|  | /* Implementation of the MATMUL intrinsic | 
|  | Copyright (C) 2002-2018 Free Software Foundation, Inc. | 
|  | Contributed by Paul Brook <paul@nowt.org> | 
|  |  | 
|  | This file is part of the GNU Fortran runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 3 of the License, or (at your option) any later version. | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "libgfortran.h" | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  |  | 
|  |  | 
|  | #if defined (HAVE_GFC_INTEGER_16) | 
|  |  | 
|  | /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be | 
|  | passed to us by the front-end, in which case we call it for large | 
|  | matrices.  */ | 
|  |  | 
|  | typedef void (*blas_call)(const char *, const char *, const int *, const int *, | 
|  | const int *, const GFC_INTEGER_16 *, const GFC_INTEGER_16 *, | 
|  | const int *, const GFC_INTEGER_16 *, const int *, | 
|  | const GFC_INTEGER_16 *, GFC_INTEGER_16 *, const int *, | 
|  | int, int); | 
|  |  | 
|  | /* The order of loops is different in the case of plain matrix | 
|  | multiplication C=MATMUL(A,B), and in the frequent special case where | 
|  | the argument A is the temporary result of a TRANSPOSE intrinsic: | 
|  | C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by | 
|  | looking at their strides. | 
|  |  | 
|  | The equivalent Fortran pseudo-code is: | 
|  |  | 
|  | DIMENSION A(M,COUNT), B(COUNT,N), C(M,N) | 
|  | IF (.NOT.IS_TRANSPOSED(A)) THEN | 
|  | C = 0 | 
|  | DO J=1,N | 
|  | DO K=1,COUNT | 
|  | DO I=1,M | 
|  | C(I,J) = C(I,J)+A(I,K)*B(K,J) | 
|  | ELSE | 
|  | DO J=1,N | 
|  | DO I=1,M | 
|  | S = 0 | 
|  | DO K=1,COUNT | 
|  | S = S+A(I,K)*B(K,J) | 
|  | C(I,J) = S | 
|  | ENDIF | 
|  | */ | 
|  |  | 
|  | /* If try_blas is set to a nonzero value, then the matmul function will | 
|  | see if there is a way to perform the matrix multiplication by a call | 
|  | to the BLAS gemm function.  */ | 
|  |  | 
|  | extern void matmul_i16 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm); | 
|  | export_proto(matmul_i16); | 
|  |  | 
|  | /* Put exhaustive list of possible architectures here here, ORed together.  */ | 
|  |  | 
|  | #if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F) | 
|  |  | 
|  | #ifdef HAVE_AVX | 
|  | static void | 
|  | matmul_i16_avx (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) __attribute__((__target__("avx"))); | 
|  | static void | 
|  | matmul_i16_avx (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | const GFC_INTEGER_16 * restrict abase; | 
|  | const GFC_INTEGER_16 * restrict bbase; | 
|  | GFC_INTEGER_16 * restrict dest; | 
|  |  | 
|  | index_type rxstride, rystride, axstride, aystride, bxstride, bystride; | 
|  | index_type x, y, n, count, xcount, ycount; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] | 
|  |  | 
|  | Either A or B (but not both) can be rank 1: | 
|  |  | 
|  | o One-dimensional argument A is implicitly treated as a row matrix | 
|  | dimensioned [1,count], so xcount=1. | 
|  |  | 
|  | o One-dimensional argument B is implicitly treated as a column matrix | 
|  | dimensioned [count, 1], so ycount=1. | 
|  | */ | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | /* One-dimensional result may be addressed in the code below | 
|  | either as a row or a column matrix. We want both cases to | 
|  | work. */ | 
|  | rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | /* Treat it as a a row matrix A[1,count]. */ | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = 1; | 
|  |  | 
|  | xcount = 1; | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = GFC_DESCRIPTOR_STRIDE(a,1); | 
|  |  | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  |  | 
|  | if (count != GFC_DESCRIPTOR_EXTENT(b,0)) | 
|  | { | 
|  | if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) | 
|  | runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); | 
|  | } | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | /* Treat it as a column matrix B[count,1] */ | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  |  | 
|  | /* bystride should never be used for 1-dimensional b. | 
|  | The value is only used for calculation of the | 
|  | memory by the buffer.  */ | 
