|  |  | 
|  | /* Implementation of the FINDLOC intrinsic | 
|  | Copyright (C) 2018-2021 Free Software Foundation, Inc. | 
|  | Contributed by Thomas König <tk@tkoenig.net> | 
|  |  | 
|  | This file is part of the GNU Fortran 95 runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 3 of the License, or (at your option) any later version. | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "libgfortran.h" | 
|  | #include <assert.h> | 
|  |  | 
|  | #if defined (HAVE_GFC_COMPLEX_10) | 
|  | extern void findloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | GFC_LOGICAL_4); | 
|  | export_proto(findloc0_c10); | 
|  |  | 
|  | void | 
|  | findloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | GFC_LOGICAL_4 back) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride; | 
|  | const GFC_COMPLEX_10 *base; | 
|  | index_type * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type sz; | 
|  |  | 
|  | rank = GFC_DESCRIPTOR_RANK (array); | 
|  | if (rank <= 0) | 
|  | runtime_error ("Rank of array needs to be > 0"); | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); | 
|  | retarray->dtype.rank = 1; | 
|  | retarray->offset = 0; | 
|  | retarray->base_addr = xmallocarray (rank, sizeof (index_type)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
|  | "FINDLOC"); | 
|  | } | 
|  |  | 
|  | dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Set the return value.  */ | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = 0; | 
|  |  | 
|  | sz = 1; | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  | sz *= extent[n]; | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | count[n] = 0; | 
|  |  | 
|  | if (back) | 
|  | { | 
|  | base = array->base_addr + (sz - 1) * 1; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | do | 
|  | { | 
|  | if (unlikely(*base == value)) | 
|  | { | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = extent[n] - count[n]; | 
|  |  | 
|  | return; | 
|  | } | 
|  | base -= sstride[0] * 1; | 
|  | } while(++count[0] != extent[0]); | 
|  |  | 
|  | n = 0; | 
|  | do | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base += sstride[n] * extent[n] * 1; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base -= sstride[n] * 1; | 
|  | } | 
|  | } while (count[n] == extent[n]); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | base = array->base_addr; | 
|  | while (1) | 
|  | { | 
|  | do | 
|  | { | 
|  | if (unlikely(*base == value)) | 
|  | { | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = count[n] + 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  | base += sstride[0] * 1; | 
|  | } while(++count[0] != extent[0]); | 
|  |  | 
|  | n = 0; | 
|  | do | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n] * 1; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n] * 1; | 
|  | } | 
|  | } while (count[n] == extent[n]); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | extern void mfindloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | gfc_array_l1 *const restrict, GFC_LOGICAL_4); | 
|  | export_proto(mfindloc0_c10); | 
|  |  | 
|  | void | 
|  | mfindloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | gfc_array_l1 *const restrict mask, GFC_LOGICAL_4 back) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type mstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride; | 
|  | const GFC_COMPLEX_10 *base; | 
|  | index_type * restrict dest; | 
|  | GFC_LOGICAL_1 *mbase; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | int mask_kind; | 
|  | index_type sz; | 
|  |  | 
|  | rank = GFC_DESCRIPTOR_RANK (array); | 
|  | if (rank <= 0) | 
|  | runtime_error ("Rank of array needs to be > 0"); | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); | 
|  | retarray->dtype.rank = 1; | 
|  | retarray->offset = 0; | 
|  | retarray->base_addr = xmallocarray (rank, sizeof (index_type)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
|  | "FINDLOC"); | 
|  | bounds_equal_extents ((array_t *) mask, (array_t *) array, | 
|  | "MASK argument", "FINDLOC"); | 
|  | } | 
|  | } | 
|  |  | 
|  | mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
|  |  | 
|  | mbase = mask->base_addr; | 
|  |  | 
|  | if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
|  | #ifdef HAVE_GFC_LOGICAL_16 | 
|  | || mask_kind == 16 | 
|  | #endif | 
|  | ) | 
|  | mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
|  | else | 
|  | internal_error (NULL, "Funny sized logical array"); | 
|  |  | 
|  | dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Set the return value.  */ | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = 0; | 
|  |  | 
|  | sz = 1; | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
|  | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  | sz *= extent[n]; | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | count[n] = 0; | 
|  |  | 
|  | if (back) | 
|  | { | 
|  | base = array->base_addr + (sz - 1) * 1; | 
|  | mbase = mbase + (sz - 1) * mask_kind; | 
|  | while (1) | 
|  | { | 
|  | do | 
|  | { | 
|  | if (unlikely(*mbase && *base == value)) | 
|  | { | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = extent[n] - count[n]; | 
|  |  | 
|  | return; | 
|  | } | 
|  | base -= sstride[0] * 1; | 
|  | mbase -= mstride[0]; | 
|  | } while(++count[0] != extent[0]); | 
|  |  | 
|  | n = 0; | 
|  | do | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base += sstride[n] * extent[n] * 1; | 
|  | mbase -= mstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base -= sstride[n] * 1; | 
|  | mbase += mstride[n]; | 
|  | } | 
|  | } while (count[n] == extent[n]); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | base = array->base_addr; | 
|  | while (1) | 
|  | { | 
|  | do | 
|  | { | 
|  | if (unlikely(*mbase && *base == value)) | 
|  | { | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = count[n] + 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  | base += sstride[0] * 1; | 
|  | mbase += mstride[0]; | 
|  | } while(++count[0] != extent[0]); | 
|  |  | 
|  | n = 0; | 
|  | do | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n] * 1; | 
|  | mbase -= mstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]* 1; | 
|  | mbase += mstride[n]; | 
|  | } | 
|  | } while (count[n] == extent[n]); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | extern void sfindloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | GFC_LOGICAL_4 *, GFC_LOGICAL_4); | 
|  | export_proto(sfindloc0_c10); | 
|  |  | 
|  | void | 
|  | sfindloc0_c10 (gfc_array_index_type * const restrict retarray, | 
|  | gfc_array_c10 * const restrict array, GFC_COMPLEX_10 value, | 
|  | GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back) | 
|  | { | 
|  | index_type rank; | 
|  | index_type dstride; | 
|  | index_type * restrict dest; | 
|  | index_type n; | 
|  |  | 
|  | if (mask == NULL || *mask) | 
|  | { | 
|  | findloc0_c10 (retarray, array, value, back); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rank = GFC_DESCRIPTOR_RANK (array); | 
|  |  | 
|  | if (rank <= 0) | 
|  | internal_error (NULL, "Rank of array needs to be > 0"); | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); | 
|  | retarray->dtype.rank = 1; | 
|  | retarray->offset = 0; | 
|  | retarray->base_addr = xmallocarray (rank, sizeof (index_type)); | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
|  | "FINDLOC"); | 
|  | } | 
|  |  | 
|  | dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | dest = retarray->base_addr; | 
|  | for (n = 0; n<rank; n++) | 
|  | dest[n * dstride] = 0 ; | 
|  | } | 
|  |  | 
|  | #endif |