | 		exact = true | 
 | 		d0 = true | 
 | 	} | 
 | 	// Remove extra lower bits and keep rounding info. | 
 | 	extra := uint(-dexp2) | 
 | 	extraMask := uint32(1<<extra - 1) | 
 |  | 
 | 	di, dfrac := di>>extra, di&extraMask | 
 | 	roundUp := false | 
 | 	if exact { | 
 | 		// If we computed an exact product, d + 1/2 | 
 | 		// should round to d+1 if 'd' is odd. | 
 | 		roundUp = dfrac > 1<<(extra-1) || | 
 | 			(dfrac == 1<<(extra-1) && !d0) || | 
 | 			(dfrac == 1<<(extra-1) && d0 && di&1 == 1) | 
 | 	} else { | 
 | 		// otherwise, d+1/2 always rounds up because | 
 | 		// we truncated below. | 
 | 		roundUp = dfrac>>(extra-1) == 1 | 
 | 	} | 
 | 	if dfrac != 0 { | 
 | 		d0 = false | 
 | 	} | 
 | 	// Proceed to the requested number of digits | 
 | 	formatDecimal(d, uint64(di), !d0, roundUp, prec) | 
 | 	// Adjust exponent | 
 | 	d.dp -= q | 
 | } | 
 |  | 
 | // ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits. | 
 | func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) { | 
 | 	if prec > 18 { | 
 | 		panic("ryuFtoaFixed64 called with prec > 18") | 
 | 	} | 
 | 	// Zero input. | 
 | 	if mant == 0 { | 
 | 		d.nd, d.dp = 0, 0 | 
 | 		return | 
 | 	} | 
 | 	// Renormalize to a 55-bit mantissa. | 
 | 	e2 := exp | 
 | 	if b := bits.Len64(mant); b < 55 { | 
 | 		mant = mant << uint(55-b) | 
 | 		e2 += int(b) - 55 | 
 | 	} | 
 | 	// Choose an exponent such that rounded mant*(2^e2)*(10^q) has | 
 | 	// at least prec decimal digits, i.e | 
 | 	//     mant*(2^e2)*(10^q) >= 10^(prec-1) | 
 | 	// Because mant >= 2^54, it is enough to choose: | 
 | 	//     2^(e2+54) >= 10^(-q+prec-1) | 
 | 	// or q = -mulByLog2Log10(e2+54) + prec - 1 | 
 | 	// | 
 | 	// The minimal required exponent is -mulByLog2Log10(1025)+18 = -291 | 
 | 	// The maximal required exponent is mulByLog2Log10(1074)+18 = 342 | 
 | 	q := -mulByLog2Log10(e2+54) + prec - 1 | 
 |  | 
 | 	// Now compute mant*(2^e2)*(10^q). | 
 | 	// Is it an exact computation? | 
 | 	// Only small positive powers of 10 are exact (5^55 has 128 bits). | 
 | 	exact := q <= 55 && q >= 0 | 
 |  | 
 | 	di, dexp2, d0 := mult128bitPow10(mant, e2, q) | 
 | 	if dexp2 >= 0 { | 
 | 		panic("not enough significant bits after mult128bitPow10") | 
 | 	} | 
 | 	// As a special case, computation might still be exact, if exponent | 
 | 	// was negative and if it amounts to computing an exact division. | 
 | 	// In that case, we ignore all lower bits. | 
 | 	// Note that division by 10^23 cannot be exact as 5^23 has 54 bits. | 
 | 	if q < 0 && q >= -22 && divisibleByPower5(mant, -q) { | 
 | 		exact = true | 
 | 		d0 = true | 
 | 	} | 
 | 	// Remove extra lower bits and keep rounding info. | 
 | 	extra := uint(-dexp2) | 
 | 	extraMask := uint64(1<<extra - 1) | 
 |  | 
 | 	di, dfrac := di>>extra, di&extraMask | 
 | 	roundUp := false | 
 | 	if exact { | 
 | 		// If we computed an exact product, d + 1/2 | 
 | 		// should round to d+1 if 'd' is odd. | 
 | 		roundUp = dfrac > 1<<(extra-1) || | 
 | 			(dfrac == 1<<(extra-1) && !d0) || | 
 | 			(dfrac == 1<<(extra-1) && d0 && di&1 == 1) | 
 | 	} else { | 
 | 		// otherwise, d+1/2 always rounds up because | 
 | 		// we truncated below. | 
 | 		roundUp = dfrac>>(extra-1) == 1 | 
 | 	} | 
 | 	if dfrac != 0 { | 
 | 		d0 = false | 
 | 	} | 
 | 	// Proceed to the requested number of digits | 
 | 	formatDecimal(d, di, !d0, roundUp, prec) | 
 | 	// Adjust exponent | 
 | 	d.dp -= q | 
