| // hashtable.h header -*- C++ -*- |
| |
| // Copyright (C) 2007-2025 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/hashtable.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{unordered_map, unordered_set} |
| */ |
| |
| #ifndef _HASHTABLE_H |
| #define _HASHTABLE_H 1 |
| |
| #ifdef _GLIBCXX_SYSHDR |
| #pragma GCC system_header |
| #endif |
| |
| #include <bits/hashtable_policy.h> |
| #include <bits/enable_special_members.h> |
| #include <bits/stl_algobase.h> // fill_n, is_permutation |
| #include <bits/stl_function.h> // __has_is_transparent_t |
| #if __cplusplus > 201402L |
| # include <bits/node_handle.h> |
| #endif |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++11-extensions" |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| /// @cond undocumented |
| |
| template<typename _Tp, typename _Hash> |
| using __cache_default |
| = __not_<__and_<// Do not cache for fast hasher. |
| __is_fast_hash<_Hash>, |
| // Mandatory for the rehash process. |
| __is_nothrow_invocable<const _Hash&, const _Tp&>>>; |
| |
| // Helper to conditionally delete the default constructor. |
| // The _Hash_node_base type is used to distinguish this specialization |
| // from any other potentially-overlapping subobjects of the hashtable. |
| template<typename _Equal, typename _Hash, typename _Allocator> |
| using _Hashtable_enable_default_ctor |
| = _Enable_default_constructor<__and_<is_default_constructible<_Equal>, |
| is_default_constructible<_Hash>, |
| is_default_constructible<_Allocator>>{}, |
| __detail::_Hash_node_base>; |
| |
| /** |
| * Primary class template _Hashtable. |
| * |
| * @ingroup hashtable-detail |
| * |
| * @tparam _Value CopyConstructible type. |
| * |
| * @tparam _Key CopyConstructible type. |
| * |
| * @tparam _Alloc An allocator type |
| * ([lib.allocator.requirements]) whose _Alloc::value_type is |
| * _Value. As a conforming extension, we allow for |
| * _Alloc::value_type != _Value. |
| * |
| * @tparam _ExtractKey Function object that takes an object of type |
| * _Value and returns a value of type _Key. |
| * |
| * @tparam _Equal Function object that takes two objects of type k |
| * and returns a bool-like value that is true if the two objects |
| * are considered equal. |
| * |
| * @tparam _Hash The hash function. A unary function object with |
| * argument type _Key and result type size_t. Return values should |
| * be distributed over the entire range [0, numeric_limits<size_t>:::max()]. |
| * |
| * @tparam _RangeHash The range-hashing function (in the terminology of |
| * Tavori and Dreizin). A binary function object whose argument |
| * types and result type are all size_t. Given arguments r and N, |
| * the return value is in the range [0, N). |
| * |
| * @tparam _Unused Not used. |
| * |
| * @tparam _RehashPolicy Policy class with three members, all of |
| * which govern the bucket count. _M_next_bkt(n) returns a bucket |
| * count no smaller than n. _M_bkt_for_elements(n) returns a |
| * bucket count appropriate for an element count of n. |
| * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the |
| * current bucket count is n_bkt and the current element count is |
| * n_elt, we need to increase the bucket count for n_ins insertions. |
| * If so, returns make_pair(true, n), where n is the new bucket count. If |
| * not, returns make_pair(false, <anything>) |
| * |
| * @tparam _Traits Compile-time class with three boolean |
| * std::integral_constant members: __cache_hash_code, __constant_iterators, |
| * __unique_keys. |
| * |
| * Each _Hashtable data structure has: |
| * |
| * - _Bucket[] _M_buckets |
| * - _Hash_node_base _M_before_begin |
| * - size_type _M_bucket_count |
| * - size_type _M_element_count |
| * |
| * with _Bucket being _Hash_node_base* and _Hash_node containing: |
| * |
| * - _Hash_node* _M_next |
| * - Tp _M_value |
| * - size_t _M_hash_code if cache_hash_code is true |
| * |
| * In terms of Standard containers the hashtable is like the aggregation of: |
| * |
| * - std::forward_list<_Node> containing the elements |
| * - std::vector<std::forward_list<_Node>::iterator> representing the buckets |
| * |
| * The non-empty buckets contain the node before the first node in the |
| * bucket. This design makes it possible to implement something like a |
| * std::forward_list::insert_after on container insertion and |
| * std::forward_list::erase_after on container erase |
| * calls. _M_before_begin is equivalent to |
| * std::forward_list::before_begin. Empty buckets contain |
| * nullptr. Note that one of the non-empty buckets contains |
| * &_M_before_begin which is not a dereferenceable node so the |
| * node pointer in a bucket shall never be dereferenced, only its |
| * next node can be. |
| * |
| * Walking through a bucket's nodes requires a check on the hash code to |
| * see if each node is still in the bucket. Such a design assumes a |
| * quite efficient hash functor and is one of the reasons it is |
| * highly advisable to set __cache_hash_code to true. |
| * |
| * The container iterators are simply built from nodes. This way |
| * incrementing the iterator is perfectly efficient independent of |
| * how many empty buckets there are in the container. |
| * |
| * On insert we compute the element's hash code and use it to find the |
| * bucket index. If the element must be inserted in an empty bucket |
| * we add it at the beginning of the singly linked list and make the |
| * bucket point to _M_before_begin. The bucket that used to point to |
| * _M_before_begin, if any, is updated to point to its new before |
| * begin node. |
| * |
| * Note that all equivalent values, if any, are next to each other, if |
| * we find a non-equivalent value after an equivalent one it means that |
| * we won't find any new equivalent value. |
| * |
| * On erase, the simple iterator design requires using the hash |
| * functor to get the index of the bucket to update. For this |
| * reason, when __cache_hash_code is set to false the hash functor must |
| * not throw and this is enforced by a static assertion. |
| * |
| * Functionality is implemented by decomposition into base classes, |
| * where the derived _Hashtable class is used in _Map_base and |
| * _Rehash_base base classes to access the |
| * "this" pointer. _Hashtable_base is used in the base classes as a |
| * non-recursive, fully-completed-type so that detailed nested type |
| * information, such as iterator type and node type, can be |
| * used. This is similar to the "Curiously Recurring Template |
| * Pattern" (CRTP) technique, but uses a reconstructed, not |
| * explicitly passed, template pattern. |
| * |
| * Base class templates are: |
| * - __detail::_Hashtable_base |
| * - __detail::_Map_base |
| * - __detail::_Rehash_base |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| class _Hashtable |
| : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _Traits>, |
| public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>, |
| public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>, |
| private __detail::_Hashtable_alloc< |
| __alloc_rebind<_Alloc, |
| __detail::_Hash_node<_Value, |
| _Traits::__hash_cached::value>>>, |
| private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc> |
| { |
| static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value, |
| "unordered container must have a non-const, non-volatile value_type"); |
| #if __cplusplus > 201703L || defined __STRICT_ANSI__ |
| static_assert(is_same<typename _Alloc::value_type, _Value>{}, |
| "unordered container must have the same value_type as its allocator"); |
| #endif |
| static_assert(is_copy_constructible<_Hash>::value, |
| "hash function must be copy constructible"); |
| |
| using __traits_type = _Traits; |
| using __hash_cached = typename __traits_type::__hash_cached; |
| using __constant_iterators = typename __traits_type::__constant_iterators; |
| using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>; |
| using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>; |
| |
| using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>; |
| |
| using __node_value_type = |
| __detail::_Hash_node_value<_Value, __hash_cached::value>; |
| using __node_ptr = typename __hashtable_alloc::__node_ptr; |
| using __value_alloc_traits = |
| typename __hashtable_alloc::__value_alloc_traits; |
| using __node_alloc_traits = |
| typename __hashtable_alloc::__node_alloc_traits; |
| using __node_base = typename __hashtable_alloc::__node_base; |
| using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr; |
| using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr; |
| |
| using __enable_default_ctor |
| = _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>; |
| using __rehash_guard_t |
| = __detail::_RehashStateGuard<_RehashPolicy>; |
| |
| public: |
| typedef _Key key_type; |
| typedef _Value value_type; |
| typedef _Alloc allocator_type; |
| typedef _Equal key_equal; |
| |
| // mapped_type, if present, comes from _Map_base. |
| // hasher, if present, comes from _Hash_code_base/_Hashtable_base. |
| typedef typename __value_alloc_traits::pointer pointer; |
| typedef typename __value_alloc_traits::const_pointer const_pointer; |
| typedef value_type& reference; |
| typedef const value_type& const_reference; |
| |
| using iterator |
| = __detail::_Node_iterator<_Value, __constant_iterators::value, |
| __hash_cached::value>; |
| |
| using const_iterator |
| = __detail::_Node_const_iterator<_Value, __constant_iterators::value, |
| __hash_cached::value>; |
| |
| using local_iterator = __detail::_Local_iterator<key_type, _Value, |
| _ExtractKey, _Hash, _RangeHash, _Unused, |
| __constant_iterators::value, |
| __hash_cached::value>; |
| |
| using const_local_iterator = __detail::_Local_const_iterator< |
| key_type, _Value, |
| _ExtractKey, _Hash, _RangeHash, _Unused, |
| __constant_iterators::value, __hash_cached::value>; |
| |
| private: |
