|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  | #include <signal.h> | 
|  | #include <stdlib.h> | 
|  | #include <pthread.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "config.h" | 
|  |  | 
|  | #ifdef HAVE_DL_ITERATE_PHDR | 
|  | #include <link.h> | 
|  | #endif | 
|  |  | 
|  | #include "runtime.h" | 
|  | #include "arch.h" | 
|  | #include "defs.h" | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  |  | 
|  | /* FIXME: These are not declared anywhere.  */ | 
|  |  | 
|  | extern void __splitstack_getcontext(void *context[10]); | 
|  |  | 
|  | extern void __splitstack_setcontext(void *context[10]); | 
|  |  | 
|  | extern void *__splitstack_makecontext(size_t, void *context[10], size_t *); | 
|  |  | 
|  | extern void * __splitstack_resetcontext(void *context[10], size_t *); | 
|  |  | 
|  | extern void __splitstack_releasecontext(void *context[10]); | 
|  |  | 
|  | extern void *__splitstack_find(void *, void *, size_t *, void **, void **, | 
|  | void **); | 
|  |  | 
|  | extern void __splitstack_block_signals (int *, int *); | 
|  |  | 
|  | extern void __splitstack_block_signals_context (void *context[10], int *, | 
|  | int *); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifndef PTHREAD_STACK_MIN | 
|  | # define PTHREAD_STACK_MIN 8192 | 
|  | #endif | 
|  |  | 
|  | #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK) | 
|  | # define StackMin PTHREAD_STACK_MIN | 
|  | #else | 
|  | # define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024) | 
|  | #endif | 
|  |  | 
|  | uintptr runtime_stacks_sys; | 
|  |  | 
|  | void gtraceback(G*) | 
|  | __asm__(GOSYM_PREFIX "runtime.gtraceback"); | 
|  |  | 
|  | static void gscanstack(G*); | 
|  |  | 
|  | #ifdef __rtems__ | 
|  | #define __thread | 
|  | #endif | 
|  |  | 
|  | __thread G *g __asm__(GOSYM_PREFIX "runtime.g"); | 
|  |  | 
|  | #ifndef SETCONTEXT_CLOBBERS_TLS | 
|  |  | 
|  | static inline void | 
|  | initcontext(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fixcontext(__go_context_t *c __attribute__ ((unused))) | 
|  | { | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | # if defined(__x86_64__) && defined(__sun__) | 
|  |  | 
|  | // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs | 
|  | // register to that of the thread which called getcontext.  The effect | 
|  | // is that the address of all __thread variables changes.  This bug | 
|  | // also affects pthread_self() and pthread_getspecific.  We work | 
|  | // around it by clobbering the context field directly to keep %fs the | 
|  | // same. | 
|  |  | 
|  | static __thread greg_t fs; | 
|  |  | 
|  | static inline void | 
|  | initcontext(void) | 
|  | { | 
|  | ucontext_t c; | 
|  |  | 
|  | getcontext(&c); | 
|  | fs = c.uc_mcontext.gregs[REG_FSBASE]; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fixcontext(ucontext_t* c) | 
|  | { | 
|  | c->uc_mcontext.gregs[REG_FSBASE] = fs; | 
|  | } | 
|  |  | 
|  | # elif defined(__NetBSD__) | 
|  |  | 
|  | // NetBSD has a bug: setcontext clobbers tlsbase, we need to save | 
|  | // and restore it ourselves. | 
|  |  | 
|  | static __thread __greg_t tlsbase; | 
|  |  | 
|  | static inline void | 
|  | initcontext(void) | 
|  | { | 
|  | ucontext_t c; | 
|  |  | 
|  | getcontext(&c); | 
|  | tlsbase = c.uc_mcontext._mc_tlsbase; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fixcontext(ucontext_t* c) | 
|  | { | 
|  | c->uc_mcontext._mc_tlsbase = tlsbase; | 
|  | } | 
|  |  | 
|  | # elif defined(__sparc__) | 
|  |  | 
|  | static inline void | 
|  | initcontext(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fixcontext(ucontext_t *c) | 