 | } | 
 |  | 
 | var uint64pow10 = [...]uint64{ | 
 | 	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
 | 	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
 | } | 
 |  | 
 | // formatDecimal fills d with at most prec decimal digits | 
 | // of mantissa m. The boolean trunc indicates whether m | 
 | // is truncated compared to the original number being formatted. | 
 | func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) { | 
 | 	max := uint64pow10[prec] | 
 | 	trimmed := 0 | 
 | 	for m >= max { | 
 | 		a, b := m/10, m%10 | 
 | 		m = a | 
 | 		trimmed++ | 
 | 		if b > 5 { | 
 | 			roundUp = true | 
 | 		} else if b < 5 { | 
 | 			roundUp = false | 
 | 		} else { // b == 5 | 
 | 			// round up if there are trailing digits, | 
 | 			// or if the new value of m is odd (round-to-even convention) | 
 | 			roundUp = trunc || m&1 == 1 | 
 | 		} | 
 | 		if b != 0 { | 
 | 			trunc = true | 
 | 		} | 
 | 	} | 
 | 	if roundUp { | 
 | 		m++ | 
 | 	} | 
 | 	if m >= max { | 
 | 		// Happens if di was originally 99999....xx | 
 | 		m /= 10 | 
 | 		trimmed++ | 
 | 	} | 
 | 	// render digits (similar to formatBits) | 
 | 	n := uint(prec) | 
 | 	d.nd = int(prec) | 
 | 	v := m | 
 | 	for v >= 100 { | 
 | 		var v1, v2 uint64 | 
 | 		if v>>32 == 0 { | 
 | 			v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100) | 
 | 		} else { | 
 | 			v1, v2 = v/100, v%100 | 
 | 		} | 
 | 		n -= 2 | 
 | 		d.d[n+1] = smallsString[2*v2+1] | 
 | 		d.d[n+0] = smallsString[2*v2+0] | 
 | 		v = v1 | 
 | 	} | 
 | 	if v > 0 { | 
 | 		n-- | 
 | 		d.d[n] = smallsString[2*v+1] | 
 | 	} | 
 | 	if v >= 10 { | 
 | 		n-- | 
 | 		d.d[n] = smallsString[2*v] | 
 | 	} | 
 | 	for d.d[d.nd-1] == '0' { | 
 | 		d.nd-- | 
 | 		trimmed++ | 
 | 	} | 
 | 	d.dp = d.nd + trimmed | 
 | } | 
 |  | 
 | // ryuFtoaShortest formats mant*2^exp with prec decimal digits. | 
 | func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) { | 
 | 	if mant == 0 { | 
 | 		d.nd, d.dp = 0, 0 | 
 | 		return | 
 | 	} | 
 | 	// If input is an exact integer with fewer bits than the mantissa, | 
 | 	// the previous and next integer are not admissible representations. | 
 | 	if exp <= 0 && bits.TrailingZeros64(mant) >= -exp { | 
 | 		mant >>= uint(-exp) | 
 | 		ryuDigits(d, mant, mant, mant, true, false) | 
 | 		return | 
 | 	} | 
 | 	ml, mc, mu, e2 := computeBounds(mant, exp, flt) | 
 | 	if e2 == 0 { | 
 | 		ryuDigits(d, ml, mc, mu, true, false) | 
 | 		return | 
 | 	} | 
 | 	// Find 10^q *larger* than 2^-e2 | 
 | 	q := mulByLog2Log10(-e2) + 1 | 
 |  | 
 | 	// We are going to multiply by 10^q using 128-bit arithmetic. | 
 | 	// The exponent is the same for all 3 numbers. | 
 | 	var dl, dc, du uint64 | 
 | 	var dl0, dc0, du0 bool | 
 | 	if flt == &float32info { | 
 | 		var dl32, dc32, du32 uint32 | 
 | 		dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) | 
 | 		dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) | 
 | 		du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) | 
 | 		dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) | 
 | 	} else { | 
 | 		dl, _, dl0 = mult128bitPow10(ml, e2, q) | 
 | 		dc, _, dc0 = mult128bitPow10(mc, e2, q) | 
 | 		du, e2, du0 = mult128bitPow10(mu, e2, q) | 
 | 	} | 
 | 	if e2 >= 0 { | 
 | 		panic("not enough significant bits after mult128bitPow10") | 
 | 	} | 
 | 	// Is it an exact computation? | 
 | 	if q > 55 { | 
 | 		// Large positive powers of ten are not exact | 