| using __rehash_type = _RehashPolicy; |
| |
| using __unique_keys = typename __traits_type::__unique_keys; |
| |
| using __hashtable_base = __detail:: |
| _Hashtable_base<_Key, _Value, _ExtractKey, |
| _Equal, _Hash, _RangeHash, _Unused, _Traits>; |
| |
| using __hash_code_base = typename __hashtable_base::__hash_code_base; |
| using __hash_code = typename __hashtable_base::__hash_code; |
| using __ireturn_type = __conditional_t<__unique_keys::value, |
| std::pair<iterator, bool>, |
| iterator>; |
| |
| using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc, |
| _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| using __node_builder_t = __detail::_NodeBuilder<_ExtractKey>; |
| |
| // Simple RAII type for managing a node containing an element |
| struct _Scoped_node |
| { |
| // Take ownership of a node with a constructed element. |
| _Scoped_node(__node_ptr __n, __hashtable_alloc* __h) |
| : _M_h(__h), _M_node(__n) { } |
| |
| // Allocate a node and construct an element within it. |
| template<typename... _Args> |
| _Scoped_node(__hashtable_alloc* __h, _Args&&... __args) |
| : _M_h(__h), |
| _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...)) |
| { } |
| |
| // Destroy element and deallocate node. |
| ~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); }; |
| |
| _Scoped_node(const _Scoped_node&) = delete; |
| _Scoped_node& operator=(const _Scoped_node&) = delete; |
| |
| __hashtable_alloc* _M_h; |
| __node_ptr _M_node; |
| }; |
| |
| // Compile-time diagnostics. |
| |
| // _Hash_code_base has everything protected, so use this derived type to |
| // access it. |
| struct __hash_code_base_access : __hash_code_base |
| { using __hash_code_base::_M_bucket_index; }; |
| |
| // To get bucket index we need _RangeHash to be non-throwing. |
| static_assert(is_nothrow_default_constructible<_RangeHash>::value, |
| "Functor used to map hash code to bucket index" |
| " must be nothrow default constructible"); |
| static_assert(noexcept( |
| std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)), |
| "Functor used to map hash code to bucket index must be" |
| " noexcept"); |
| |
| // To compute bucket index we also need _ExtractKey to be non-throwing. |
| static_assert(is_nothrow_default_constructible<_ExtractKey>::value, |
| "_ExtractKey must be nothrow default constructible"); |
| static_assert(noexcept( |
| std::declval<const _ExtractKey&>()(std::declval<_Value>())), |
| "_ExtractKey functor must be noexcept invocable"); |
| |
| template<typename _Keya, typename _Valuea, typename _Alloca, |
| typename _ExtractKeya, typename _Equala, |
| typename _Hasha, typename _RangeHasha, typename _Unuseda, |
| typename _RehashPolicya, typename _Traitsa, |
| bool _Unique_keysa> |
| friend struct __detail::_Map_base; |
| |
| public: |
| using size_type = typename __hashtable_base::size_type; |
| using difference_type = typename __hashtable_base::difference_type; |
| |
| #if __cplusplus > 201402L |
| using node_type = _Node_handle<_Key, _Value, __node_alloc_type>; |
| using insert_return_type = _Node_insert_return<iterator, node_type>; |
| #endif |
| |
| private: |
| __buckets_ptr _M_buckets = &_M_single_bucket; |
| size_type _M_bucket_count = 1; |
| __node_base _M_before_begin; |
| size_type _M_element_count = 0; |
| _RehashPolicy _M_rehash_policy; |
| |
| // A single bucket used when only need for 1 bucket. Especially |
| // interesting in move semantic to leave hashtable with only 1 bucket |
| // which is not allocated so that we can have those operations noexcept |
| // qualified. |
| // Note that we can't leave hashtable with 0 bucket without adding |
| // numerous checks in the code to avoid 0 modulus. |
| __node_base_ptr _M_single_bucket = nullptr; |
| |
| void |
| _M_update_bbegin() |
| { |
| if (auto __begin = _M_begin()) |
| _M_buckets[_M_bucket_index(*__begin)] = &_M_before_begin; |
| } |
| |
| void |
| _M_update_bbegin(__node_ptr __n) |
| { |
| _M_before_begin._M_nxt = __n; |
| _M_update_bbegin(); |
| } |
| |
| bool |
| _M_uses_single_bucket(__buckets_ptr __bkts) const |
| { return __builtin_expect(__bkts == &_M_single_bucket, false); } |
| |
| bool |
| _M_uses_single_bucket() const |
| { return _M_uses_single_bucket(_M_buckets); } |
| |
| static constexpr size_t |
| __small_size_threshold() noexcept |
| { |
| return |
| __detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold(); |
| } |
| |
| __hashtable_alloc& |
| _M_base_alloc() { return *this; } |
| |
| __buckets_ptr |
| _M_allocate_buckets(size_type __bkt_count) |
| { |
| if (__builtin_expect(__bkt_count == 1, false)) |
| { |
| _M_single_bucket = nullptr; |
| return &_M_single_bucket; |
| } |
| |
| return __hashtable_alloc::_M_allocate_buckets(__bkt_count); |
| } |
| |
| void |
| _M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count) |
| { |
| if (_M_uses_single_bucket(__bkts)) |
| return; |
| |
| __hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count); |
| } |
| |
| void |
| _M_deallocate_buckets() |
| { _M_deallocate_buckets(_M_buckets, _M_bucket_count); } |
| |
| // Gets bucket begin, deals with the fact that non-empty buckets contain |
| // their before begin node. |
| __node_ptr |
| _M_bucket_begin(size_type __bkt) const |
| { |
| __node_base_ptr __n = _M_buckets[__bkt]; |
| return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr; |
| } |
| |
| __node_ptr |
| _M_begin() const |
| { return static_cast<__node_ptr>(_M_before_begin._M_nxt); } |
| |
| // Assign *this using another _Hashtable instance. Whether elements |
| // are copied or moved depends on the _Ht reference. |
| template<typename _Ht> |
| void |
| _M_assign_elements(_Ht&&); |
| |
| template<typename _Ht> |
| void |
| _M_assign(_Ht&& __ht) |
| { |
| __detail::_AllocNode<__node_alloc_type> __alloc_node_gen(*this); |
| _M_assign(std::forward<_Ht>(__ht), __alloc_node_gen); |
| } |
| |
| template<typename _Ht, typename _NodeGenerator> |
| void |
| _M_assign(_Ht&&, _NodeGenerator&); |
| |
| void |
| _M_move_assign(_Hashtable&&, true_type); |
| |
| void |
| _M_move_assign(_Hashtable&&, false_type); |
| |
| void |
| _M_reset() noexcept; |
| |
| _Hashtable(const _Hash& __h, const _Equal& __eq, |
| const allocator_type& __a) |
| : __hashtable_base(__h, __eq), |
| __hashtable_alloc(__node_alloc_type(__a)), |
| __enable_default_ctor(_Enable_default_constructor_tag{}) |
| { } |
| |
| template<bool _No_realloc = true> |
| static constexpr bool |
| _S_nothrow_move() |
| { |
| #if __cplusplus <= 201402L |
| return __and_<__bool_constant<_No_realloc>, |
| is_nothrow_copy_constructible<_Hash>, |
| is_nothrow_copy_constructible<_Equal>>::value; |
| #else |
| if constexpr (_No_realloc) |
| if constexpr (is_nothrow_copy_constructible<_Hash>()) |
| return is_nothrow_copy_constructible<_Equal>(); |
| return false; |
| #endif |
| } |
| |
| _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a, |
| true_type /* alloc always equal */) |
| noexcept(_S_nothrow_move()); |
| |
| _Hashtable(_Hashtable&&, __node_alloc_type&&, |
| false_type /* alloc always equal */); |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __first, _InputIterator __last, |
| size_type __bkt_count_hint, |
| const _Hash&, const _Equal&, const allocator_type&, |
| true_type __uks); |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __first, _InputIterator __last, |
| size_type __bkt_count_hint, |
| const _Hash&, const _Equal&, const allocator_type&, |
| false_type __uks); |
| |
| public: |
| // Constructor, destructor, assignment, swap |
| _Hashtable() = default; |
| |
| _Hashtable(const _Hashtable&); |
| |
| _Hashtable(const _Hashtable&, const allocator_type&); |
| |
| explicit |
| _Hashtable(size_type __bkt_count_hint, |
| const _Hash& __hf = _Hash(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()); |
| |
| // Use delegating constructors. |
| _Hashtable(_Hashtable&& __ht) |
| noexcept(_S_nothrow_move()) |
| : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()), |
| true_type{}) |
| { } |
| |
| _Hashtable(_Hashtable&& __ht, const allocator_type& __a) |
| noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>()) |
| : _Hashtable(std::move(__ht), __node_alloc_type(__a), |
| typename __node_alloc_traits::is_always_equal{}) |
| { } |
| |
| explicit |
| _Hashtable(const allocator_type& __a) |
| : __hashtable_alloc(__node_alloc_type(__a)), |
| __enable_default_ctor(_Enable_default_constructor_tag{}) |
| { } |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __bkt_count_hint = 0, |
| const _Hash& __hf = _Hash(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()) |
| : _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a, |
| __unique_keys{}) |
| { } |
| |
| _Hashtable(initializer_list<value_type> __l, |
| size_type __bkt_count_hint = 0, |
| const _Hash& __hf = _Hash(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()) |
| : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint, |
| __hf, __eql, __a, __unique_keys{}) |
| { } |
| |
| _Hashtable& |
| operator=(const _Hashtable& __ht); |
| |
| _Hashtable& |
| operator=(_Hashtable&& __ht) |
| noexcept(__node_alloc_traits::_S_nothrow_move() |
| && is_nothrow_move_assignable<_Hash>::value |
| && is_nothrow_move_assignable<_Equal>::value) |
| { |
| constexpr bool __move_storage = |
| __node_alloc_traits::_S_propagate_on_move_assign() |
| || __node_alloc_traits::_S_always_equal(); |
| _M_move_assign(std::move(__ht), __bool_constant<__move_storage>()); |
| return *this; |
| } |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| _Hashtable& |
| operator=(initializer_list<value_type> __l) |
| { |
| using __reuse_or_alloc_node_gen_t = |
| __detail::_ReuseOrAllocNode<__node_alloc_type>; |
| |
| __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this); |
| _M_before_begin._M_nxt = nullptr; |
| clear(); |
| |
| // We assume that all elements of __l are likely to be inserted. |
| auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size()); |
| |
