|  | dnl Support macro file for intrinsic functions. | 
|  | dnl Contains the generic sections of the array functions. | 
|  | dnl This file is part of the GNU Fortran Runtime Library (libgfortran) | 
|  | dnl Distributed under the GNU GPL with exception.  See COPYING for details. | 
|  | dnl | 
|  | dnl Pass the implementation for a single section as the parameter to | 
|  | dnl {MASK_}ARRAY_FUNCTION. | 
|  | dnl The variables base, delta, and len describe the input section. | 
|  | dnl For masked section the mask is described by mbase and mdelta. | 
|  | dnl These should not be modified. The result should be stored in *dest. | 
|  | dnl The names count, extent, sstride, dstride, base, dest, rank, dim | 
|  | dnl retarray, array, pdim and mstride should not be used. | 
|  | dnl The variable n is declared as index_type and may be used. | 
|  | dnl Other variable declarations may be placed at the start of the code, | 
|  | dnl The types of the array parameter and the return value are | 
|  | dnl atype_name and rtype_name respectively. | 
|  | dnl Execution should be allowed to continue to the end of the block. | 
|  | dnl You should not return or break from the inner loop of the implementation. | 
|  | dnl Care should also be taken to avoid using the names defined in iparm.m4 | 
|  | define(START_ARRAY_FUNCTION, | 
|  | ` | 
|  | extern void name`'rtype_qual`_'atype_code (rtype * const restrict, | 
|  | atype` * const restrict, const 'index_type` * const restrict'back_arg`); | 
|  | export_proto('name`'rtype_qual`_'atype_code); | 
|  |  | 
|  | void | 
|  | name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, | 
|  | 'atype` * const restrict array, | 
|  | const index_type * const restrict pdim'back_arg`) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | const 'atype_name * restrict base; | 
|  | rtype_name * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type dim; | 
|  | int continue_loop; | 
|  |  | 
|  | /* Make dim zero based to avoid confusion.  */ | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  | dim = (*pdim) - 1; | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in u_name intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
|  | if (len < 0) | 
|  | len = 0; | 
|  | delta = GFC_DESCRIPTOR_STRIDE(array,dim); | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); | 
|  | if (alloc_size == 0) | 
|  | { | 
|  | /* Make sure we have a zero-sized array.  */ | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
|  | return; | 
|  |  | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in" | 
|  | " u_name intrinsic: is %ld, should be %ld", | 
|  | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
|  | (long int) rank); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | bounds_ifunction_return ((array_t *) retarray, extent, | 
|  | "return value", "u_name"); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | base = array->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | continue_loop = 1; | 
|  | while (continue_loop) | 
|  | { | 
|  | const atype_name * restrict src; | 
|  | rtype_name result; | 
|  | src = base; | 
|  | { | 
|  | ')dnl | 
|  | define(START_ARRAY_BLOCK, | 
|  | `	if (len <= 0) | 
|  | *dest = '$1`; | 
|  | else | 
|  | { | 
|  | #if ! defined HAVE_BACK_ARG | 
|  | for (n = 0; n < len; n++, src += delta) | 
|  | { | 
|  | #endif | 
|  | ')dnl | 
|  | define(FINISH_ARRAY_FUNCTION, | 
|  | `	      } | 
|  | '$1` | 
|  | *dest = result; | 
|  | } | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | { | 
|  | /* Break out of the loop.  */ | 
|  | continue_loop = 0; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | }')dnl | 
|  | define(START_MASKED_ARRAY_FUNCTION, | 
|  | ` | 
|  | extern void `m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict, | 
|  | 'atype` * const restrict, const 'index_type` * const restrict, | 
|  | gfc_array_l1 * const restrict'back_arg`); | 
|  | export_proto(m'name`'rtype_qual`_'atype_code`); | 
|  |  | 
|  | void | 
|  | m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, | 
|  | 'atype` * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | gfc_array_l1 * const restrict mask'back_arg`) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type mstride[GFC_MAX_DIMENSIONS]; | 
|  | 'rtype_name * restrict dest; | 
|  | const atype_name * restrict base; | 
|  | const GFC_LOGICAL_1 * restrict mbase; | 
|  | index_type rank; | 
|  | index_type dim; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type mdelta; | 
|  | int mask_kind; | 
|  |  | 
|  | if (mask == NULL) | 
|  | { | 
|  | #ifdef HAVE_BACK_ARG | 
|  | name`'rtype_qual`_'atype_code (retarray, array, pdim, back); | 
|  | #else | 
|  | name`'rtype_qual`_'atype_code (retarray, array, pdim); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in u_name intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