 | 		dl0, dc0, du0 = false, false, false | 
 | 	} | 
 | 	if q < 0 && q >= -24 { | 
 | 		// Division by a power of ten may be exact. | 
 | 		// (note that 5^25 is a 59-bit number so division by 5^25 is never exact). | 
 | 		if divisibleByPower5(ml, -q) { | 
 | 			dl0 = true | 
 | 		} | 
 | 		if divisibleByPower5(mc, -q) { | 
 | 			dc0 = true | 
 | 		} | 
 | 		if divisibleByPower5(mu, -q) { | 
 | 			du0 = true | 
 | 		} | 
 | 	} | 
 | 	// Express the results (dl, dc, du)*2^e2 as integers. | 
 | 	// Extra bits must be removed and rounding hints computed. | 
 | 	extra := uint(-e2) | 
 | 	extraMask := uint64(1<<extra - 1) | 
 | 	// Now compute the floored, integral base 10 mantissas. | 
 | 	dl, fracl := dl>>extra, dl&extraMask | 
 | 	dc, fracc := dc>>extra, dc&extraMask | 
 | 	du, fracu := du>>extra, du&extraMask | 
 | 	// Is it allowed to use 'du' as a result? | 
 | 	// It is always allowed when it is truncated, but also | 
 | 	// if it is exact and the original binary mantissa is even | 
 | 	// When disallowed, we can subtract 1. | 
 | 	uok := !du0 || fracu > 0 | 
 | 	if du0 && fracu == 0 { | 
 | 		uok = mant&1 == 0 | 
 | 	} | 
 | 	if !uok { | 
 | 		du-- | 
 | 	} | 
 | 	// Is 'dc' the correctly rounded base 10 mantissa? | 
 | 	// The correct rounding might be dc+1 | 
 | 	cup := false // don't round up. | 
 | 	if dc0 { | 
 | 		// If we computed an exact product, the half integer | 
 | 		// should round to next (even) integer if 'dc' is odd. | 
 | 		cup = fracc > 1<<(extra-1) || | 
 | 			(fracc == 1<<(extra-1) && dc&1 == 1) | 
 | 	} else { | 
 | 		// otherwise, the result is a lower truncation of the ideal | 
 | 		// result. | 
 | 		cup = fracc>>(extra-1) == 1 | 
 | 	} | 
 | 	// Is 'dl' an allowed representation? | 
 | 	// Only if it is an exact value, and if the original binary mantissa | 
 | 	// was even. | 
 | 	lok := dl0 && fracl == 0 && (mant&1 == 0) | 
 | 	if !lok { | 
 | 		dl++ | 
 | 	} | 
 | 	// We need to remember whether the trimmed digits of 'dc' are zero. | 
 | 	c0 := dc0 && fracc == 0 | 
 | 	// render digits | 
 | 	ryuDigits(d, dl, dc, du, c0, cup) | 
 | 	d.dp -= q | 
 | } | 
 |  | 
 | // mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in | 
 | // the range -1600 <= x && x <= +1600. | 
 | // | 
 | // The range restriction lets us work in faster integer arithmetic instead of | 
 | // slower floating point arithmetic. Correctness is verified by unit tests. | 
 | func mulByLog2Log10(x int) int { | 
 | 	// log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18 | 
 | 	return (x * 78913) >> 18 | 
 | } | 
 |  | 
 | // mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in | 
 | // the range -500 <= x && x <= +500. | 
 | // | 
 | // The range restriction lets us work in faster integer arithmetic instead of | 
 | // slower floating point arithmetic. Correctness is verified by unit tests. | 
 | func mulByLog10Log2(x int) int { | 
 | 	// log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15 | 
 | 	return (x * 108853) >> 15 | 
 | } | 
 |  | 
 | // computeBounds returns a floating-point vector (l, c, u)×2^e2 | 
 | // where the mantissas are 55-bit (or 26-bit) integers, describing the interval | 
 | // represented by the input float64 or float32. | 
 | func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) { | 
 | 	if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) { | 
 | 		// regular case (or denormals) | 