| // Excess buckets might have been intentionally reserved by the user, |
| // so rehash if we need to grow, but don't shrink. |
| if (_M_bucket_count < __l_bkt_count) |
| rehash(__l_bkt_count); |
| |
| __hash_code __code; |
| size_type __bkt; |
| for (auto& __e : __l) |
| { |
| const key_type& __k = _ExtractKey{}(__e); |
| |
| if constexpr (__unique_keys::value) |
| { |
| if (auto __loc = _M_locate(__k)) |
| continue; // Found existing element with equivalent key |
| else |
| { |
| __code = __loc._M_hash_code; |
| __bkt = __loc._M_bucket_index; |
| } |
| } |
| else |
| { |
| __code = this->_M_hash_code(__k); |
| __bkt = _M_bucket_index(__code); |
| } |
| |
| _M_insert_unique_node(__bkt, __code, __roan(__e)); |
| } |
| |
| return *this; |
| } |
| #pragma GCC diagnostic pop |
| |
| ~_Hashtable() noexcept; |
| |
| void |
| swap(_Hashtable&) |
| noexcept(__and_<__is_nothrow_swappable<_Hash>, |
| __is_nothrow_swappable<_Equal>>::value); |
| |
| // Basic container operations |
| iterator |
| begin() noexcept |
| { return iterator(_M_begin()); } |
| |
| const_iterator |
| begin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| iterator |
| end() noexcept |
| { return iterator(nullptr); } |
| |
| const_iterator |
| end() const noexcept |
| { return const_iterator(nullptr); } |
| |
| const_iterator |
| cbegin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| const_iterator |
| cend() const noexcept |
| { return const_iterator(nullptr); } |
| |
| size_type |
| size() const noexcept |
| { return _M_element_count; } |
| |
| _GLIBCXX_NODISCARD bool |
| empty() const noexcept |
| { return size() == 0; } |
| |
| allocator_type |
| get_allocator() const noexcept |
| { return allocator_type(this->_M_node_allocator()); } |
| |
| size_type |
| max_size() const noexcept |
| { return __node_alloc_traits::max_size(this->_M_node_allocator()); } |
| |
| // Observers |
| key_equal |
| key_eq() const |
| { return this->_M_eq(); } |
| |
| // hash_function, if present, comes from _Hash_code_base. |
| |
| // Bucket operations |
| size_type |
| bucket_count() const noexcept |
| { return _M_bucket_count; } |
| |
| size_type |
| max_bucket_count() const noexcept |
| { return max_size(); } |
| |
| size_type |
| bucket_size(size_type __bkt) const |
| { return std::distance(begin(__bkt), end(__bkt)); } |
| |
| size_type |
| bucket(const key_type& __k) const |
| { return _M_bucket_index(this->_M_hash_code(__k)); } |
| |
| local_iterator |
| begin(size_type __bkt) |
| { |
| return local_iterator(*this, _M_bucket_begin(__bkt), |
| __bkt, _M_bucket_count); |
| } |
| |
| local_iterator |
| end(size_type __bkt) |
| { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); } |
| |
| const_local_iterator |
| begin(size_type __bkt) const |
| { |
| return const_local_iterator(*this, _M_bucket_begin(__bkt), |
| __bkt, _M_bucket_count); |
| } |
| |
| const_local_iterator |
| end(size_type __bkt) const |
| { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); } |
| |
| // DR 691. |
| const_local_iterator |
| cbegin(size_type __bkt) const |
| { |
| return const_local_iterator(*this, _M_bucket_begin(__bkt), |
| __bkt, _M_bucket_count); |
| } |
| |
| const_local_iterator |
| cend(size_type __bkt) const |
| { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); } |
| |
| float |
| load_factor() const noexcept |
| { |
| return static_cast<float>(size()) / static_cast<float>(bucket_count()); |
| } |
| |
| // max_load_factor, if present, comes from _Rehash_base. |
| |
| // Generalization of max_load_factor. Extension, not found in |
| // TR1. Only useful if _RehashPolicy is something other than |
| // the default. |
| const _RehashPolicy& |
| __rehash_policy() const |
| { return _M_rehash_policy; } |
| |
| void |
| __rehash_policy(const _RehashPolicy& __pol) |
| { _M_rehash_policy = __pol; } |
| |
| // Lookup. |
| iterator |
| find(const key_type& __k); |
| |
| const_iterator |
| find(const key_type& __k) const; |
| |
| size_type |
| count(const key_type& __k) const; |
| |
| std::pair<iterator, iterator> |
| equal_range(const key_type& __k); |
| |
| std::pair<const_iterator, const_iterator> |
| equal_range(const key_type& __k) const; |
| |
| #ifdef __glibcxx_generic_unordered_lookup // C++ >= 20 && HOSTED |
| template<typename _Kt, |
| typename = __has_is_transparent_t<_Hash, _Kt>, |
| typename = __has_is_transparent_t<_Equal, _Kt>> |
| iterator |
| _M_find_tr(const _Kt& __k); |
| |
| template<typename _Kt, |
| typename = __has_is_transparent_t<_Hash, _Kt>, |
| typename = __has_is_transparent_t<_Equal, _Kt>> |
| const_iterator |
| _M_find_tr(const _Kt& __k) const; |
| |
| template<typename _Kt, |
| typename = __has_is_transparent_t<_Hash, _Kt>, |
| typename = __has_is_transparent_t<_Equal, _Kt>> |
| size_type |
| _M_count_tr(const _Kt& __k) const; |
| |
| template<typename _Kt, |
| typename = __has_is_transparent_t<_Hash, _Kt>, |
| typename = __has_is_transparent_t<_Equal, _Kt>> |
| pair<iterator, iterator> |
| _M_equal_range_tr(const _Kt& __k); |
| |
| template<typename _Kt, |
| typename = __has_is_transparent_t<_Hash, _Kt>, |
| typename = __has_is_transparent_t<_Equal, _Kt>> |
| pair<const_iterator, const_iterator> |
| _M_equal_range_tr(const _Kt& __k) const; |
| #endif // __glibcxx_generic_unordered_lookup |
| |
| void _M_rehash_insert(size_type __n); |
| |
| private: |
| // Bucket index computation helpers. |
| size_type |
| _M_bucket_index(const __node_value_type& __n) const noexcept |
| { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); } |
| |
| size_type |
| _M_bucket_index(__hash_code __c) const |
| { return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); } |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| // Get hash code for a node that comes from another _Hashtable. |
| // Reuse a cached hash code if the hash function is stateless, |
| // otherwise recalculate it using our own hash function. |
| __hash_code |
| _M_hash_code_ext(const __node_value_type& __from) const |
| { |
| if constexpr (__and_<__hash_cached, is_empty<_Hash>>::value) |
| return __from._M_hash_code; |
| else |
| return this->_M_hash_code(_ExtractKey{}(__from._M_v())); |
| } |
| |
| // Like _M_bucket_index but when the node is coming from another |
| // container instance. |
| size_type |
| _M_bucket_index_ext(const __node_value_type& __from) const |
| { return _RangeHash{}(_M_hash_code_ext(__from), _M_bucket_count); } |
| |
| void |
| _M_copy_code(__node_value_type& __to, |
| const __node_value_type& __from) const |
| { |
| if constexpr (__hash_cached::value) |
| __to._M_hash_code = _M_hash_code_ext(__from); |
| } |
| |
| void |
| _M_store_code(__node_value_type& __to, __hash_code __code) const |
| { |
| if constexpr (__hash_cached::value) |
| __to._M_hash_code = __code; |
| } |
| #pragma GCC diagnostic pop |
| |
| // Find and insert helper functions and types |
| |
| // Find the node before the one matching the criteria. |
| __node_base_ptr |
| _M_find_before_node(size_type, const key_type&, __hash_code) const; |
| |
| template<typename _Kt> |
| __node_base_ptr |
| _M_find_before_node_tr(size_type, const _Kt&, __hash_code) const; |
| |
| // A pointer to a particular node and/or a hash code and bucket index |
| // where such a node would be found in the container. |
| struct __location_type |
| { |
| // True if _M_node() is a valid node pointer. |
| explicit operator bool() const noexcept |
| { return static_cast<bool>(_M_before); } |
| |
| // An iterator that refers to the node, or end(). |
| explicit operator iterator() const noexcept |
| { return iterator(_M_node()); } |
| |
| // A const_iterator that refers to the node, or cend(). |
| explicit operator const_iterator() const noexcept |
| { return const_iterator(_M_node()); } |
| |
| // A pointer to the node, or null. |
| __node_ptr _M_node() const |
| { |
| if (_M_before) |
| return static_cast<__node_ptr>(_M_before->_M_nxt); |
| return __node_ptr(); |
| } |
| |
| __node_base_ptr _M_before{}; // Must only be used to get _M_nxt |
| __hash_code _M_hash_code{}; // Only valid if _M_bucket_index != -1 |
| size_type _M_bucket_index = size_type(-1); |
| }; |
| |
| // Adaptive lookup to find key, or which bucket it would be in. |
| // For a container smaller than the small size threshold use a linear |
| // search through the whole container, just testing for equality. |
| // Otherwise, calculate the hash code and bucket index for the key, |
| // and search in that bucket. |
| // The return value will have a pointer to the node _before_ the first |
| // node matching the key, if any such node exists. Returning the node |
| // before the desired one allows the result to be used for erasure. |
| // If no matching element is present, the hash code and bucket for the |
| // key will be set, allowing a new node to be inserted at that location. |
| // (The hash code and bucket might also be set when a node is found.) |
| // The _M_before pointer might point to _M_before_begin, so must not be |
| // cast to __node_ptr, and it must not be used to modify *_M_before |
| // except in non-const member functions, such as erase. |
| __location_type |
| _M_locate(const key_type& __k) const; |
| |
| __node_ptr |
| _M_find_node(size_type __bkt, const key_type& __key, |
| __hash_code __c) const |
| { |
| if (__node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c)) |
| return static_cast<__node_ptr>(__before_n->_M_nxt); |
| return nullptr; |
| } |
| |
| template<typename _Kt> |
| __node_ptr |
| _M_find_node_tr(size_type __bkt, const _Kt& __key, |
| __hash_code __c) const |
| { |
| if (auto __before_n = _M_find_before_node_tr(__bkt, __key, __c)) |
| return static_cast<__node_ptr>(__before_n->_M_nxt); |
| return nullptr; |
| } |
| |
| // Insert a node at the beginning of a bucket. |
| void |
| _M_insert_bucket_begin(size_type __bkt, __node_ptr __node) |
| { |
| if (_M_buckets[__bkt]) |
| { |
| // Bucket is not empty, we just need to insert the new node |
