| /* Implementation of the MINLOC intrinsic | 
 |    Copyright (C) 2002-2018 Free Software Foundation, Inc. | 
 |    Contributed by Paul Brook <paul@nowt.org> | 
 |  | 
 | This file is part of the GNU Fortran runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Libgfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 | #include <assert.h> | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4) | 
 |  | 
 | #define HAVE_BACK_ARG 1 | 
 |  | 
 |  | 
 | extern void minloc1_4_r10 (gfc_array_i4 * const restrict,  | 
 | 	gfc_array_r10 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 back); | 
 | export_proto(minloc1_4_r10); | 
 |  | 
 | void | 
 | minloc1_4_r10 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r10 * const restrict array,  | 
 | 	const index_type * const restrict pdim, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride[GFC_MAX_DIMENSIONS]; | 
 |   const GFC_REAL_10 * restrict base; | 
 |   GFC_INTEGER_4 * restrict dest; | 
 |   index_type rank; | 
 |   index_type n; | 
 |   index_type len; | 
 |   index_type delta; | 
 |   index_type dim; | 
 |   int continue_loop; | 
 |  | 
 | #ifdef HAVE_BACK_ARG | 
 |   assert(back == 0); | 
 | #endif | 
 |  | 
 |   /* Make dim zero based to avoid confusion.  */ | 
 |   rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
 |   dim = (*pdim) - 1; | 
 |  | 
 |   if (unlikely (dim < 0 || dim > rank)) | 
 |     { | 
 |       runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
 |  		     "is %ld, should be between 1 and %ld", | 
 | 		     (long int) dim + 1, (long int) rank + 1); | 
 |     } | 
 |  | 
 |   len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
 |   if (len < 0) | 
 |     len = 0; | 
 |   delta = GFC_DESCRIPTOR_STRIDE(array,dim); | 
 |  | 
 |   for (n = 0; n < dim; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |   for (n = dim; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       size_t alloc_size, str; | 
 |  | 
 |       for (n = 0; n < rank; n++) | 
 | 	{ | 
 | 	  if (n == 0) | 
 | 	    str = 1; | 
 | 	  else | 
 | 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
 |  | 
 | 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
 |  | 
 | 	} | 
 |  | 
 |       retarray->offset = 0; | 
 |       GFC_DTYPE_COPY_SETRANK(retarray,array,rank); | 
 |  | 
 |       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
 |  | 
 |       retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
 |       if (alloc_size == 0) | 
 | 	{ | 
 | 	  /* Make sure we have a zero-sized array.  */ | 
 | 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
 | 	  return; | 
 |  | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
 | 	runtime_error ("rank of return array incorrect in" | 
 | 		       " MINLOC intrinsic: is %ld, should be %ld", | 
 | 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
 | 		       (long int) rank); | 
 |  | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	bounds_ifunction_return ((array_t *) retarray, extent, | 
 | 				 "return value", "MINLOC"); | 
 |     } | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       count[n] = 0; | 
 |       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
 |       if (extent[n] <= 0) | 
 | 	return; | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |   dest = retarray->base_addr; | 
 |  | 
 |   continue_loop = 1; | 
 |   while (continue_loop) | 
 |     { | 
 |       const GFC_REAL_10 * restrict src; | 
 |       GFC_INTEGER_4 result; | 
 |       src = base; | 
 |       { | 
 |  | 
 | 	GFC_REAL_10 minval; | 
 | #if defined (GFC_REAL_10_INFINITY) | 
 | 	minval = GFC_REAL_10_INFINITY; | 
 | #else | 
 | 	minval = GFC_REAL_10_HUGE; | 
 | #endif | 
 | 	result = 1; | 
 | 	if (len <= 0) | 
 | 	  *dest = 0; | 
 | 	else | 
 | 	  { | 
 | 	    for (n = 0; n < len; n++, src += delta) | 
 | 	      { | 
 |  | 
 | #if defined (GFC_REAL_10_QUIET_NAN) | 
 | 		if (*src <= minval) | 
 | 		  { | 
 | 		    minval = *src; | 
 | 		    result = (GFC_INTEGER_4)n + 1; | 
 | 		    break; | 
 | 		  } | 
 | 	      } | 
 | 	    for (; n < len; n++, src += delta) | 
 | 	      { | 
 | #endif | 
 | 		if (*src < minval) | 
 | 		  { | 
 | 		    minval = *src; | 
 | 		    result = (GFC_INTEGER_4)n + 1; | 
 | 		  } | 
 | 	      } | 
 | 	     | 
 | 	    *dest = result; | 
 | 	  } | 
 |       } | 
 |       /* Advance to the next element.  */ | 
 |       count[0]++; | 
 |       base += sstride[0]; | 