|  | { | 
|  | /* ??? Using | 
|  | register unsigned long thread __asm__("%g7"); | 
|  | c->uc_mcontext.gregs[REG_G7] = thread; | 
|  | results in | 
|  | error: variable ‘thread’ might be clobbered by \ | 
|  | ‘longjmp’ or ‘vfork’ [-Werror=clobbered] | 
|  | which ought to be false, as %g7 is a fixed register.  */ | 
|  |  | 
|  | if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8) | 
|  | asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7])); | 
|  | else | 
|  | asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7])); | 
|  | } | 
|  |  | 
|  | # elif defined(_AIX) | 
|  |  | 
|  | static inline void | 
|  | initcontext(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fixcontext(ucontext_t* c) | 
|  | { | 
|  | // Thread pointer is in r13, per 64-bit ABI. | 
|  | if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8) | 
|  | asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13])); | 
|  | } | 
|  |  | 
|  | # else | 
|  |  | 
|  | #  error unknown case for SETCONTEXT_CLOBBERS_TLS | 
|  |  | 
|  | # endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | // ucontext_arg returns a properly aligned ucontext_t value.  On some | 
|  | // systems a ucontext_t value must be aligned to a 16-byte boundary. | 
|  | // The g structure that has fields of type ucontext_t is defined in | 
|  | // Go, and Go has no simple way to align a field to such a boundary. | 
|  | // So we make the field larger in runtime2.go and pick an appropriate | 
|  | // offset within the field here. | 
|  | static __go_context_t* | 
|  | ucontext_arg(uintptr_t* go_ucontext) | 
|  | { | 
|  | uintptr_t p = (uintptr_t)go_ucontext; | 
|  | size_t align = __alignof__(__go_context_t); | 
|  | if(align > 16) { | 
|  | // We only ensured space for up to a 16 byte alignment | 
|  | // in libgo/go/runtime/runtime2.go. | 
|  | runtime_throw("required alignment of __go_context_t too large"); | 
|  | } | 
|  | p = (p + align - 1) &~ (uintptr_t)(align - 1); | 
|  | return (__go_context_t*)p; | 
|  | } | 
|  |  | 
|  | // We can not always refer to the TLS variables directly.  The | 
|  | // compiler will call tls_get_addr to get the address of the variable, | 
|  | // and it may hold it in a register across a call to schedule.  When | 
|  | // we get back from the call we may be running in a different thread, | 
|  | // in which case the register now points to the TLS variable for a | 
|  | // different thread.  We use non-inlinable functions to avoid this | 
|  | // when necessary. | 
|  |  | 
|  | G* runtime_g(void) __attribute__ ((noinline, no_split_stack)); | 
|  |  | 
|  | G* | 
|  | runtime_g(void) | 
|  | { | 
|  | return g; | 
|  | } | 
|  |  | 
|  | M* runtime_m(void) __attribute__ ((noinline, no_split_stack)); | 
|  |  | 
|  | M* | 
|  | runtime_m(void) | 
|  | { | 
|  | if(g == nil) | 
|  | return nil; | 
|  | return g->m; | 
|  | } | 
|  |  | 
|  | // Set g. | 
|  |  | 
|  | void runtime_setg(G*) __attribute__ ((no_split_stack)); | 
|  |  | 
|  | void | 
|  | runtime_setg(G* gp) | 
|  | { | 
|  | g = gp; | 
|  | } | 
|  |  | 
|  | void runtime_newosproc(M *) | 
|  | __asm__(GOSYM_PREFIX "runtime.newosproc"); | 
|  |  | 
|  | // Start a new thread. | 
|  | void | 
|  | runtime_newosproc(M *mp) | 
|  | { | 
|  | pthread_attr_t attr; | 
|  | sigset_t clear, old; | 
|  | pthread_t tid; | 
|  | int tries; | 
|  | int ret; | 
|  |  | 
|  | if(pthread_attr_init(&attr) != 0) | 
|  | runtime_throw("pthread_attr_init"); | 
|  | if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) | 