| // after the bucket before begin. |
| __node->_M_nxt = _M_buckets[__bkt]->_M_nxt; |
| _M_buckets[__bkt]->_M_nxt = __node; |
| } |
| else |
| { |
| // The bucket is empty, the new node is inserted at the |
| // beginning of the singly-linked list and the bucket will |
| // contain _M_before_begin pointer. |
| __node->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __node; |
| |
| if (__node->_M_nxt) |
| // We must update former begin bucket that is pointing to |
| // _M_before_begin. |
| _M_buckets[_M_bucket_index(*__node->_M_next())] = __node; |
| |
| _M_buckets[__bkt] = &_M_before_begin; |
| } |
| } |
| |
| // Remove the bucket first node |
| void |
| _M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n, |
| size_type __next_bkt) |
| { |
| if (!__next_n) |
| _M_buckets[__bkt] = nullptr; |
| else if (__next_bkt != __bkt) |
| { |
| _M_buckets[__next_bkt] = _M_buckets[__bkt]; |
| _M_buckets[__bkt] = nullptr; |
| } |
| } |
| |
| // Get the node before __n in the bucket __bkt |
| __node_base_ptr |
| _M_get_previous_node(size_type __bkt, __node_ptr __n); |
| |
| pair<__node_ptr, __hash_code> |
| _M_compute_hash_code(__node_ptr __hint, const key_type& __k) const; |
| |
| // Insert node __n with hash code __code, in bucket __bkt (or another |
| // bucket if rehashing is needed). |
| // Assumes no element with equivalent key is already present. |
| // Takes ownership of __n if insertion succeeds, throws otherwise. |
| // __n_elt is an estimated number of elements we expect to insert, |
| // used as a hint for rehashing when inserting a range. |
| iterator |
| _M_insert_unique_node(size_type __bkt, __hash_code, |
| __node_ptr __n, size_type __n_elt = 1); |
| |
| // Insert node __n with key __k and hash code __code. |
| // Takes ownership of __n if insertion succeeds, throws otherwise. |
| iterator |
| _M_insert_multi_node(__node_ptr __hint, |
| __hash_code __code, __node_ptr __n); |
| |
| template<typename... _Args> |
| std::pair<iterator, bool> |
| _M_emplace_uniq(_Args&&... __args); |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++14-extensions" // variable templates |
| template<typename _Arg, typename _DArg = __remove_cvref_t<_Arg>, |
| typename = _ExtractKey> |
| static constexpr bool __is_key_type = false; |
| |
| template<typename _Arg> |
| static constexpr bool |
| __is_key_type<_Arg, key_type, __detail::_Identity> = true; |
| |
| template<typename _Arg, typename _Arg1, typename _Arg2> |
| static constexpr bool |
| __is_key_type<_Arg, pair<_Arg1, _Arg2>, __detail::_Select1st> |
| = is_same<__remove_cvref_t<_Arg1>, key_type>::value; |
| #pragma GCC diagnostic pop |
| |
| template<typename... _Args> |
| iterator |
| _M_emplace_multi(const_iterator, _Args&&... __args); |
| |
| iterator |
| _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n); |
| |
| template<typename _InputIterator> |
| void |
| _M_insert_range_multi(_InputIterator __first, _InputIterator __last); |
| |
| public: |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| // Emplace |
| template<typename... _Args> |
| __ireturn_type |
| emplace(_Args&&... __args) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::forward<_Args>(__args)...); |
| else |
| return _M_emplace_multi(cend(), std::forward<_Args>(__args)...); |
| } |
| |
| template<typename... _Args> |
| iterator |
| emplace_hint(const_iterator __hint, _Args&&... __args) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::forward<_Args>(__args)...).first; |
| else |
| return _M_emplace_multi(__hint, std::forward<_Args>(__args)...); |
| } |
| |
| // Insert |
| __ireturn_type |
| insert(const value_type& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(__v); |
| else |
| return _M_emplace_multi(cend(), __v); |
| } |
| |
| iterator |
| insert(const_iterator __hint, const value_type& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(__v).first; |
| else |
| return _M_emplace_multi(__hint, __v); |
| } |
| |
| __ireturn_type |
| insert(value_type&& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::move(__v)); |
| else |
| return _M_emplace_multi(cend(), std::move(__v)); |
| } |
| |
| iterator |
| insert(const_iterator __hint, value_type&& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::move(__v)).first; |
| else |
| return _M_emplace_multi(__hint, std::move(__v)); |
| } |
| |
| #ifdef __glibcxx_unordered_map_try_emplace // C++ >= 17 && HOSTED |
| template<typename _KType, typename... _Args> |
| std::pair<iterator, bool> |
| try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
| { |
| __hash_code __code; |
| size_type __bkt; |
| if (auto __loc = _M_locate(__k)) |
| return { iterator(__loc), false }; |
| else |
| { |
| __code = __loc._M_hash_code; |
| __bkt = __loc._M_bucket_index; |
| } |
| |
| _Scoped_node __node { |
| this, |
| std::piecewise_construct, |
| std::forward_as_tuple(std::forward<_KType>(__k)), |
| std::forward_as_tuple(std::forward<_Args>(__args)...) |
| }; |
| auto __it = _M_insert_unique_node(__bkt, __code, __node._M_node); |
| __node._M_node = nullptr; |
| return { __it, true }; |
| } |
| #endif |
| |
| void |
| insert(initializer_list<value_type> __l) |
| { this->insert(__l.begin(), __l.end()); } |
| |
| template<typename _InputIterator> |
| void |
| insert(_InputIterator __first, _InputIterator __last) |
| { |
| if constexpr (__unique_keys::value) |
| for (; __first != __last; ++__first) |
| _M_emplace_uniq(*__first); |
| else |
| return _M_insert_range_multi(__first, __last); |
| } |
| |
| // This overload is only defined for maps, not sets. |
| template<typename _Pair, |
| typename = _Require<__not_<is_same<_Key, _Value>>, |
| is_constructible<value_type, _Pair&&>>> |
| __ireturn_type |
| insert(_Pair&& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::forward<_Pair>(__v)); |
| else |
| return _M_emplace_multi(cend(), std::forward<_Pair>(__v)); |
| } |
| |
| // This overload is only defined for maps, not sets. |
| template<typename _Pair, |
| typename = _Require<__not_<is_same<_Key, _Value>>, |
| is_constructible<value_type, _Pair&&>>> |
| iterator |
| insert(const_iterator __hint, _Pair&& __v) |
| { |
| if constexpr (__unique_keys::value) |
| return _M_emplace_uniq(std::forward<_Pair>(__v)); |
| else |
| return _M_emplace_multi(__hint, std::forward<_Pair>(__v)); |
| } |
| #pragma GCC diagnostic pop |
| |
| // Erase |
| iterator |
| erase(const_iterator); |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 2059. C++0x ambiguity problem with map::erase |
| iterator |
| erase(iterator __it) |
| { return erase(const_iterator(__it)); } |
| |
| size_type |
| erase(const key_type& __k); |
| |
| iterator |
| erase(const_iterator, const_iterator); |
| |
| void |
| clear() noexcept; |
| |
| // Set number of buckets keeping it appropriate for container's number |
| // of elements. |
| void rehash(size_type __bkt_count); |
| |
| // DR 1189. |
| // reserve, if present, comes from _Rehash_base. |
| |
| #if __glibcxx_node_extract // >= C++17 && HOSTED |
| /// Re-insert an extracted node into a container with unique keys. |
| insert_return_type |
| _M_reinsert_node(node_type&& __nh) |
| { |
| insert_return_type __ret; |
| if (__nh.empty()) |
| __ret.position = end(); |
| else |
| { |
| __glibcxx_assert(get_allocator() == __nh.get_allocator()); |
| |
| if (auto __loc = _M_locate(__nh._M_key())) |
| { |
| __ret.node = std::move(__nh); |
| __ret.position = iterator(__loc); |
| __ret.inserted = false; |
| } |
| else |
| { |
| auto __code = __loc._M_hash_code; |
| auto __bkt = __loc._M_bucket_index; |
| __ret.position |
| = _M_insert_unique_node(__bkt, __code, __nh._M_ptr); |
| __ret.inserted = true; |
| __nh.release(); |
| } |
| } |
| return __ret; |
| } |
| |
| /// Re-insert an extracted node into a container with equivalent keys. |
| iterator |
| _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh) |
| { |
| if (__nh.empty()) |
| return end(); |
| |
| __glibcxx_assert(get_allocator() == __nh.get_allocator()); |
| |
| const key_type& __k = __nh._M_key(); |
| auto __code = this->_M_hash_code(__k); |
| auto __ret |
| = _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr); |
| __nh.release(); |
| return __ret; |
| } |
| |
| private: |
| node_type |
| _M_extract_node(size_t __bkt, __node_base_ptr __prev_n) |
| { |
| __node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt); |
| if (__prev_n == _M_buckets[__bkt]) |
| _M_remove_bucket_begin(__bkt, __n->_M_next(), |
| __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0); |
| else if (__n->_M_nxt) |
| { |
| size_type __next_bkt = _M_bucket_index(*__n->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __prev_n; |
| } |
| |
| __prev_n->_M_nxt = __n->_M_nxt; |
| __n->_M_nxt = nullptr; |
| --_M_element_count; |
| return { __n, this->_M_node_allocator() }; |
| } |
| |
| // Hash code for node __src_n with key __k, using this->hash_function(). |
| // Will use a hash code cached in the node if safe to do so. This is |
| // for use in _M_merge_multi where the node comes from another container |
| // with a hash function that might not match this->hash_function(). |
| template<typename _H2> |
| __hash_code |
| _M_src_hash_code(const _H2&, const __node_value_type& __src_n) const |
| { |
| if constexpr (__and_<__hash_cached, |
| is_same<_H2, _Hash>, is_empty<_Hash>>::value) |
| // If the node has a cached hash code, it's OK to use it. |
| return __src_n._M_hash_code; |
| else |
| return this->_M_hash_code(_ExtractKey{}(__src_n._M_v())); |
| } |
| |
| public: |
| // Extract a node. |
| node_type |
| extract(const_iterator __pos) |
| { |
| size_t __bkt = _M_bucket_index(*__pos._M_cur); |
| return _M_extract_node(__bkt, |
| _M_get_previous_node(__bkt, __pos._M_cur)); |
| } |
| |
| /// Extract a node. |
| node_type |
| extract(const _Key& __k) |
| { |
| node_type __nh; |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code)) |
| __nh = _M_extract_node(__bkt, __prev_node); |
| return __nh; |
| } |
| |
| /// Merge from another container of the same type. |