 |       dest += dstride[0]; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  dest -= dstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      continue_loop = 0; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	      dest += dstride[n]; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | extern void mminloc1_4_r10 (gfc_array_i4 * const restrict,  | 
 | 	gfc_array_r10 * const restrict, const index_type * const restrict, | 
 | 	gfc_array_l1 * const restrict, GFC_LOGICAL_4 back); | 
 | export_proto(mminloc1_4_r10); | 
 |  | 
 | void | 
 | mminloc1_4_r10 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r10 * const restrict array,  | 
 | 	const index_type * const restrict pdim,  | 
 | 	gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type mstride[GFC_MAX_DIMENSIONS]; | 
 |   GFC_INTEGER_4 * restrict dest; | 
 |   const GFC_REAL_10 * restrict base; | 
 |   const GFC_LOGICAL_1 * restrict mbase; | 
 |   index_type rank; | 
 |   index_type dim; | 
 |   index_type n; | 
 |   index_type len; | 
 |   index_type delta; | 
 |   index_type mdelta; | 
 |   int mask_kind; | 
 |  | 
 | #ifdef HAVE_BACK_ARG | 
 |   assert (back == 0); | 
 | #endif | 
 |   dim = (*pdim) - 1; | 
 |   rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
 |  | 
 |  | 
 |   if (unlikely (dim < 0 || dim > rank)) | 
 |     { | 
 |       runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
 |  		     "is %ld, should be between 1 and %ld", | 
 | 		     (long int) dim + 1, (long int) rank + 1); | 
 |     } | 
 |  | 
 |   len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
 |   if (len <= 0) | 
 |     return; | 
 |  | 
 |   mbase = mask->base_addr; | 
 |  | 
 |   mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
 |  | 
 |   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || mask_kind == 16 | 
 | #endif | 
 |       ) | 
 |     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
 |   else | 
 |     runtime_error ("Funny sized logical array"); | 
 |  | 
 |   delta = GFC_DESCRIPTOR_STRIDE(array,dim); | 
 |   mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); | 
 |  | 
 |   for (n = 0; n < dim; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
 |       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |  | 
 |     } | 
 |   for (n = dim; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); | 
 |       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       size_t alloc_size, str; | 
 |  | 
 |       for (n = 0; n < rank; n++) | 
 | 	{ | 
 | 	  if (n == 0) | 
 | 	    str = 1; | 
 | 	  else | 
 | 	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
 |  | 
 | 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
 |  | 
 | 	} | 
 |  | 
 |       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
 |  | 
 |       retarray->offset = 0; | 
 |       GFC_DTYPE_COPY_SETRANK(retarray,array,rank); | 
 |  | 
 |       if (alloc_size == 0) | 
 | 	{ | 
 | 	  /* Make sure we have a zero-sized array.  */ | 
 | 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
 | 	  return; | 
 | 	} | 
 |       else | 
 | 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
 |  | 
 |     } | 
 |   else | 
 |     { | 
 |       if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
 | 	runtime_error ("rank of return array incorrect in MINLOC intrinsic"); | 
 |  | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	{ | 
 | 	  bounds_ifunction_return ((array_t *) retarray, extent, | 
 | 				   "return value", "MINLOC"); | 
 | 	  bounds_equal_extents ((array_t *) mask, (array_t *) array, | 
 | 	  			"MASK argument", "MINLOC"); | 
 | 	} | 
 |     } | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       count[n] = 0; | 
 |       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
 |       if (extent[n] <= 0) | 
 | 	return; | 
 |     } | 
 |  | 
 |   dest = retarray->base_addr; | 
 |   base = array->base_addr; | 
 |  | 
 |   while (base) | 
 |     { | 
 |       const GFC_REAL_10 * restrict src; | 
 |       const GFC_LOGICAL_1 * restrict msrc; | 
 |       GFC_INTEGER_4 result; | 
 |       src = base; | 
 |       msrc = mbase; | 
 |       { | 
 |  | 
 | 	GFC_REAL_10 minval; | 
 | #if defined (GFC_REAL_10_INFINITY) | 
 | 	minval = GFC_REAL_10_INFINITY; | 
 | #else | 
 | 	minval = GFC_REAL_10_HUGE; | 
 | #endif | 
 | #if defined (GFC_REAL_10_QUIET_NAN) | 
 | 	GFC_INTEGER_4 result2 = 0; | 
 | #endif | 
 | 	result = 0; | 
 | 	for (n = 0; n < len; n++, src += delta, msrc += mdelta) | 
 | 	  { | 
 |  | 
 | 		if (*msrc) | 
 | 		  { | 
 | #if defined (GFC_REAL_10_QUIET_NAN) | 
 | 		    if (!result2) | 
 | 		      result2 = (GFC_INTEGER_4)n + 1; | 
 | 		    if (*src <= minval) | 
 | #endif | 
 | 		      { | 
 | 			minval = *src; | 
 | 			result = (GFC_INTEGER_4)n + 1; | 