|  | runtime_throw("pthread_attr_setdetachstate"); | 
|  |  | 
|  | // Block signals during pthread_create so that the new thread | 
|  | // starts with signals disabled.  It will enable them in minit. | 
|  | sigfillset(&clear); | 
|  |  | 
|  | #ifdef SIGTRAP | 
|  | // Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux. | 
|  | sigdelset(&clear, SIGTRAP); | 
|  | #endif | 
|  |  | 
|  | sigemptyset(&old); | 
|  | pthread_sigmask(SIG_BLOCK, &clear, &old); | 
|  |  | 
|  | for (tries = 0; tries < 20; tries++) { | 
|  | ret = pthread_create(&tid, &attr, runtime_mstart, mp); | 
|  | if (ret != EAGAIN) { | 
|  | break; | 
|  | } | 
|  | runtime_usleep((tries + 1) * 1000); // Milliseconds. | 
|  | } | 
|  |  | 
|  | pthread_sigmask(SIG_SETMASK, &old, nil); | 
|  |  | 
|  | if (ret != 0) { | 
|  | runtime_printf("pthread_create failed: %d\n", ret); | 
|  | runtime_throw("pthread_create"); | 
|  | } | 
|  |  | 
|  | if(pthread_attr_destroy(&attr) != 0) | 
|  | runtime_throw("pthread_attr_destroy"); | 
|  | } | 
|  |  | 
|  | // Switch context to a different goroutine.  This is like longjmp. | 
|  | void runtime_gogo(G*) __attribute__ ((noinline)); | 
|  | void | 
|  | runtime_gogo(G* newg) | 
|  | { | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_setcontext((void*)(&newg->stackcontext[0])); | 
|  | #endif | 
|  | g = newg; | 
|  | newg->fromgogo = true; | 
|  | fixcontext(ucontext_arg(&newg->context[0])); | 
|  | __go_setcontext(ucontext_arg(&newg->context[0])); | 
|  | runtime_throw("gogo setcontext returned"); | 
|  | } | 
|  |  | 
|  | // Save context and call fn passing g as a parameter.  This is like | 
|  | // setjmp.  Because getcontext always returns 0, unlike setjmp, we use | 
|  | // g->fromgogo as a code.  It will be true if we got here via | 
|  | // setcontext.  g == nil the first time this is called in a new m. | 
|  | void runtime_mcall(FuncVal *) __attribute__ ((noinline)); | 
|  | void | 
|  | runtime_mcall(FuncVal *fv) | 
|  | { | 
|  | M *mp; | 
|  | G *gp; | 
|  | #ifndef USING_SPLIT_STACK | 
|  | void *afterregs; | 
|  | #endif | 
|  |  | 
|  | // Ensure that all registers are on the stack for the garbage | 
|  | // collector. | 
|  | __builtin_unwind_init(); | 
|  | flush_registers_to_secondary_stack(); | 
|  |  | 
|  | gp = g; | 
|  | mp = gp->m; | 
|  | if(gp == mp->g0) | 
|  | runtime_throw("runtime: mcall called on m->g0 stack"); | 
|  |  | 
|  | if(gp != nil) { | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_getcontext((void*)(&gp->stackcontext[0])); | 
|  | #else | 
|  | // We have to point to an address on the stack that is | 
|  | // below the saved registers. | 
|  | gp->gcnextsp = (uintptr)(&afterregs); | 
|  | gp->gcnextsp2 = (uintptr)(secondary_stack_pointer()); | 
|  | #endif | 
|  | gp->fromgogo = false; | 
|  | __go_getcontext(ucontext_arg(&gp->context[0])); | 
|  |  | 
|  | // When we return from getcontext, we may be running | 
|  | // in a new thread.  That means that g may have | 
|  | // changed.  It is a global variables so we will | 
|  | // reload it, but the address of g may be cached in | 
|  | // our local stack frame, and that address may be | 
|  | // wrong.  Call the function to reload the value for | 
|  | // this thread. | 
|  | gp = runtime_g(); | 
|  | mp = gp->m; | 
|  |  | 
|  | if(gp->traceback != 0) | 
|  | gtraceback(gp); | 
|  | if(gp->scang != 0) | 
|  | gscanstack(gp); | 
|  | } | 
|  | if (gp == nil || !gp->fromgogo) { | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_setcontext((void*)(&mp->g0->stackcontext[0])); | 
|  | #endif | 
|  | mp->g0->entry = fv; | 