 | 		lower, central, upper = 2*mant-1, 2*mant, 2*mant+1 | 
 | 		e2 = exp - 1 | 
 | 		return | 
 | 	} else { | 
 | 		// border of an exponent | 
 | 		lower, central, upper = 4*mant-1, 4*mant, 4*mant+2 | 
 | 		e2 = exp - 2 | 
 | 		return | 
 | 	} | 
 | } | 
 |  | 
 | func ryuDigits(d *decimalSlice, lower, central, upper uint64, | 
 | 	c0, cup bool) { | 
 | 	lhi, llo := divmod1e9(lower) | 
 | 	chi, clo := divmod1e9(central) | 
 | 	uhi, ulo := divmod1e9(upper) | 
 | 	if uhi == 0 { | 
 | 		// only low digits (for denormals) | 
 | 		ryuDigits32(d, llo, clo, ulo, c0, cup, 8) | 
 | 	} else if lhi < uhi { | 
 | 		// truncate 9 digits at once. | 
 | 		if llo != 0 { | 
 | 			lhi++ | 
 | 		} | 
 | 		c0 = c0 && clo == 0 | 
 | 		cup = (clo > 5e8) || (clo == 5e8 && cup) | 
 | 		ryuDigits32(d, lhi, chi, uhi, c0, cup, 8) | 
 | 		d.dp += 9 | 
 | 	} else { | 
 | 		d.nd = 0 | 
 | 		// emit high part | 
 | 		n := uint(9) | 
 | 		for v := chi; v > 0; { | 
 | 			v1, v2 := v/10, v%10 | 
 | 			v = v1 | 
 | 			n-- | 
 | 			d.d[n] = byte(v2 + '0') | 
 | 		} | 
 | 		d.d = d.d[n:] | 
 | 		d.nd = int(9 - n) | 
 | 		// emit low part | 
 | 		ryuDigits32(d, llo, clo, ulo, | 
 | 			c0, cup, d.nd+8) | 
 | 	} | 
 | 	// trim trailing zeros | 
 | 	for d.nd > 0 && d.d[d.nd-1] == '0' { | 
 | 		d.nd-- | 
 | 	} | 
 | 	// trim initial zeros | 
 | 	for d.nd > 0 && d.d[0] == '0' { | 
 | 		d.nd-- | 
 | 		d.dp-- | 
 | 		d.d = d.d[1:] | 
 | 	} | 
 | } | 
 |  | 
 | // ryuDigits32 emits decimal digits for a number less than 1e9. | 
 | func ryuDigits32(d *decimalSlice, lower, central, upper uint32, | 
 | 	c0, cup bool, endindex int) { | 
 | 	if upper == 0 { | 
 | 		d.dp = endindex + 1 | 
 | 		return | 
 | 	} | 
 | 	trimmed := 0 | 
 | 	// Remember last trimmed digit to check for round-up. | 
 | 	// c0 will be used to remember zeroness of following digits. | 
 | 	cNextDigit := 0 | 
 | 	for upper > 0 { | 
 | 		// Repeatedly compute: | 
 | 		// l = Ceil(lower / 10^k) | 
 | 		// c = Round(central / 10^k) | 
 | 		// u = Floor(upper / 10^k) | 
 | 		// and stop when c goes out of the (l, u) interval. | 
 | 		l := (lower + 9) / 10 | 
 | 		c, cdigit := central/10, central%10 | 
 | 		u := upper / 10 | 
 | 		if l > u { | 
 | 			// don't trim the last digit as it is forbidden to go below l | 
 | 			// other, trim and exit now. | 
 | 			break | 
 | 		} | 
 | 		// Check that we didn't cross the lower boundary. | 
 | 		// The case where l < u but c == l-1 is essentially impossible, | 
 | 		// but may happen if: | 
 | 		//    lower   = ..11 | 
 | 		//    central = ..19 | 
 | 		//    upper   = ..31 | 
 | 		// and means that 'central' is very close but less than | 
 | 		// an integer ending with many zeros, and usually | 
 | 		// the "round-up" logic hides the problem. | 
 | 		if l == c+1 && c < u { | 
 | 			c++ | 
 | 			cdigit = 0 | 
 | 			cup = false | 
 | 		} | 
 | 		trimmed++ | 
 | 		// Remember trimmed digits of c | 
 | 		c0 = c0 && cNextDigit == 0 | 
 | 		cNextDigit = int(cdigit) | 
 | 		lower, central, upper = l, c, u | 
 | 	} | 
 | 	// should we round up? | 
 | 	if trimmed > 0 { | 
 | 		cup = cNextDigit > 5 || | 
 | 			(cNextDigit == 5 && !c0) || | 
 | 			(cNextDigit == 5 && c0 && central&1 == 1) | 
 | 	} | 
 | 	if central < upper && cup { | 
 | 		central++ | 
 | 	} | 
 | 	// We know where the number ends, fill directly | 
 | 	endindex -= trimmed | 
 | 	v := central | 
 | 	n := endindex | 