 | 			break; | 
 | 		      } | 
 | 		  } | 
 | 	      } | 
 | #if defined (GFC_REAL_10_QUIET_NAN) | 
 | 	    if (unlikely (n >= len)) | 
 | 	      result = result2; | 
 | 	    else | 
 | #endif | 
 | 	    for (; n < len; n++, src += delta, msrc += mdelta) | 
 | 	      { | 
 | 		if (*msrc && *src < minval) | 
 | 		  { | 
 | 		    minval = *src; | 
 | 		    result = (GFC_INTEGER_4)n + 1; | 
 | 		  } | 
 | 	  } | 
 | 	*dest = result; | 
 |       } | 
 |       /* Advance to the next element.  */ | 
 |       count[0]++; | 
 |       base += sstride[0]; | 
 |       mbase += mstride[0]; | 
 |       dest += dstride[0]; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  mbase -= mstride[n] * extent[n]; | 
 | 	  dest -= dstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      base = NULL; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	      mbase += mstride[n]; | 
 | 	      dest += dstride[n]; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | extern void sminloc1_4_r10 (gfc_array_i4 * const restrict,  | 
 | 	gfc_array_r10 * const restrict, const index_type * const restrict, | 
 | 	GFC_LOGICAL_4 *, GFC_LOGICAL_4 back); | 
 | export_proto(sminloc1_4_r10); | 
 |  | 
 | void | 
 | sminloc1_4_r10 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r10 * const restrict array,  | 
 | 	const index_type * const restrict pdim,  | 
 | 	GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride[GFC_MAX_DIMENSIONS]; | 
 |   GFC_INTEGER_4 * restrict dest; | 
 |   index_type rank; | 
 |   index_type n; | 
 |   index_type dim; | 
 |  | 
 |  | 
 |   if (*mask) | 
 |     { | 
 | #ifdef HAVE_BACK_ARG | 
 |       minloc1_4_r10 (retarray, array, pdim, back); | 
 | #else | 
 |       minloc1_4_r10 (retarray, array, pdim); | 
 | #endif | 
 |       return; | 
 |     } | 
 |   /* Make dim zero based to avoid confusion.  */ | 
 |   dim = (*pdim) - 1; | 
 |   rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
 |  | 
 |   if (unlikely (dim < 0 || dim > rank)) | 
 |     { | 
 |       runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
 |  		     "is %ld, should be between 1 and %ld", | 
 | 		     (long int) dim + 1, (long int) rank + 1); | 
 |     } | 
 |  | 
 |   for (n = 0; n < dim; n++) | 
 |     { | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |  | 
 |       if (extent[n] <= 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |  | 
 |   for (n = dim; n < rank; n++) | 
 |     { | 
 |       extent[n] = | 
 | 	GFC_DESCRIPTOR_EXTENT(array,n + 1); | 
 |  | 
 |       if (extent[n] <= 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       size_t alloc_size, str; | 
 |  | 
 |       for (n = 0; n < rank; n++) | 
 | 	{ | 
 | 	  if (n == 0) | 
 | 	    str = 1; | 
 | 	  else | 
 | 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
 |  | 
 | 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
 |  | 
 | 	} | 
 |  | 
 |       retarray->offset = 0; | 
 |       GFC_DTYPE_COPY_SETRANK(retarray,array,rank); | 
 |  | 
 |       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
 |  | 
 |       if (alloc_size == 0) | 
 | 	{ | 
 | 	  /* Make sure we have a zero-sized array.  */ | 
 | 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
 | 	  return; | 
 | 	} | 
 |       else | 
 | 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
 | 	runtime_error ("rank of return array incorrect in" | 
 | 		       " MINLOC intrinsic: is %ld, should be %ld", | 
 | 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
 | 		       (long int) rank); | 
 |  | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	{ | 
 | 	  for (n=0; n < rank; n++) | 
 | 	    { | 
 | 	      index_type ret_extent; | 
 |  | 
 | 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); | 
 | 	      if (extent[n] != ret_extent) | 
 | 		runtime_error ("Incorrect extent in return value of" | 
 | 			       " MINLOC intrinsic in dimension %ld:" | 
 | 			       " is %ld, should be %ld", (long int) n + 1, | 
 | 			       (long int) ret_extent, (long int) extent[n]); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       count[n] = 0; | 
 |       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
 |     } | 
 |  | 
 |   dest = retarray->base_addr; | 
 |  | 
 |   while(1) | 
 |     { | 
 |       *dest = 0; | 
 |       count[0]++; | 
 |       dest += dstride[0]; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  dest -= dstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    return; | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      dest += dstride[n]; | 
 | 	    } | 
 |       	} | 
 |     } | 
 | } | 
 |  | 
 | #endif |