|  | mp->g0->param = gp; | 
|  |  | 
|  | // It's OK to set g directly here because this case | 
|  | // can not occur if we got here via a setcontext to | 
|  | // the getcontext call just above. | 
|  | g = mp->g0; | 
|  |  | 
|  | fixcontext(ucontext_arg(&mp->g0->context[0])); | 
|  | __go_setcontext(ucontext_arg(&mp->g0->context[0])); | 
|  | runtime_throw("runtime: mcall function returned"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Goroutine scheduler | 
|  | // The scheduler's job is to distribute ready-to-run goroutines over worker threads. | 
|  | // | 
|  | // The main concepts are: | 
|  | // G - goroutine. | 
|  | // M - worker thread, or machine. | 
|  | // P - processor, a resource that is required to execute Go code. | 
|  | //     M must have an associated P to execute Go code, however it can be | 
|  | //     blocked or in a syscall w/o an associated P. | 
|  | // | 
|  | // Design doc at http://golang.org/s/go11sched. | 
|  |  | 
|  | extern G* allocg(void) | 
|  | __asm__ (GOSYM_PREFIX "runtime.allocg"); | 
|  |  | 
|  | bool	runtime_isarchive; | 
|  |  | 
|  | extern void kickoff(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.kickoff"); | 
|  | extern void minit(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.minit"); | 
|  | extern void mstart1() | 
|  | __asm__(GOSYM_PREFIX "runtime.mstart1"); | 
|  | extern void stopm(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.stopm"); | 
|  | extern void mexit(bool) | 
|  | __asm__(GOSYM_PREFIX "runtime.mexit"); | 
|  | extern void handoffp(P*) | 
|  | __asm__(GOSYM_PREFIX "runtime.handoffp"); | 
|  | extern void wakep(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.wakep"); | 
|  | extern void stoplockedm(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.stoplockedm"); | 
|  | extern void schedule(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.schedule"); | 
|  | extern void execute(G*, bool) | 
|  | __asm__(GOSYM_PREFIX "runtime.execute"); | 
|  | extern void reentersyscall(uintptr, uintptr) | 
|  | __asm__(GOSYM_PREFIX "runtime.reentersyscall"); | 
|  | extern void reentersyscallblock(uintptr, uintptr) | 
|  | __asm__(GOSYM_PREFIX "runtime.reentersyscallblock"); | 
|  | extern G* gfget(P*) | 
|  | __asm__(GOSYM_PREFIX "runtime.gfget"); | 
|  | extern void acquirep(P*) | 
|  | __asm__(GOSYM_PREFIX "runtime.acquirep"); | 
|  | extern P* releasep(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.releasep"); | 
|  | extern void incidlelocked(int32) | 
|  | __asm__(GOSYM_PREFIX "runtime.incidlelocked"); | 
|  | extern void globrunqput(G*) | 
|  | __asm__(GOSYM_PREFIX "runtime.globrunqput"); | 
|  | extern P* pidleget(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.pidleget"); | 
|  | extern struct mstats* getMemstats(void) | 
|  | __asm__(GOSYM_PREFIX "runtime.getMemstats"); | 
|  |  | 
|  | bool runtime_isstarted; | 
|  |  | 
|  | // Used to determine the field alignment. | 
|  |  | 
|  | struct field_align | 
|  | { | 
|  | char c; | 
|  | Hchan *p; | 
|  | }; | 
|  |  | 
|  | void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback"); | 
|  |  | 
|  | // getTraceback stores a traceback of gp in the g's traceback field | 
|  | // and then returns to me.  We expect that gp's traceback is not nil. | 
|  | // It works by saving me's current context, and checking gp's traceback field. | 
|  | // If gp's traceback field is not nil, it starts running gp. | 
|  | // In places where we call getcontext, we check the traceback field. | 
|  | // If it is not nil, we collect a traceback, and then return to the | 