| void |
| _M_merge_unique(_Hashtable& __src) |
| { |
| __glibcxx_assert(get_allocator() == __src.get_allocator()); |
| |
| using _PTr = pointer_traits<__node_base_ptr>; |
| |
| auto __n_elt = __src.size(); |
| size_type __first = 1; |
| // For a container of identical type we can use its private members, |
| // __src._M_before_begin, __src._M_bucket_index etc. |
| auto __prev = _PTr::pointer_to(__src._M_before_begin); |
| while (__n_elt--) |
| { |
| const auto __next = __prev->_M_nxt; |
| const auto& __node = static_cast<__node_type&>(*__next); |
| const key_type& __k = _ExtractKey{}(__node._M_v()); |
| const auto __loc = _M_locate(__k); |
| if (__loc) |
| { |
| __prev = __next; |
| continue; |
| } |
| |
| auto __src_bkt = __src._M_bucket_index(__node); |
| auto __nh = __src._M_extract_node(__src_bkt, __prev); |
| _M_insert_unique_node(__loc._M_bucket_index, __loc._M_hash_code, |
| __nh._M_ptr, __first * __n_elt + 1); |
| __nh.release(); |
| __first = 0; |
| } |
| } |
| |
| /// Merge from a compatible container into one with unique keys. |
| template<typename _Compatible_Hashtable> |
| void |
| _M_merge_unique(_Compatible_Hashtable& __src) |
| { |
| static_assert(is_same_v<typename _Compatible_Hashtable::node_type, |
| node_type>, "Node types are compatible"); |
| __glibcxx_assert(get_allocator() == __src.get_allocator()); |
| |
| auto __n_elt = __src.size(); |
| size_type __first = 1; |
| // For a compatible container we can only use the public API, |
| // so cbegin(), cend(), hash_function(), and extract(iterator). |
| for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;) |
| { |
| --__n_elt; |
| auto __pos = __i++; |
| const key_type& __k = _ExtractKey{}(*__pos); |
| const auto __loc = _M_locate(__k); |
| if (__loc) |
| continue; |
| |
| auto __nh = __src.extract(__pos); |
| _M_insert_unique_node(__loc._M_bucket_index, |
| __loc._M_hash_code, __nh._M_ptr, |
| __first * __n_elt + 1); |
| __nh.release(); |
| __first = 0; |
| } |
| } |
| |
| /// Merge from another container of the same type. |
| void |
| _M_merge_multi(_Hashtable& __src) |
| { |
| __glibcxx_assert(get_allocator() == __src.get_allocator()); |
| |
| if (__src.size() == 0) [[__unlikely__]] |
| return; |
| |
| using _PTr = pointer_traits<__node_base_ptr>; |
| |
| __node_ptr __hint = nullptr; |
| this->reserve(size() + __src.size()); |
| // For a container of identical type we can use its private members, |
| // __src._M_before_begin, __src._M_bucket_index etc. |
| auto __prev = _PTr::pointer_to(__src._M_before_begin); |
| do |
| { |
| const auto& __node = static_cast<__node_type&>(*__prev->_M_nxt); |
| // Hash code from this: |
| auto __code = _M_hash_code_ext(__node); |
| // Bucket index in __src, using code from __src.hash_function(): |
| size_type __src_bkt = __src._M_bucket_index(__node); |
| auto __nh = __src._M_extract_node(__src_bkt, __prev); |
| __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur; |
| __nh.release(); |
| } |
| while (__prev->_M_nxt != nullptr); |
| } |
| |
| /// Merge from a compatible container into one with equivalent keys. |
| template<typename _Compatible_Hashtable> |
| void |
| _M_merge_multi(_Compatible_Hashtable& __src) |
| { |
| static_assert(is_same_v<typename _Compatible_Hashtable::node_type, |
| node_type>, "Node types are compatible"); |
| __glibcxx_assert(get_allocator() == __src.get_allocator()); |
| |
| __node_ptr __hint = nullptr; |
| this->reserve(size() + __src.size()); |
| // For a compatible container we can only use the public API, |
| // so cbegin(), cend(), hash_function(), and extract(iterator). |
| for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;) |
| { |
| auto __pos = __i++; |
| __hash_code __code |
| = _M_src_hash_code(__src.hash_function(), *__pos._M_cur); |
| auto __nh = __src.extract(__pos); |
| __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur; |
| __nh.release(); |
| } |
| } |
| #endif // C++17 __glibcxx_node_extract |
| |
| bool |
| _M_equal(const _Hashtable& __other) const; |
| |
| private: |
| // Helper rehash method used when keys are unique. |
| void _M_rehash(size_type __bkt_count, true_type __uks); |
| |
| // Helper rehash method used when keys can be non-unique. |
| void _M_rehash(size_type __bkt_count, false_type __uks); |
| }; |
| |
| // Definitions of class template _Hashtable's out-of-line member functions. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(size_type __bkt_count_hint, |
| const _Hash& __h, const _Equal& __eq, const allocator_type& __a) |
| : _Hashtable(__h, __eq, __a) |
| { |
| auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint); |
| if (__bkt_count > _M_bucket_count) |
| { |
| _M_buckets = _M_allocate_buckets(__bkt_count); |
| _M_bucket_count = __bkt_count; |
| } |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _InputIterator> |
| inline |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __bkt_count_hint, |
| const _Hash& __h, const _Equal& __eq, |
| const allocator_type& __a, true_type /* __uks */) |
| : _Hashtable(__bkt_count_hint, __h, __eq, __a) |
| { this->insert(__f, __l); } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _InputIterator> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __bkt_count_hint, |
| const _Hash& __h, const _Equal& __eq, |
| const allocator_type& __a, false_type __uks) |
| : _Hashtable(__h, __eq, __a) |
| { |
| auto __nb_elems = __detail::__distance_fw(__f, __l); |
| auto __bkt_count = |
| _M_rehash_policy._M_next_bkt( |
| std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems), |
| __bkt_count_hint)); |
| |
| if (__bkt_count > _M_bucket_count) |
| { |
| _M_buckets = _M_allocate_buckets(__bkt_count); |
| _M_bucket_count = __bkt_count; |
| } |
| |
| for (; __f != __l; ++__f) |
| _M_emplace_multi(cend(), *__f); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| operator=(const _Hashtable& __ht) |
| -> _Hashtable& |
| { |
| if (&__ht == this) |
| return *this; |
| |
| if (__node_alloc_traits::_S_propagate_on_copy_assign()) |
| { |
| auto& __this_alloc = this->_M_node_allocator(); |
| auto& __that_alloc = __ht._M_node_allocator(); |
| if (!__node_alloc_traits::_S_always_equal() |
| && __this_alloc != __that_alloc) |
| { |
| // Replacement allocator cannot free existing storage. |
| this->_M_deallocate_nodes(_M_begin()); |
| _M_before_begin._M_nxt = nullptr; |
| _M_deallocate_buckets(); |
| _M_buckets = nullptr; |
| std::__alloc_on_copy(__this_alloc, __that_alloc); |
| __hashtable_base::operator=(__ht); |
| _M_bucket_count = __ht._M_bucket_count; |
| _M_element_count = __ht._M_element_count; |
| _M_rehash_policy = __ht._M_rehash_policy; |
| |
| struct _Guard |
| { |
| ~_Guard() { if (_M_ht) _M_ht->_M_reset(); } |
| _Hashtable* _M_ht; |
| }; |
| // If _M_assign exits via an exception it will have deallocated |
| // all memory. This guard will ensure *this is in a usable state. |
| _Guard __guard{this}; |
| _M_assign(__ht); |
| __guard._M_ht = nullptr; |
| return *this; |
| } |
| std::__alloc_on_copy(__this_alloc, __that_alloc); |
| } |
| |
| // Reuse allocated buckets and nodes. |
| _M_assign_elements(__ht); |
| return *this; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Ht> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_assign_elements(_Ht&& __ht) |
| { |
| using __reuse_or_alloc_node_gen_t = |
| __detail::_ReuseOrAllocNode<__node_alloc_type>; |
| |
| __buckets_ptr __former_buckets = nullptr; |
| std::size_t __former_bucket_count = _M_bucket_count; |
| __rehash_guard_t __rehash_guard(_M_rehash_policy); |
| |
| if (_M_bucket_count != __ht._M_bucket_count) |
| { |
| __former_buckets = _M_buckets; |
| _M_buckets = _M_allocate_buckets(__ht._M_bucket_count); |
| _M_bucket_count = __ht._M_bucket_count; |
| } |
| else |
| std::fill_n(_M_buckets, _M_bucket_count, nullptr); |
| |
| __try |
| { |
| __hashtable_base::operator=(std::forward<_Ht>(__ht)); |
| _M_element_count = __ht._M_element_count; |
| _M_rehash_policy = __ht._M_rehash_policy; |
| __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this); |
| _M_before_begin._M_nxt = nullptr; |
| _M_assign(std::forward<_Ht>(__ht), __roan); |
| if (__former_buckets) |
| _M_deallocate_buckets(__former_buckets, __former_bucket_count); |
| __rehash_guard._M_guarded_obj = nullptr; |
| } |
| __catch(...) |
| { |
| if (__former_buckets) |
| { |
| // Restore previous buckets. |
| _M_deallocate_buckets(); |
| _M_buckets = __former_buckets; |
| _M_bucket_count = __former_bucket_count; |
| } |
| std::fill_n(_M_buckets, _M_bucket_count, nullptr); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Ht, typename _NodeGenerator> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_assign(_Ht&& __ht, _NodeGenerator& __node_gen) |
| { |
| struct _Guard |
| { |
| ~_Guard() |
| { |
| if (_M_ht) |
| { |
| _M_ht->clear(); |
| if (_M_dealloc_buckets) |
| _M_ht->_M_deallocate_buckets(); |
| } |
| } |
| _Hashtable* _M_ht = nullptr; |
| bool _M_dealloc_buckets = false; |
| }; |
| _Guard __guard; |
| |
| if (!_M_buckets) |
| { |
| _M_buckets = _M_allocate_buckets(_M_bucket_count); |
| __guard._M_dealloc_buckets = true; |
| } |
| |
| if (!__ht._M_before_begin._M_nxt) |
| return; |
| |
| __guard._M_ht = this; |
| |
| using _FromVal = __conditional_t<is_lvalue_reference<_Ht>::value, |
| const value_type&, value_type&&>; |
| |
| // First deal with the special first node pointed to by |
| // _M_before_begin. |
| __node_ptr __ht_n = __ht._M_begin(); |
| __node_ptr __this_n |
| = __node_gen(static_cast<_FromVal>(__ht_n->_M_v())); |
| _M_copy_code(*__this_n, *__ht_n); |
| _M_update_bbegin(__this_n); |
| |
| // Then deal with other nodes. |
| __node_ptr __prev_n = __this_n; |
| for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next()) |
| { |
| __this_n = __node_gen(static_cast<_FromVal>(__ht_n->_M_v())); |
| __prev_n->_M_nxt = __this_n; |
| _M_copy_code(*__this_n, *__ht_n); |
| size_type __bkt = _M_bucket_index(*__this_n); |
| if (!_M_buckets[__bkt]) |