|  | bystride = 256; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  | bystride = GFC_DESCRIPTOR_STRIDE(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | bbase = b->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Now that everything is set up, we perform the multiplication | 
|  | itself.  */ | 
|  |  | 
|  | #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) | 
|  | #define min(a,b) ((a) <= (b) ? (a) : (b)) | 
|  | #define max(a,b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) | 
|  | && (bxstride == 1 || bystride == 1) | 
|  | && (((float) xcount) * ((float) ycount) * ((float) count) | 
|  | > POW3(blas_limit))) | 
|  | { | 
|  | const int m = xcount, n = ycount, k = count, ldc = rystride; | 
|  | const GFC_INTEGER_16 one = 1, zero = 0; | 
|  | const int lda = (axstride == 1) ? aystride : axstride, | 
|  | ldb = (bxstride == 1) ? bystride : bxstride; | 
|  |  | 
|  | if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) | 
|  | { | 
|  | assert (gemm != NULL); | 
|  | gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, | 
|  | &n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest, | 
|  | &ldc, 1, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxstride == 1 && axstride == 1 && bxstride == 1) | 
|  | { | 
|  | /* This block of code implements a tuned matmul, derived from | 
|  | Superscalar GEMM-based level 3 BLAS,  Beta version 0.1 | 
|  |  | 
|  | Bo Kagstrom and Per Ling | 
|  | Department of Computing Science | 
|  | Umea University | 
|  | S-901 87 Umea, Sweden | 
|  |  | 
|  | from netlib.org, translated to C, and modified for matmul.m4.  */ | 
|  |  | 
|  | const GFC_INTEGER_16 *a, *b; | 
|  | GFC_INTEGER_16 *c; | 
|  | const index_type m = xcount, n = ycount, k = count; | 
|  |  | 
|  | /* System generated locals */ | 
|  | index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, | 
|  | i1, i2, i3, i4, i5, i6; | 
|  |  | 
|  | /* Local variables */ | 
|  | GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42, | 
|  | f13, f14, f23, f24, f33, f34, f43, f44; | 
|  | index_type i, j, l, ii, jj, ll; | 
|  | index_type isec, jsec, lsec, uisec, ujsec, ulsec; | 
|  | GFC_INTEGER_16 *t1; | 
|  |  | 
|  | a = abase; | 
|  | b = bbase; | 
|  | c = retarray->base_addr; | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | c_dim1 = rystride; | 
|  | c_offset = 1 + c_dim1; | 
|  | c -= c_offset; | 
|  | a_dim1 = aystride; | 
|  | a_offset = 1 + a_dim1; | 
|  | a -= a_offset; | 
|  | b_dim1 = bystride; | 
|  | b_offset = 1 + b_dim1; | 
|  | b -= b_offset; | 
|  |  | 
|  | /* Empty c first.  */ | 
|  | for (j=1; j<=n; j++) | 
|  | for (i=1; i<=m; i++) | 
|  | c[i + j * c_dim1] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | /* Early exit if possible */ | 
|  | if (m == 0 || n == 0 || k == 0) | 
|  | return; | 
|  |  | 
|  | /* Adjust size of t1 to what is needed.  */ | 
|  | index_type t1_dim; | 
|  | t1_dim = (a_dim1-1) * 256 + b_dim1; | 
|  | if (t1_dim > 65536) | 
|  | t1_dim = 65536; | 
|  |  | 
|  | t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16)); | 
|  |  | 
|  | /* Start turning the crank. */ | 
|  | i1 = n; | 
|  | for (jj = 1; jj <= i1; jj += 512) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i2 = 512; | 
|  | i3 = n - jj + 1; | 
|  | jsec = min(i2,i3); | 
|  | ujsec = jsec - jsec % 4; | 
|  | i2 = k; | 
|  | for (ll = 1; ll <= i2; ll += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i3 = 256; | 
|  | i4 = k - ll + 1; | 
|  | lsec = min(i3,i4); | 
|  | ulsec = lsec - lsec % 2; | 
|  |  | 
|  | i3 = m; | 
|  | for (ii = 1; ii <= i3; ii += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i4 = 256; | 
|  | i5 = m - ii + 1; | 
|  | isec = min(i4,i5); | 
|  | uisec = isec - isec % 2; | 
|  | i4 = ll + ulsec - 1; | 
|  | for (l = ll; l <= i4; l += 2) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 2) | 
|  | { | 
|  | t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (l + 1) * a_dim1]; | 
|  | t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | t1[l - ll + 1 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  | if (ulsec < lsec) | 
|  | { | 
|  | i4 = ii + isec - 1; | 
|  | for (i = ii; i<= i4; ++i) | 
|  | { | 
|  | t1[lsec + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (ll + lsec - 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uisec = isec - isec % 4; | 
|  | i4 = jj + ujsec - 1; | 