|  | // goroutine stored in the traceback field, which is me. | 
|  | void getTraceback(G* me, G* gp) | 
|  | { | 
|  | M* holdm; | 
|  |  | 
|  | holdm = gp->m; | 
|  | gp->m = me->m; | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_getcontext((void*)(&me->stackcontext[0])); | 
|  | #endif | 
|  | __go_getcontext(ucontext_arg(&me->context[0])); | 
|  |  | 
|  | if (gp->traceback != 0) { | 
|  | runtime_gogo(gp); | 
|  | } | 
|  |  | 
|  | gp->m = holdm; | 
|  | } | 
|  |  | 
|  | // Do a stack trace of gp, and then restore the context to | 
|  | // gp->traceback->gp. | 
|  |  | 
|  | void | 
|  | gtraceback(G* gp) | 
|  | { | 
|  | Traceback* traceback; | 
|  |  | 
|  | traceback = (Traceback*)gp->traceback; | 
|  | gp->traceback = 0; | 
|  | traceback->c = runtime_callers(1, traceback->locbuf, | 
|  | sizeof traceback->locbuf / sizeof traceback->locbuf[0], false); | 
|  | runtime_gogo(traceback->gp); | 
|  | } | 
|  |  | 
|  | void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch"); | 
|  |  | 
|  | // Switch to gp and let it scan its stack. | 
|  | // The first time gp->scang is set (to me). The second time here | 
|  | // gp is done scanning, and has unset gp->scang, so we just return. | 
|  | void | 
|  | doscanstackswitch(G* me, G* gp) | 
|  | { | 
|  | M* holdm; | 
|  |  | 
|  | __go_assert(me->entry == nil); | 
|  | me->fromgogo = false; | 
|  |  | 
|  | holdm = gp->m; | 
|  | gp->m = me->m; | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_getcontext((void*)(&me->stackcontext[0])); | 
|  | #endif | 
|  | __go_getcontext(ucontext_arg(&me->context[0])); | 
|  |  | 
|  | if(me->entry != nil) { | 
|  | // Got here from mcall. | 
|  | // The stack scanning code may call systemstack, which calls | 
|  | // mcall, which calls setcontext. | 
|  | // Run the function, which at the end will switch back to gp. | 
|  | FuncVal *fv = me->entry; | 
|  | void (*pfn)(G*) = (void (*)(G*))fv->fn; | 
|  | G* gp1 = (G*)me->param; | 
|  | __go_assert(gp1 == gp); | 
|  | me->entry = nil; | 
|  | me->param = nil; | 
|  | __builtin_call_with_static_chain(pfn(gp1), fv); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (gp->scang != 0) | 
|  | runtime_gogo(gp); | 
|  |  | 
|  | gp->m = holdm; | 
|  | } | 
|  |  | 
|  | // Do a stack scan, then switch back to the g that triggers this scan. | 
|  | // We come here from doscanstackswitch. | 
|  | static void | 
|  | gscanstack(G *gp) | 
|  | { | 
|  | G *oldg, *oldcurg; | 
|  |  | 
|  | oldg = (G*)gp->scang; | 
|  | oldcurg = oldg->m->curg; | 
|  | oldg->m->curg = gp; | 
|  | gp->scang = 0; | 
|  |  | 
|  | doscanstack(gp, (void*)gp->scangcw); | 
|  |  | 
|  | gp->scangcw = 0; | 
|  | oldg->m->curg = oldcurg; | 
|  | runtime_gogo(oldg); | 
|  | } | 
|  |  | 
|  | // Called by pthread_create to start an M. | 
|  | void* | 
|  | runtime_mstart(void *arg) | 
|  | { | 
|  | M* mp; | 
|  | G* gp; | 
|  |  | 
|  | mp = (M*)(arg); | 
|  | gp = mp->g0; | 
|  | gp->m = mp; | 
|  |  | 
|  | g = gp; | 
|  |  | 
|  | gp->entry = nil; | 
|  | gp->param = nil; | 
|  |  | 
|  | // We have to call minit before we call getcontext, | 
|  | // because getcontext will copy the signal mask. | 
|  | minit(); | 
|  |  | 
|  | initcontext(); | 
|  |  | 
|  | // Record top of stack for use by mcall. | 
|  | // Once we call schedule we're never coming back, | 
|  | // so other calls can reuse this stack space. | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_getcontext((void*)(&gp->stackcontext[0])); | 
|  | #else | 
|  | gp->gcinitialsp = &arg; | 
|  | // Setting gcstacksize to 0 is a marker meaning that gcinitialsp | 