| _M_buckets[__bkt] = __prev_n; |
| __prev_n = __this_n; |
| } |
| __guard._M_ht = nullptr; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_reset() noexcept |
| { |
| _M_rehash_policy._M_reset(); |
| _M_bucket_count = 1; |
| _M_single_bucket = nullptr; |
| _M_buckets = &_M_single_bucket; |
| _M_before_begin._M_nxt = nullptr; |
| _M_element_count = 0; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_move_assign(_Hashtable&& __ht, true_type) |
| { |
| if (__builtin_expect(std::__addressof(__ht) == this, false)) |
| return; |
| |
| this->_M_deallocate_nodes(_M_begin()); |
| _M_deallocate_buckets(); |
| __hashtable_base::operator=(std::move(__ht)); |
| _M_rehash_policy = __ht._M_rehash_policy; |
| if (!__ht._M_uses_single_bucket()) |
| _M_buckets = __ht._M_buckets; |
| else |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| |
| _M_bucket_count = __ht._M_bucket_count; |
| _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt; |
| _M_element_count = __ht._M_element_count; |
| std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator()); |
| |
| // Fix bucket containing the _M_before_begin pointer that can't be moved. |
| _M_update_bbegin(); |
| __ht._M_reset(); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_move_assign(_Hashtable&& __ht, false_type) |
| { |
| if (__ht._M_node_allocator() == this->_M_node_allocator()) |
| _M_move_assign(std::move(__ht), true_type{}); |
| else |
| { |
| // Can't move memory, move elements then. |
| _M_assign_elements(std::move(__ht)); |
| __ht.clear(); |
| } |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| inline |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(const _Hashtable& __ht) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc( |
| __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())), |
| __enable_default_ctor(__ht), |
| _M_buckets(nullptr), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| _M_assign(__ht); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a, |
| true_type /* alloc always equal */) |
| noexcept(_S_nothrow_move()) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(std::move(__a)), |
| __enable_default_ctor(__ht), |
| _M_buckets(__ht._M_buckets), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_before_begin(__ht._M_before_begin._M_nxt), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| // Update buckets if __ht is using its single bucket. |
| if (__ht._M_uses_single_bucket()) |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| |
| // Fix bucket containing the _M_before_begin pointer that can't be moved. |
| _M_update_bbegin(); |
| |
| __ht._M_reset(); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| inline |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(const _Hashtable& __ht, const allocator_type& __a) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(__node_alloc_type(__a)), |
| __enable_default_ctor(__ht), |
| _M_buckets(), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| _M_assign(__ht); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a, |
| false_type /* alloc always equal */) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(std::move(__a)), |
| __enable_default_ctor(__ht), |
| _M_buckets(nullptr), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| if (__ht._M_node_allocator() == this->_M_node_allocator()) |
| { |
| if (__ht._M_uses_single_bucket()) |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| else |
| _M_buckets = __ht._M_buckets; |
| |
| // Fix bucket containing the _M_before_begin pointer that can't be |
| // moved. |
| _M_update_bbegin(__ht._M_begin()); |
| |
| __ht._M_reset(); |
| } |
| else |
| { |
| using _Fwd_Ht = __conditional_t< |
| __move_if_noexcept_cond<value_type>::value, |
| const _Hashtable&, _Hashtable&&>; |
| _M_assign(std::forward<_Fwd_Ht>(__ht)); |
| __ht.clear(); |
| } |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| ~_Hashtable() noexcept |
| { |
| // Getting a bucket index from a node shall not throw because it is used |
| // during the rehash process. This static_assert purpose is limited to usage |
| // of _Hashtable with _Hashtable_traits requesting non-cached hash code. |
| // Need a complete type to check this, so do it in the destructor not at |
| // class scope. |
| static_assert(noexcept(declval<const __hash_code_base_access&>() |
| ._M_bucket_index(declval<const __node_value_type&>(), |
| (std::size_t)0)), |
| "Cache the hash code or qualify your functors involved" |
| " in hash code and bucket index computation with noexcept"); |
| |
| this->_M_deallocate_nodes(_M_begin()); |
| _M_deallocate_buckets(); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| swap(_Hashtable& __x) |
| noexcept(__and_<__is_nothrow_swappable<_Hash>, |
| __is_nothrow_swappable<_Equal>>::value) |
| { |
| using std::swap; |
| swap(__hash_code_base::_M_hash._M_obj, |
| __x.__hash_code_base::_M_hash._M_obj); |
| swap(__hashtable_base::_M_equal._M_obj, |
| __x.__hashtable_base::_M_equal._M_obj); |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| if constexpr (__node_alloc_traits::propagate_on_container_swap::value) |
| swap(this->_M_node_allocator(), __x._M_node_allocator()); |
| #pragma GCC diagnostic pop |
| |
| std::swap(_M_rehash_policy, __x._M_rehash_policy); |
| |
| // Deal properly with potentially moved instances. |
| if (this->_M_uses_single_bucket()) |
| { |
| if (!__x._M_uses_single_bucket()) |
| { |
| _M_buckets = __x._M_buckets; |
| __x._M_buckets = &__x._M_single_bucket; |
| } |
| } |
| else if (__x._M_uses_single_bucket()) |
| { |
| __x._M_buckets = _M_buckets; |
| _M_buckets = &_M_single_bucket; |
| } |
| else |
| std::swap(_M_buckets, __x._M_buckets); |
| |
| std::swap(_M_bucket_count, __x._M_bucket_count); |
| std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt); |
| std::swap(_M_element_count, __x._M_element_count); |
| std::swap(_M_single_bucket, __x._M_single_bucket); |
| |
| // Fix buckets containing the _M_before_begin pointers that can't be |
| // swapped. |
| _M_update_bbegin(); |
| __x._M_update_bbegin(); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| find(const key_type& __k) |
| -> iterator |
| { return iterator(_M_locate(__k)); } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| find(const key_type& __k) const |
| -> const_iterator |
| { return const_iterator(_M_locate(__k)); } |
| |
| #if __cplusplus > 201703L |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt, typename, typename> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_find_tr(const _Kt& __k) |
| -> iterator |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| for (auto __n = _M_begin(); __n; __n = __n->_M_next()) |
| if (this->_M_key_equals_tr(__k, *__n)) |
| return iterator(__n); |
| return end(); |
| } |
| |
| __hash_code __code = this->_M_hash_code_tr(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| return iterator(_M_find_node_tr(__bkt, __k, __code)); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt, typename, typename> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_find_tr(const _Kt& __k) const |
| -> const_iterator |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| for (auto __n = _M_begin(); __n; __n = __n->_M_next()) |
| if (this->_M_key_equals_tr(__k, *__n)) |
| return const_iterator(__n); |
| return end(); |
| } |
| |
| __hash_code __code = this->_M_hash_code_tr(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| return const_iterator(_M_find_node_tr(__bkt, __k, __code)); |
| } |
| #endif |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| count(const key_type& __k) const |
| -> size_type |
| { |
| auto __it = find(__k); |
| if (!__it._M_cur) |
| return 0; |
| |
| if (__unique_keys::value) |
| return 1; |
| |
| size_type __result = 1; |
| for (auto __ref = __it++; |
| __it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur); |
| ++__it) |
| ++__result; |
| |
| return __result; |
| } |
| |
| #if __cplusplus > 201703L |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt, typename, typename> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_count_tr(const _Kt& __k) const |
| -> size_type |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| size_type __result = 0; |
| for (auto __n = _M_begin(); __n; __n = __n->_M_next()) |
| { |
| if (this->_M_key_equals_tr(__k, *__n)) |
| { |
| ++__result; |
| continue; |
| } |
| |
| if (__result) |
| break; |
| } |
| |
| return __result; |
| } |
| |
| __hash_code __code = this->_M_hash_code_tr(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| auto __n = _M_find_node_tr(__bkt, __k, __code); |
| if (!__n) |
| return 0; |
| |
| iterator __it(__n); |
| size_type __result = 1; |
| for (++__it; |
| __it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur); |
| ++__it) |
| ++__result; |
| |
| return __result; |
| } |
| #endif |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| equal_range(const key_type& __k) |
| -> pair<iterator, iterator> |
| { |
| auto __ite = find(__k); |
| if (!__ite._M_cur) |
| return { __ite, __ite }; |
| |
| auto __beg = __ite++; |
| if (__unique_keys::value) |
| return { __beg, __ite }; |
| |
| while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur)) |
| ++__ite; |
| |
| return { __beg, __ite }; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| equal_range(const key_type& __k) const |
| -> pair<const_iterator, const_iterator> |
| { |
| auto __ite = find(__k); |
| if (!__ite._M_cur) |
| return { __ite, __ite }; |
| |
| auto __beg = __ite++; |
| if (__unique_keys::value) |
| return { __beg, __ite }; |
| |
| while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur)) |
| ++__ite; |
| |
| return { __beg, __ite }; |
| } |
| |
| #if __cplusplus > 201703L |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt, typename, typename> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_equal_range_tr(const _Kt& __k) |
| -> pair<iterator, iterator> |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| __node_ptr __n, __beg = nullptr; |