|  | for (j = jj; j <= i4; j += 4) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f22 = c[i + 1 + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f23 = c[i + 1 + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | f24 = c[i + 1 + (j + 3) * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | f32 = c[i + 2 + (j + 1) * c_dim1]; | 
|  | f42 = c[i + 3 + (j + 1) * c_dim1]; | 
|  | f33 = c[i + 2 + (j + 2) * c_dim1]; | 
|  | f43 = c[i + 3 + (j + 2) * c_dim1]; | 
|  | f34 = c[i + 2 + (j + 3) * c_dim1]; | 
|  | f44 = c[i + 3 + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + 1 + (j + 1) * c_dim1] = f22; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + 1 + (j + 2) * c_dim1] = f23; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | c[i + 1 + (j + 3) * c_dim1] = f24; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | c[i + 2 + (j + 1) * c_dim1] = f32; | 
|  | c[i + 3 + (j + 1) * c_dim1] = f42; | 
|  | c[i + 2 + (j + 2) * c_dim1] = f33; | 
|  | c[i + 3 + (j + 2) * c_dim1] = f43; | 
|  | c[i + 2 + (j + 3) * c_dim1] = f34; | 
|  | c[i + 3 + (j + 3) * c_dim1] = f44; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ujsec < jsec) | 
|  | { | 
|  | i4 = jj + jsec - 1; | 
|  | for (j = jj + ujsec; j <= i4; ++j) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | } | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | free(t1); | 
|  | return; | 
|  | } | 
|  | else if (rxstride == 1 && aystride == 1 && bxstride == 1) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) != 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n] * bbase_y[n]; | 
|  | dest_y[x] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n]; | 
|  | dest[y*rystride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (axstride < aystride) | 
|  | { | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (n = 0; n < count; n++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | /* dest[x,y] += a[x,n] * b[n,y] */ | 
|  | dest[x*rxstride + y*rystride] += | 
|  | abase[x*axstride + n*aystride] * | 
|  | bbase[n*bxstride + y*bystride]; | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n*bxstride]; | 
|  | dest[y*rxstride] = s; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n*aystride] * bbase_y[n*bxstride]; | 
|  | dest_y[x*rxstride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef POW3 | 
|  | #undef min | 
|  | #undef max | 
|  |  | 
|  | #endif /* HAVE_AVX */ | 
|  |  | 
|  | #ifdef HAVE_AVX2 | 
|  | static void | 
|  | matmul_i16_avx2 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) __attribute__((__target__("avx2,fma"))); | 
|  | static void | 
|  | matmul_i16_avx2 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | const GFC_INTEGER_16 * restrict abase; | 
|  | const GFC_INTEGER_16 * restrict bbase; | 
|  | GFC_INTEGER_16 * restrict dest; | 
|  |  | 
|  | index_type rxstride, rystride, axstride, aystride, bxstride, bystride; | 
|  | index_type x, y, n, count, xcount, ycount; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] | 
|  |  | 
|  | Either A or B (but not both) can be rank 1: | 
|  |  | 
|  | o One-dimensional argument A is implicitly treated as a row matrix | 
|  | dimensioned [1,count], so xcount=1. | 
|  |  | 
|  | o One-dimensional argument B is implicitly treated as a column matrix | 
|  | dimensioned [count, 1], so ycount=1. | 
|  | */ | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | /* One-dimensional result may be addressed in the code below | 
|  | either as a row or a column matrix. We want both cases to | 
|  | work. */ | 
|  | rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | /* Treat it as a a row matrix A[1,count]. */ | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = 1; | 
|  |  | 
|  | xcount = 1; | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = GFC_DESCRIPTOR_STRIDE(a,1); | 
|  |  | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  |  | 
|  | if (count != GFC_DESCRIPTOR_EXTENT(b,0)) | 
|  | { | 
|  | if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) | 
|  | runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); | 
|  | } | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | /* Treat it as a column matrix B[count,1] */ | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  |  | 
|  | /* bystride should never be used for 1-dimensional b. | 
|  | The value is only used for calculation of the | 
|  | memory by the buffer.  */ | 