|  | // is the top of the stack, not the bottom. | 
|  | gp->gcstacksize = 0; | 
|  | gp->gcnextsp = (uintptr)(&arg); | 
|  | gp->gcinitialsp2 = secondary_stack_pointer(); | 
|  | gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2); | 
|  | #endif | 
|  |  | 
|  | // Save the currently active context.  This will return | 
|  | // multiple times via the setcontext call in mcall. | 
|  | __go_getcontext(ucontext_arg(&gp->context[0])); | 
|  |  | 
|  | if(gp->traceback != 0) { | 
|  | // Got here from getTraceback. | 
|  | // I'm not sure this ever actually happens--getTraceback | 
|  | // may always go to the getcontext call in mcall. | 
|  | gtraceback(gp); | 
|  | } | 
|  | if(gp->scang != 0) | 
|  | // Got here from doscanswitch. Should not happen. | 
|  | runtime_throw("mstart with scang"); | 
|  |  | 
|  | if(gp->entry != nil) { | 
|  | // Got here from mcall. | 
|  | FuncVal *fv = gp->entry; | 
|  | void (*pfn)(G*) = (void (*)(G*))fv->fn; | 
|  | G* gp1 = (G*)gp->param; | 
|  | gp->entry = nil; | 
|  | gp->param = nil; | 
|  | __builtin_call_with_static_chain(pfn(gp1), fv); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if(mp->exiting) { | 
|  | mexit(true); | 
|  | return nil; | 
|  | } | 
|  |  | 
|  | // Initial call to getcontext--starting thread. | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  | { | 
|  | int dont_block_signals = 0; | 
|  | __splitstack_block_signals(&dont_block_signals, nil); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mstart1(); | 
|  |  | 
|  | // mstart1 does not return, but we need a return statement | 
|  | // here to avoid a compiler warning. | 
|  | return nil; | 
|  | } | 
|  |  | 
|  | typedef struct CgoThreadStart CgoThreadStart; | 
|  | struct CgoThreadStart | 
|  | { | 
|  | M *m; | 
|  | G *g; | 
|  | uintptr *tls; | 
|  | void (*fn)(void); | 
|  | }; | 
|  |  | 
|  | void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext"); | 
|  |  | 
|  | // setGContext sets up a new goroutine context for the current g. | 
|  | void | 
|  | setGContext(void) | 
|  | { | 
|  | int val; | 
|  | G *gp; | 
|  |  | 
|  | initcontext(); | 
|  | gp = g; | 
|  | gp->entry = nil; | 
|  | gp->param = nil; | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_getcontext((void*)(&gp->stackcontext[0])); | 
|  | val = 0; | 
|  | __splitstack_block_signals(&val, nil); | 
|  | #else | 
|  | gp->gcinitialsp = &val; | 
|  | gp->gcstack = 0; | 
|  | gp->gcstacksize = 0; | 
|  | gp->gcnextsp = (uintptr)(&val); | 
|  | gp->gcinitialsp2 = secondary_stack_pointer(); | 
|  | gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2); | 
|  | #endif | 
|  | __go_getcontext(ucontext_arg(&gp->context[0])); | 
|  |  | 
|  | if(gp->entry != nil) { | 
|  | // Got here from mcall. | 
|  | FuncVal *fv = gp->entry; | 
|  | void (*pfn)(G*) = (void (*)(G*))fv->fn; | 
|  | G* gp1 = (G*)gp->param; | 
|  | gp->entry = nil; | 
|  | gp->param = nil; | 
|  | __builtin_call_with_static_chain(pfn(gp1), fv); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void makeGContext(G*, byte*, uintptr) | 
|  | __asm__(GOSYM_PREFIX "runtime.makeGContext"); | 
|  |  | 
|  | // makeGContext makes a new context for a g. | 
|  | void | 
|  | makeGContext(G* gp, byte* sp, uintptr spsize) { | 
|  | __go_context_t *uc; | 
|  |  | 
|  | uc = ucontext_arg(&gp->context[0]); | 
|  | __go_getcontext(uc); | 
|  | __go_makecontext(uc, kickoff, sp, (size_t)spsize); | 
|  | } | 
|  |  | 
|  | // The goroutine g is about to enter a system call. | 
|  | // Record that it's not using the cpu anymore. | 