| for (__n = _M_begin(); __n; __n = __n->_M_next()) |
| { |
| if (this->_M_key_equals_tr(__k, *__n)) |
| { |
| if (!__beg) |
| __beg = __n; |
| continue; |
| } |
| |
| if (__beg) |
| break; |
| } |
| |
| return { iterator(__beg), iterator(__n) }; |
| } |
| |
| __hash_code __code = this->_M_hash_code_tr(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| auto __n = _M_find_node_tr(__bkt, __k, __code); |
| iterator __ite(__n); |
| if (!__n) |
| return { __ite, __ite }; |
| |
| auto __beg = __ite++; |
| while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur)) |
| ++__ite; |
| |
| return { __beg, __ite }; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt, typename, typename> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_equal_range_tr(const _Kt& __k) const |
| -> pair<const_iterator, const_iterator> |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| __node_ptr __n, __beg = nullptr; |
| for (__n = _M_begin(); __n; __n = __n->_M_next()) |
| { |
| if (this->_M_key_equals_tr(__k, *__n)) |
| { |
| if (!__beg) |
| __beg = __n; |
| continue; |
| } |
| |
| if (__beg) |
| break; |
| } |
| |
| return { const_iterator(__beg), const_iterator(__n) }; |
| } |
| |
| __hash_code __code = this->_M_hash_code_tr(__k); |
| std::size_t __bkt = _M_bucket_index(__code); |
| auto __n = _M_find_node_tr(__bkt, __k, __code); |
| const_iterator __ite(__n); |
| if (!__n) |
| return { __ite, __ite }; |
| |
| auto __beg = __ite++; |
| while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur)) |
| ++__ite; |
| |
| return { __beg, __ite }; |
| } |
| #endif |
| |
| // Find the node before the one whose key compares equal to k in the bucket |
| // bkt. Return nullptr if no node is found. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_find_before_node(size_type __bkt, const key_type& __k, |
| __hash_code __code) const |
| -> __node_base_ptr |
| { |
| __node_base_ptr __prev_p = _M_buckets[__bkt]; |
| if (!__prev_p) |
| return nullptr; |
| |
| for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);; |
| __p = __p->_M_next()) |
| { |
| if (this->_M_equals(__k, __code, *__p)) |
| return __prev_p; |
| |
| if (__builtin_expect (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt, 0)) |
| break; |
| __prev_p = __p; |
| } |
| |
| return nullptr; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _Kt> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_find_before_node_tr(size_type __bkt, const _Kt& __k, |
| __hash_code __code) const |
| -> __node_base_ptr |
| { |
| __node_base_ptr __prev_p = _M_buckets[__bkt]; |
| if (!__prev_p) |
| return nullptr; |
| |
| for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);; |
| __p = __p->_M_next()) |
| { |
| if (this->_M_equals_tr(__k, __code, *__p)) |
| return __prev_p; |
| |
| if (__builtin_expect (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt, 0)) |
| break; |
| __prev_p = __p; |
| } |
| |
| return nullptr; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| inline auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_locate(const key_type& __k) const |
| -> __location_type |
| { |
| __location_type __loc; |
| const auto __size = size(); |
| |
| if (__size <= __small_size_threshold()) |
| { |
| __loc._M_before = pointer_traits<__node_base_ptr>:: |
| pointer_to(const_cast<__node_base&>(_M_before_begin)); |
| while (__loc._M_before->_M_nxt) |
| { |
| if (this->_M_key_equals(__k, *__loc._M_node())) |
| return __loc; |
| __loc._M_before = __loc._M_before->_M_nxt; |
| } |
| __loc._M_before = nullptr; // Didn't find it. |
| } |
| |
| __loc._M_hash_code = this->_M_hash_code(__k); |
| __loc._M_bucket_index = _M_bucket_index(__loc._M_hash_code); |
| |
| if (__size > __small_size_threshold()) |
| __loc._M_before = _M_find_before_node(__loc._M_bucket_index, __k, |
| __loc._M_hash_code); |
| |
| return __loc; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_get_previous_node(size_type __bkt, __node_ptr __n) |
| -> __node_base_ptr |
| { |
| __node_base_ptr __prev_n = _M_buckets[__bkt]; |
| while (__prev_n->_M_nxt != __n) |
| __prev_n = __prev_n->_M_nxt; |
| return __prev_n; |
| } |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename... _Args> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_emplace_uniq(_Args&&... __args) |
| -> pair<iterator, bool> |
| { |
| const key_type* __kp = nullptr; |
| |
| if constexpr (sizeof...(_Args) == 1) |
| { |
| if constexpr (__is_key_type<_Args...>) |
| { |
| const auto& __key = _ExtractKey{}(__args...); |
| __kp = std::__addressof(__key); |
| } |
| } |
| else if constexpr (sizeof...(_Args) == 2) |
| { |
| if constexpr (__is_key_type<pair<const _Args&...>>) |
| { |
| pair<const _Args&...> __refs(__args...); |
| const auto& __key = _ExtractKey{}(__refs); |
| __kp = std::__addressof(__key); |
| } |
| } |
| |
| _Scoped_node __node { __node_ptr(), this }; // Do not create node yet. |
| __hash_code __code = 0; |
| size_type __bkt = 0; |
| |
| if (__kp == nullptr) |
| { |
| // Didn't extract a key from the args, so build the node. |
| __node._M_node |
| = this->_M_allocate_node(std::forward<_Args>(__args)...); |
| const key_type& __key = _ExtractKey{}(__node._M_node->_M_v()); |
| __kp = std::__addressof(__key); |
| } |
| |
| if (auto __loc = _M_locate(*__kp)) |
| // There is already an equivalent node, no insertion. |
| return { iterator(__loc), false }; |
| else |
| { |
| __code = __loc._M_hash_code; |
| __bkt = __loc._M_bucket_index; |
| } |
| |
| if (!__node._M_node) |
| __node._M_node |
| = this->_M_allocate_node(std::forward<_Args>(__args)...); |
| |
| // Insert the node |
| auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node); |
| __node._M_node = nullptr; |
| return { __pos, true }; |
| } |
| #pragma GCC diagnostic pop |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename... _Args> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_emplace_multi(const_iterator __hint, _Args&&... __args) |
| -> iterator |
| { |
| // First build the node to get its hash code. |
| _Scoped_node __node { this, std::forward<_Args>(__args)... }; |
| const key_type& __k = _ExtractKey{}(__node._M_node->_M_v()); |
| |
| auto __res = this->_M_compute_hash_code(__hint._M_cur, __k); |
| auto __pos |
| = _M_insert_multi_node(__res.first, __res.second, __node._M_node); |
| __node._M_node = nullptr; |
| return __pos; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_rehash_insert(size_type __n) |
| { |
| using __pair_type = std::pair<bool, std::size_t>; |
| if (__n == 0) |
| return; |
| |
| __rehash_guard_t __rehash_guard(_M_rehash_policy); |
| __pair_type __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, __n); |
| |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, false_type{}); |
| |
| __rehash_guard._M_guarded_obj = nullptr; |
| } |
| |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _InputIterator> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_insert_range_multi(_InputIterator __first, _InputIterator __last) |
| { |
| _M_rehash_insert(__detail::__distance_fw(__first, __last)); |
| for (; __first != __last; ++__first) |
| _M_emplace_multi(cend(), *__first); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_compute_hash_code(__node_ptr __hint, const key_type& __k) const |
| -> pair<__node_ptr, __hash_code> |
| { |
| if (size() <= __small_size_threshold()) |
| { |
| if (__hint) |
| { |
| for (auto __it = __hint; __it; __it = __it->_M_next()) |
| if (this->_M_key_equals(__k, *__it)) |
| return { __it, this->_M_hash_code(*__it) }; |
| } |
| |
| for (auto __it = _M_begin(); __it != __hint; __it = __it->_M_next()) |
| if (this->_M_key_equals(__k, *__it)) |
| return { __it, this->_M_hash_code(*__it) }; |
| |
| __hint = nullptr; |
| } |
| |
| return { __hint, this->_M_hash_code(__k) }; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_insert_unique_node(size_type __bkt, __hash_code __code, |
| __node_ptr __node, size_type __n_elt) |
| -> iterator |
| { |
| __rehash_guard_t __rehash_guard(_M_rehash_policy); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, |
| __n_elt); |
| |
| if (__do_rehash.first) |
| { |
| _M_rehash(__do_rehash.second, true_type{}); |
| __bkt = _M_bucket_index(__code); |
| } |
| |
| __rehash_guard._M_guarded_obj = nullptr; |
| _M_store_code(*__node, __code); |
| |
| // Always insert at the beginning of the bucket. |
| _M_insert_bucket_begin(__bkt, __node); |
| ++_M_element_count; |
| return iterator(__node); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_insert_multi_node(__node_ptr __hint, |
| __hash_code __code, __node_ptr __node) |
| -> iterator |
| { |
| __rehash_guard_t __rehash_guard(_M_rehash_policy); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1); |
| |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, false_type{}); |
| |
| __rehash_guard._M_guarded_obj = nullptr; |
| _M_store_code(*__node, __code); |
| const key_type& __k = _ExtractKey{}(__node->_M_v()); |
| size_type __bkt = _M_bucket_index(__code); |
| |
| // Find the node before an equivalent one or use hint if it exists and |
| // if it is equivalent. |
| __node_base_ptr __prev |
| = __builtin_expect(__hint != nullptr, false) |
| && this->_M_equals(__k, __code, *__hint) |
| ? __hint |
| : _M_find_before_node(__bkt, __k, __code); |
| |
| if (__prev) |
| { |
| // Insert after the node before the equivalent one. |
| __node->_M_nxt = __prev->_M_nxt; |
| __prev->_M_nxt = __node; |
| if (__builtin_expect(__prev == __hint, false)) |
| // hint might be the last bucket node, in this case we need to |
| // update next bucket. |
| if (__node->_M_nxt |
| && !this->_M_equals(__k, __code, *__node->_M_next())) |
| { |
| size_type __next_bkt = _M_bucket_index(*__node->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __node; |
| } |
| } |
| else |
| // The inserted node has no equivalent in the hashtable. We must |
| // insert the new node at the beginning of the bucket to preserve |
| // equivalent elements' relative positions. |