|  | bystride = 256; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  | bystride = GFC_DESCRIPTOR_STRIDE(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | bbase = b->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Now that everything is set up, we perform the multiplication | 
|  | itself.  */ | 
|  |  | 
|  | #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) | 
|  | #define min(a,b) ((a) <= (b) ? (a) : (b)) | 
|  | #define max(a,b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) | 
|  | && (bxstride == 1 || bystride == 1) | 
|  | && (((float) xcount) * ((float) ycount) * ((float) count) | 
|  | > POW3(blas_limit))) | 
|  | { | 
|  | const int m = xcount, n = ycount, k = count, ldc = rystride; | 
|  | const GFC_INTEGER_16 one = 1, zero = 0; | 
|  | const int lda = (axstride == 1) ? aystride : axstride, | 
|  | ldb = (bxstride == 1) ? bystride : bxstride; | 
|  |  | 
|  | if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) | 
|  | { | 
|  | assert (gemm != NULL); | 
|  | gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, | 
|  | &n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest, | 
|  | &ldc, 1, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxstride == 1 && axstride == 1 && bxstride == 1) | 
|  | { | 
|  | /* This block of code implements a tuned matmul, derived from | 
|  | Superscalar GEMM-based level 3 BLAS,  Beta version 0.1 | 
|  |  | 
|  | Bo Kagstrom and Per Ling | 
|  | Department of Computing Science | 
|  | Umea University | 
|  | S-901 87 Umea, Sweden | 
|  |  | 
|  | from netlib.org, translated to C, and modified for matmul.m4.  */ | 
|  |  | 
|  | const GFC_INTEGER_16 *a, *b; | 
|  | GFC_INTEGER_16 *c; | 
|  | const index_type m = xcount, n = ycount, k = count; | 
|  |  | 
|  | /* System generated locals */ | 
|  | index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, | 
|  | i1, i2, i3, i4, i5, i6; | 
|  |  | 
|  | /* Local variables */ | 
|  | GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42, | 
|  | f13, f14, f23, f24, f33, f34, f43, f44; | 
|  | index_type i, j, l, ii, jj, ll; | 
|  | index_type isec, jsec, lsec, uisec, ujsec, ulsec; | 
|  | GFC_INTEGER_16 *t1; | 
|  |  | 
|  | a = abase; | 
|  | b = bbase; | 
|  | c = retarray->base_addr; | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | c_dim1 = rystride; | 
|  | c_offset = 1 + c_dim1; | 
|  | c -= c_offset; | 
|  | a_dim1 = aystride; | 
|  | a_offset = 1 + a_dim1; | 
|  | a -= a_offset; | 
|  | b_dim1 = bystride; | 
|  | b_offset = 1 + b_dim1; | 
|  | b -= b_offset; | 
|  |  | 
|  | /* Empty c first.  */ | 
|  | for (j=1; j<=n; j++) | 
|  | for (i=1; i<=m; i++) | 
|  | c[i + j * c_dim1] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | /* Early exit if possible */ | 
|  | if (m == 0 || n == 0 || k == 0) | 
|  | return; | 
|  |  | 
|  | /* Adjust size of t1 to what is needed.  */ | 
|  | index_type t1_dim; | 
|  | t1_dim = (a_dim1-1) * 256 + b_dim1; | 
|  | if (t1_dim > 65536) | 
|  | t1_dim = 65536; | 
|  |  | 
|  | t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16)); | 
|  |  | 
|  | /* Start turning the crank. */ | 
|  | i1 = n; | 
|  | for (jj = 1; jj <= i1; jj += 512) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i2 = 512; | 
|  | i3 = n - jj + 1; | 
|  | jsec = min(i2,i3); | 
|  | ujsec = jsec - jsec % 4; | 
|  | i2 = k; | 
|  | for (ll = 1; ll <= i2; ll += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i3 = 256; | 
|  | i4 = k - ll + 1; | 
|  | lsec = min(i3,i4); | 
|  | ulsec = lsec - lsec % 2; | 
|  |  | 
|  | i3 = m; | 
|  | for (ii = 1; ii <= i3; ii += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i4 = 256; | 
|  | i5 = m - ii + 1; | 
|  | isec = min(i4,i5); | 
|  | uisec = isec - isec % 2; | 
|  | i4 = ll + ulsec - 1; | 
|  | for (l = ll; l <= i4; l += 2) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 2) | 
|  | { | 
|  | t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (l + 1) * a_dim1]; | 
|  | t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | t1[l - ll + 1 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  | if (ulsec < lsec) | 
|  | { | 
|  | i4 = ii + isec - 1; | 
|  | for (i = ii; i<= i4; ++i) | 
|  | { | 
|  | t1[lsec + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (ll + lsec - 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uisec = isec - isec % 4; | 