|  | // This is called only from the go syscall library and cgocall, | 
|  | // not from the low-level system calls used by the runtime. | 
|  | // | 
|  | // Entersyscall cannot split the stack: the runtime_gosave must | 
|  | // make g->sched refer to the caller's stack segment, because | 
|  | // entersyscall is going to return immediately after. | 
|  |  | 
|  | void runtime_entersyscall() __attribute__ ((no_split_stack)); | 
|  | static void doentersyscall(uintptr, uintptr) | 
|  | __attribute__ ((no_split_stack, noinline)); | 
|  |  | 
|  | void | 
|  | runtime_entersyscall() | 
|  | { | 
|  | // Save the registers in the g structure so that any pointers | 
|  | // held in registers will be seen by the garbage collector. | 
|  | if (!runtime_usestackmaps) | 
|  | __go_getcontext(ucontext_arg(&g->gcregs[0])); | 
|  |  | 
|  | // Note that if this function does save any registers itself, | 
|  | // we might store the wrong value in the call to getcontext. | 
|  | // FIXME: This assumes that we do not need to save any | 
|  | // callee-saved registers to access the TLS variable g.  We | 
|  | // don't want to put the ucontext_t on the stack because it is | 
|  | // large and we can not split the stack here. | 
|  | doentersyscall((uintptr)runtime_getcallerpc(), | 
|  | (uintptr)runtime_getcallersp()); | 
|  | } | 
|  |  | 
|  | static void | 
|  | doentersyscall(uintptr pc, uintptr sp) | 
|  | { | 
|  | // Leave SP around for GC and traceback. | 
|  | #ifdef USING_SPLIT_STACK | 
|  | { | 
|  | size_t gcstacksize; | 
|  | g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize, | 
|  | (void**)(&g->gcnextsegment), | 
|  | (void**)(&g->gcnextsp), | 
|  | &g->gcinitialsp)); | 
|  | g->gcstacksize = (uintptr)gcstacksize; | 
|  | } | 
|  | #else | 
|  | { | 
|  | void *v; | 
|  |  | 
|  | g->gcnextsp = (uintptr)(&v); | 
|  | g->gcnextsp2 = (uintptr)(secondary_stack_pointer()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | reentersyscall(pc, sp); | 
|  | } | 
|  |  | 
|  | static void doentersyscallblock(uintptr, uintptr) | 
|  | __attribute__ ((no_split_stack, noinline)); | 
|  |  | 
|  | // The same as runtime_entersyscall(), but with a hint that the syscall is blocking. | 
|  | void | 
|  | runtime_entersyscallblock() | 
|  | { | 
|  | // Save the registers in the g structure so that any pointers | 
|  | // held in registers will be seen by the garbage collector. | 
|  | if (!runtime_usestackmaps) | 
|  | __go_getcontext(ucontext_arg(&g->gcregs[0])); | 
|  |  | 
|  | // See comment in runtime_entersyscall. | 
|  | doentersyscallblock((uintptr)runtime_getcallerpc(), | 
|  | (uintptr)runtime_getcallersp()); | 
|  | } | 
|  |  | 
|  | static void | 
|  | doentersyscallblock(uintptr pc, uintptr sp) | 
|  | { | 
|  | // Leave SP around for GC and traceback. | 
|  | #ifdef USING_SPLIT_STACK | 
|  | { | 
|  | size_t gcstacksize; | 
|  | g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize, | 
|  | (void**)(&g->gcnextsegment), | 
|  | (void**)(&g->gcnextsp), | 
|  | &g->gcinitialsp)); | 
|  | g->gcstacksize = (uintptr)gcstacksize; | 
|  | } | 
|  | #else | 
|  | { | 
|  | void *v; | 
|  |  | 
|  | g->gcnextsp = (uintptr)(&v); | 
|  | g->gcnextsp2 = (uintptr)(secondary_stack_pointer()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | reentersyscallblock(pc, sp); | 
|  | } | 
|  |  | 
|  | // Allocate a new g, with a stack big enough for stacksize bytes. | 
|  | G* | 
|  | runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize) | 
|  | { | 
|  | uintptr stacksize; | 
|  | G *newg; | 
|  | byte* unused_stack; | 
|  | uintptr unused_stacksize; | 