| _M_insert_bucket_begin(__bkt, __node); |
| ++_M_element_count; |
| return iterator(__node); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| erase(const_iterator __it) |
| -> iterator |
| { |
| __node_ptr __n = __it._M_cur; |
| std::size_t __bkt = _M_bucket_index(*__n); |
| |
| // Look for previous node to unlink it from the erased one, this |
| // is why we need buckets to contain the before begin to make |
| // this search fast. |
| __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n); |
| return _M_erase(__bkt, __prev_n, __n); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n) |
| -> iterator |
| { |
| if (__prev_n == _M_buckets[__bkt]) |
| _M_remove_bucket_begin(__bkt, __n->_M_next(), |
| __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0); |
| else if (__n->_M_nxt) |
| { |
| size_type __next_bkt = _M_bucket_index(*__n->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __prev_n; |
| } |
| |
| __prev_n->_M_nxt = __n->_M_nxt; |
| iterator __result(__n->_M_next()); |
| this->_M_deallocate_node(__n); |
| --_M_element_count; |
| |
| return __result; |
| } |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| erase(const key_type& __k) |
| -> size_type |
| { |
| auto __loc = _M_locate(__k); |
| if (!__loc) |
| return 0; |
| |
| __node_base_ptr __prev_n = __loc._M_before; |
| __node_ptr __n = __loc._M_node(); |
| auto __bkt = __loc._M_bucket_index; |
| if (__bkt == size_type(-1)) |
| __bkt = _M_bucket_index(*__n); |
| |
| if constexpr (__unique_keys::value) |
| { |
| _M_erase(__bkt, __prev_n, __n); |
| return 1; |
| } |
| else |
| { |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 526. Is it undefined if a function in the standard changes |
| // in parameters? |
| // We use one loop to find all matching nodes and another to |
| // deallocate them so that the key stays valid during the first loop. |
| // It might be invalidated indirectly when destroying nodes. |
| __node_ptr __n_last = __n->_M_next(); |
| while (__n_last && this->_M_node_equals(*__n, *__n_last)) |
| __n_last = __n_last->_M_next(); |
| |
| std::size_t __n_last_bkt |
| = __n_last ? _M_bucket_index(*__n_last) : __bkt; |
| |
| // Deallocate nodes. |
| size_type __result = 0; |
| do |
| { |
| __node_ptr __p = __n->_M_next(); |
| this->_M_deallocate_node(__n); |
| __n = __p; |
| ++__result; |
| } |
| while (__n != __n_last); |
| |
| _M_element_count -= __result; |
| if (__prev_n == _M_buckets[__bkt]) |
| _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt); |
| else if (__n_last_bkt != __bkt) |
| _M_buckets[__n_last_bkt] = __prev_n; |
| __prev_n->_M_nxt = __n_last; |
| return __result; |
| } |
| } |
| #pragma GCC diagnostic pop |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| erase(const_iterator __first, const_iterator __last) |
| -> iterator |
| { |
| __node_ptr __n = __first._M_cur; |
| __node_ptr __last_n = __last._M_cur; |
| if (__n == __last_n) |
| return iterator(__n); |
| |
| std::size_t __bkt = _M_bucket_index(*__n); |
| |
| __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n); |
| bool __is_bucket_begin = __n == _M_bucket_begin(__bkt); |
| std::size_t __n_bkt = __bkt; |
| for (;;) |
| { |
| do |
| { |
| __node_ptr __tmp = __n; |
| __n = __n->_M_next(); |
| this->_M_deallocate_node(__tmp); |
| --_M_element_count; |
| if (!__n) |
| break; |
| __n_bkt = _M_bucket_index(*__n); |
| } |
| while (__n != __last_n && __n_bkt == __bkt); |
| if (__is_bucket_begin) |
| _M_remove_bucket_begin(__bkt, __n, __n_bkt); |
| if (__n == __last_n) |
| break; |
| __is_bucket_begin = true; |
| __bkt = __n_bkt; |
| } |
| |
| if (__n && (__n_bkt != __bkt || __is_bucket_begin)) |
| _M_buckets[__n_bkt] = __prev_n; |
| __prev_n->_M_nxt = __n; |
| return iterator(__n); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| clear() noexcept |
| { |
| this->_M_deallocate_nodes(_M_begin()); |
| std::fill_n(_M_buckets, _M_bucket_count, nullptr); |
| _M_element_count = 0; |
| _M_before_begin._M_nxt = nullptr; |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| rehash(size_type __bkt_count) |
| { |
| __rehash_guard_t __rehash_guard(_M_rehash_policy); |
| __bkt_count |
| = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1), |
| __bkt_count); |
| __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count); |
| |
| if (__bkt_count != _M_bucket_count) |
| { |
| _M_rehash(__bkt_count, __unique_keys{}); |
| __rehash_guard._M_guarded_obj = nullptr; |
| } |
| } |
| |
| // Rehash when there is no equivalent elements. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_rehash(size_type __bkt_count, true_type /* __uks */) |
| { |
| __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count); |
| __node_ptr __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| while (__p) |
| { |
| __node_ptr __next = __p->_M_next(); |
| std::size_t __bkt |
| = __hash_code_base::_M_bucket_index(*__p, __bkt_count); |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| |
| __p = __next; |
| } |
| |
| _M_deallocate_buckets(); |
| _M_bucket_count = __bkt_count; |
| _M_buckets = __new_buckets; |
| } |
| |
| // Rehash when there can be equivalent elements, preserve their relative |
| // order. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_rehash(size_type __bkt_count, false_type /* __uks */) |
| { |
| __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count); |
| __node_ptr __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| std::size_t __prev_bkt = 0; |
| __node_ptr __prev_p = nullptr; |
| bool __check_bucket = false; |
| |
| while (__p) |
| { |
| __node_ptr __next = __p->_M_next(); |
| std::size_t __bkt |
| = __hash_code_base::_M_bucket_index(*__p, __bkt_count); |
| |
| if (__prev_p && __prev_bkt == __bkt) |
| { |
| // Previous insert was already in this bucket, we insert after |
| // the previously inserted one to preserve equivalent elements |
| // relative order. |
| __p->_M_nxt = __prev_p->_M_nxt; |
| __prev_p->_M_nxt = __p; |
| |
| // Inserting after a node in a bucket require to check that we |
| // haven't change the bucket last node, in this case next |
| // bucket containing its before begin node must be updated. We |
| // schedule a check as soon as we move out of the sequence of |
| // equivalent nodes to limit the number of checks. |
| __check_bucket = true; |
| } |
| else |
| { |
| if (__check_bucket) |
| { |
| // Check if we shall update the next bucket because of |
| // insertions into __prev_bkt bucket. |
| if (__prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = __hash_code_base::_M_bucket_index( |
| *__prev_p->_M_next(), __bkt_count); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| __check_bucket = false; |
| } |
| |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| } |
| __prev_p = __p; |
| __prev_bkt = __bkt; |
| __p = __next; |
| } |
| |
| if (__check_bucket && __prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = __hash_code_base::_M_bucket_index(*__prev_p->_M_next(), |
| __bkt_count); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| |
| _M_deallocate_buckets(); |
| _M_bucket_count = __bkt_count; |
| _M_buckets = __new_buckets; |
| } |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| |
| // This is for implementing equality comparison for unordered containers, |
| // per N3068, by John Lakos and Pablo Halpern. |
| // Algorithmically, we follow closely the reference implementations therein. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| bool |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>:: |
| _M_equal(const _Hashtable& __other) const |
| { |
| if (size() != __other.size()) |
| return false; |
| |
| if constexpr (__unique_keys::value) |
| for (auto __x_n = _M_begin(); __x_n; __x_n = __x_n->_M_next()) |
| { |
| std::size_t __ybkt = __other._M_bucket_index_ext(*__x_n); |
| auto __prev_n = __other._M_buckets[__ybkt]; |
| if (!__prev_n) |
| return false; |
| |
| for (__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);; |
| __n = __n->_M_next()) |
| { |
| if (__n->_M_v() == __x_n->_M_v()) |
| break; |
| |
| if (!__n->_M_nxt |
| || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
| return false; |
| } |
| } |
| else // non-unique keys |
| for (auto __x_n = _M_begin(); __x_n;) |
| { |
| std::size_t __x_count = 1; |
| auto __x_n_end = __x_n->_M_next(); |
| for (; __x_n_end |
| && key_eq()(_ExtractKey{}(__x_n->_M_v()), |
| _ExtractKey{}(__x_n_end->_M_v())); |
| __x_n_end = __x_n_end->_M_next()) |
| ++__x_count; |
| |
| std::size_t __ybkt = __other._M_bucket_index_ext(*__x_n); |
| auto __y_prev_n = __other._M_buckets[__ybkt]; |
| if (!__y_prev_n) |
| return false; |
| |
| __node_ptr __y_n = static_cast<__node_ptr>(__y_prev_n->_M_nxt); |
| for (;;) |
| { |
| if (key_eq()(_ExtractKey{}(__y_n->_M_v()), |
| _ExtractKey{}(__x_n->_M_v()))) |
| break; |
| |
| auto __y_ref_n = __y_n; |
| for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
| if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
| break; |
| |
| if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
| return false; |
| } |
| |
| auto __y_n_end = __y_n; |
| for (; __y_n_end; __y_n_end = __y_n_end->_M_next()) |
| if (--__x_count == 0) |
| break; |
| |
| if (__x_count != 0) |
| return false; |
| |
| const_iterator __itx(__x_n), __itx_end(__x_n_end); |
| const_iterator __ity(__y_n); |
| if (!std::is_permutation(__itx, __itx_end, __ity)) |
| return false; |
| |
| __x_n = __x_n_end; |
| } |
| |
| return true; |
| } |
| #pragma GCC diagnostic pop |
| |
| #if __cplusplus > 201402L |
| template<typename, typename, typename> class _Hash_merge_helper { }; |
| #endif // C++17 |
| |
| #if __cpp_deduction_guides >= 201606 |
| // Used to constrain deduction guides |
| template<typename _Hash> |
| using _RequireNotAllocatorOrIntegral |
| = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>; |
| #endif |
| |
| /// @endcond |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #pragma GCC diagnostic pop |
| |
| #endif // _HASHTABLE_H |