|  | if (len <= 0) | 
|  | return; | 
|  |  | 
|  | mbase = mask->base_addr; | 
|  |  | 
|  | mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
|  |  | 
|  | if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
|  | #ifdef HAVE_GFC_LOGICAL_16 | 
|  | || mask_kind == 16 | 
|  | #endif | 
|  | ) | 
|  | mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
|  | else | 
|  | runtime_error ("Funny sized logical array"); | 
|  |  | 
|  | delta = GFC_DESCRIPTOR_STRIDE(array,dim); | 
|  | mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
|  | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  |  | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); | 
|  | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | if (alloc_size == 0) | 
|  | { | 
|  | /* Make sure we have a zero-sized array.  */ | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
|  | return; | 
|  | } | 
|  | else | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); | 
|  |  | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in u_name intrinsic"); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | bounds_ifunction_return ((array_t *) retarray, extent, | 
|  | "return value", "u_name"); | 
|  | bounds_equal_extents ((array_t *) mask, (array_t *) array, | 
|  | "MASK argument", "u_name"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | dest = retarray->base_addr; | 
|  | base = array->base_addr; | 
|  |  | 
|  | while (base) | 
|  | { | 
|  | const atype_name * restrict src; | 
|  | const GFC_LOGICAL_1 * restrict msrc; | 
|  | rtype_name result; | 
|  | src = base; | 
|  | msrc = mbase; | 
|  | { | 
|  | ')dnl | 
|  | define(START_MASKED_ARRAY_BLOCK, | 
|  | `	for (n = 0; n < len; n++, src += delta, msrc += mdelta) | 
|  | { | 
|  | ')dnl | 
|  | define(FINISH_MASKED_ARRAY_FUNCTION, | 
|  | `	  } | 
|  | *dest = result; | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | mbase += mstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | mbase -= mstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | { | 
|  | /* Break out of the loop.  */ | 
|  | base = NULL; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | mbase += mstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | }')dnl | 
|  | define(SCALAR_ARRAY_FUNCTION, | 
|  | ` | 
|  | extern void `s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict, | 
|  | 'atype` * const restrict, const index_type * const restrict, | 
|  | GFC_LOGICAL_4 *'back_arg`); | 
|  | export_proto(s'name`'rtype_qual`_'atype_code); | 
|  |  | 
|  | void | 
|  | `s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, | 
|  | 'atype` * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | GFC_LOGICAL_4 * mask'back_arg`) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | 'rtype_name * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type dim; | 
|  |  | 
|  |  | 
|  | if (mask == NULL || *mask) | 
|  | { | 
|  | #ifdef HAVE_BACK_ARG | 
|  | name`'rtype_qual`_'atype_code (retarray, array, pdim, back); | 
|  | #else | 
|  | name`'rtype_qual`_'atype_code (retarray, array, pdim); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | /* Make dim zero based to avoid confusion.  */ | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in u_name intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] <= 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | extent[n] = | 
|  | GFC_DESCRIPTOR_EXTENT(array,n + 1); | 
|  |  | 
|  | if (extent[n] <= 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | if (alloc_size == 0) | 
|  | { | 
|  | /* Make sure we have a zero-sized array.  */ | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
|  | return; | 
|  | } | 
|  | else | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in" | 
|  | " u_name intrinsic: is %ld, should be %ld", | 
|  | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
|  | (long int) rank); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | for (n=0; n < rank; n++) | 
|  | { | 
|  | index_type ret_extent; | 
|  |  | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); | 
|  | if (extent[n] != ret_extent) | 
|  | runtime_error ("Incorrect extent in return value of" | 
|  | " u_name intrinsic in dimension %ld:" | 
|  | " is %ld, should be %ld", (long int) n + 1, | 
|  | (long int) ret_extent, (long int) extent[n]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | } | 
|  |  | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | while(1) | 
|  | { | 
|  | *dest = '$1`; | 
|  | count[0]++; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | }')dnl | 
|  | define(ARRAY_FUNCTION, | 
|  | `START_ARRAY_FUNCTION | 
|  | $2 | 
|  | START_ARRAY_BLOCK($1) | 
|  | $3 | 
|  | FINISH_ARRAY_FUNCTION($4)')dnl | 
|  | define(MASKED_ARRAY_FUNCTION, | 
|  | `START_MASKED_ARRAY_FUNCTION | 
|  | $2 | 
|  | START_MASKED_ARRAY_BLOCK | 
|  | $3 | 
|  | FINISH_MASKED_ARRAY_FUNCTION')dnl |