|  | #ifdef USING_SPLIT_STACK | 
|  | int dont_block_signals = 0; | 
|  | size_t ss_stacksize; | 
|  | #endif | 
|  |  | 
|  | if (ret_stack == nil) { | 
|  | ret_stack = &unused_stack; | 
|  | } | 
|  | if (ret_stacksize == nil) { | 
|  | ret_stacksize = &unused_stacksize; | 
|  | } | 
|  | newg = allocg(); | 
|  | if(allocatestack) { | 
|  | stacksize = StackMin; | 
|  | if(signalstack) { | 
|  | stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K | 
|  | #ifdef SIGSTKSZ | 
|  | if(stacksize < (uintptr)(SIGSTKSZ)) | 
|  | stacksize = (uintptr)(SIGSTKSZ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef USING_SPLIT_STACK | 
|  | *ret_stack = __splitstack_makecontext(stacksize, | 
|  | (void*)(&newg->stackcontext[0]), | 
|  | &ss_stacksize); | 
|  | *ret_stacksize = (uintptr)ss_stacksize; | 
|  | __splitstack_block_signals_context((void*)(&newg->stackcontext[0]), | 
|  | &dont_block_signals, nil); | 
|  | #else | 
|  | // In 64-bit mode, the maximum Go allocation space is | 
|  | // 128G.  Our stack size is 4M, which only permits 32K | 
|  | // goroutines.  In order to not limit ourselves, | 
|  | // allocate the stacks out of separate memory.  In | 
|  | // 32-bit mode, the Go allocation space is all of | 
|  | // memory anyhow. | 
|  | if(sizeof(void*) == 8) { | 
|  | void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys); | 
|  | if(p == nil) | 
|  | runtime_throw("runtime: cannot allocate memory for goroutine stack"); | 
|  | *ret_stack = (byte*)p; | 
|  | } else { | 
|  | *ret_stack = runtime_mallocgc(stacksize, nil, false); | 
|  | runtime_xadd(&runtime_stacks_sys, stacksize); | 
|  | } | 
|  | *ret_stacksize = (uintptr)stacksize; | 
|  | newg->gcinitialsp = *ret_stack; | 
|  | newg->gcstacksize = (uintptr)stacksize; | 
|  | newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack); | 
|  | #endif | 
|  | } | 
|  | return newg; | 
|  | } | 
|  |  | 
|  | void stackfree(G*) | 
|  | __asm__(GOSYM_PREFIX "runtime.stackfree"); | 
|  |  | 
|  | // stackfree frees the stack of a g. | 
|  | void | 
|  | stackfree(G* gp) | 
|  | { | 
|  | #ifdef USING_SPLIT_STACK | 
|  | __splitstack_releasecontext((void*)(&gp->stackcontext[0])); | 
|  | #else | 
|  | // If gcstacksize is 0, the stack is allocated by libc and will be | 
|  | // released when the thread exits. Otherwise, in 64-bit mode it was | 
|  | // allocated using sysAlloc and in 32-bit mode it was allocated | 
|  | // using garbage collected memory. | 
|  | if (gp->gcstacksize != 0) { | 
|  | if (sizeof(void*) == 8) { | 
|  | runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys); | 
|  | } | 
|  | gp->gcinitialsp = nil; | 
|  | gp->gcstacksize = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void resetNewG(G*, void **, uintptr*) | 
|  | __asm__(GOSYM_PREFIX "runtime.resetNewG"); | 
|  |  | 
|  | // Reset stack information for g pulled out of the cache to start a | 
|  | // new goroutine. | 
|  | void | 
|  | resetNewG(G *newg, void **sp, uintptr *spsize) | 
|  | { | 
|  | #ifdef USING_SPLIT_STACK | 
|  | int dont_block_signals = 0; | 
|  | size_t ss_spsize; | 
|  |  | 
|  | *sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize); | 
|  | *spsize = ss_spsize; | 
|  | __splitstack_block_signals_context((void*)(&newg->stackcontext[0]), | 
|  | &dont_block_signals, nil); | 
|  | #else | 
|  | *sp = newg->gcinitialsp; | 
|  | *spsize = newg->gcstacksize; | 
|  | if(*spsize == 0) | 
|  | runtime_throw("bad spsize in resetNewG"); | 
|  | newg->gcnextsp = (uintptr)(*sp); | 
|  | newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2); | 
|  | #endif | 
|  | } |