 | 	for n > d.nd { | 
 | 		v1, v2 := v/100, v%100 | 
 | 		d.d[n] = smallsString[2*v2+1] | 
 | 		d.d[n-1] = smallsString[2*v2+0] | 
 | 		n -= 2 | 
 | 		v = v1 | 
 | 	} | 
 | 	if n == d.nd { | 
 | 		d.d[n] = byte(v + '0') | 
 | 	} | 
 | 	d.nd = endindex + 1 | 
 | 	d.dp = d.nd + trimmed | 
 | } | 
 |  | 
 | // mult64bitPow10 takes a floating-point input with a 25-bit | 
 | // mantissa and multiplies it with 10^q. The resulting mantissa | 
 | // is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables. | 
 | // It is typically 31 or 32-bit wide. | 
 | // The returned boolean is true if all trimmed bits were zero. | 
 | // | 
 | // That is: | 
 | //     m*2^e2 * round(10^q) = resM * 2^resE + ε | 
 | //     exact = ε == 0 | 
 | func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) { | 
 | 	if q == 0 { | 
 | 		// P == 1<<63 | 
 | 		return m << 6, e2 - 6, true | 
 | 	} | 
 | 	if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { | 
 | 		// This never happens due to the range of float32/float64 exponent | 
 | 		panic("mult64bitPow10: power of 10 is out of range") | 
 | 	} | 
 | 	pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1] | 
 | 	if q < 0 { | 
 | 		// Inverse powers of ten must be rounded up. | 
 | 		pow += 1 | 
 | 	} | 
 | 	hi, lo := bits.Mul64(uint64(m), pow) | 
 | 	e2 += mulByLog10Log2(q) - 63 + 57 | 
 | 	return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0 | 
 | } | 
 |  | 
 | // mult128bitPow10 takes a floating-point input with a 55-bit | 
 | // mantissa and multiplies it with 10^q. The resulting mantissa | 
 | // is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables. | 
 | // It is typically 63 or 64-bit wide. | 
 | // The returned boolean is true is all trimmed bits were zero. | 
 | // | 
 | // That is: | 
 | //     m*2^e2 * round(10^q) = resM * 2^resE + ε | 
 | //     exact = ε == 0 | 
 | func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) { | 
 | 	if q == 0 { | 
 | 		// P == 1<<127 | 
 | 		return m << 8, e2 - 8, true | 
 | 	} | 
 | 	if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { | 
 | 		// This never happens due to the range of float32/float64 exponent | 
 | 		panic("mult128bitPow10: power of 10 is out of range") | 
 | 	} | 
 | 	pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10] | 
 | 	if q < 0 { | 
 | 		// Inverse powers of ten must be rounded up. | 
 | 		pow[0] += 1 | 
 | 	} | 
 | 	e2 += mulByLog10Log2(q) - 127 + 119 | 
 |  | 
 | 	// long multiplication | 
 | 	l1, l0 := bits.Mul64(m, pow[0]) | 
 | 	h1, h0 := bits.Mul64(m, pow[1]) | 
 | 	mid, carry := bits.Add64(l1, h0, 0) | 
 | 	h1 += carry | 
 | 	return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0 | 
 | } | 
 |  | 
 | func divisibleByPower5(m uint64, k int) bool { | 
 | 	if m == 0 { | 
 | 		return true | 
 | 	} | 
 | 	for i := 0; i < k; i++ { | 
 | 		if m%5 != 0 { | 
 | 			return false | 
 | 		} | 
 | 		m /= 5 | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // divmod1e9 computes quotient and remainder of division by 1e9, | 
 | // avoiding runtime uint64 division on 32-bit platforms. | 
 | func divmod1e9(x uint64) (uint32, uint32) { | 
 | 	if !host32bit { | 
 | 		return uint32(x / 1e9), uint32(x % 1e9) | 
 | 	} | 
 | 	// Use the same sequence of operations as the amd64 compiler. | 
 | 	hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9 | 
 | 	q := hi >> 28 | 
 | 	return uint32(q), uint32(x - q*1e9) | 
 | } |