|  | i4 = jj + ujsec - 1; | 
|  | for (j = jj; j <= i4; j += 4) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f22 = c[i + 1 + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f23 = c[i + 1 + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | f24 = c[i + 1 + (j + 3) * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | f32 = c[i + 2 + (j + 1) * c_dim1]; | 
|  | f42 = c[i + 3 + (j + 1) * c_dim1]; | 
|  | f33 = c[i + 2 + (j + 2) * c_dim1]; | 
|  | f43 = c[i + 3 + (j + 2) * c_dim1]; | 
|  | f34 = c[i + 2 + (j + 3) * c_dim1]; | 
|  | f44 = c[i + 3 + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + 1 + (j + 1) * c_dim1] = f22; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + 1 + (j + 2) * c_dim1] = f23; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | c[i + 1 + (j + 3) * c_dim1] = f24; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | c[i + 2 + (j + 1) * c_dim1] = f32; | 
|  | c[i + 3 + (j + 1) * c_dim1] = f42; | 
|  | c[i + 2 + (j + 2) * c_dim1] = f33; | 
|  | c[i + 3 + (j + 2) * c_dim1] = f43; | 
|  | c[i + 2 + (j + 3) * c_dim1] = f34; | 
|  | c[i + 3 + (j + 3) * c_dim1] = f44; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ujsec < jsec) | 
|  | { | 
|  | i4 = jj + jsec - 1; | 
|  | for (j = jj + ujsec; j <= i4; ++j) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | } | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | free(t1); | 
|  | return; | 
|  | } | 
|  | else if (rxstride == 1 && aystride == 1 && bxstride == 1) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) != 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n] * bbase_y[n]; | 
|  | dest_y[x] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n]; | 
|  | dest[y*rystride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (axstride < aystride) | 
|  | { | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (n = 0; n < count; n++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | /* dest[x,y] += a[x,n] * b[n,y] */ | 
|  | dest[x*rxstride + y*rystride] += | 
|  | abase[x*axstride + n*aystride] * | 
|  | bbase[n*bxstride + y*bystride]; | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n*bxstride]; | 
|  | dest[y*rxstride] = s; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n*aystride] * bbase_y[n*bxstride]; | 
|  | dest_y[x*rxstride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef POW3 | 
|  | #undef min | 
|  | #undef max | 
|  |  | 
|  | #endif /* HAVE_AVX2 */ | 
|  |  | 
|  | #ifdef HAVE_AVX512F | 
|  | static void | 
|  | matmul_i16_avx512f (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) __attribute__((__target__("avx512f"))); | 
|  | static void | 
|  | matmul_i16_avx512f (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | const GFC_INTEGER_16 * restrict abase; | 
|  | const GFC_INTEGER_16 * restrict bbase; | 
|  | GFC_INTEGER_16 * restrict dest; | 
|  |  | 
|  | index_type rxstride, rystride, axstride, aystride, bxstride, bystride; | 
|  | index_type x, y, n, count, xcount, ycount; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] | 
|  |  | 
|  | Either A or B (but not both) can be rank 1: | 
|  |  | 
|  | o One-dimensional argument A is implicitly treated as a row matrix | 
|  | dimensioned [1,count], so xcount=1. | 
|  |  | 
|  | o One-dimensional argument B is implicitly treated as a column matrix | 
|  | dimensioned [count, 1], so ycount=1. | 
|  | */ | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | /* One-dimensional result may be addressed in the code below | 
|  | either as a row or a column matrix. We want both cases to | 
|  | work. */ | 
|  | rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | /* Treat it as a a row matrix A[1,count]. */ | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = 1; | 
|  |  | 
|  | xcount = 1; | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = GFC_DESCRIPTOR_STRIDE(a,1); | 
|  |  | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  |  | 
|  | if (count != GFC_DESCRIPTOR_EXTENT(b,0)) | 
|  | { | 
|  | if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) | 
|  | runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); | 
|  | } | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | /* Treat it as a column matrix B[count,1] */ | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  |  | 
|  | /* bystride should never be used for 1-dimensional b. | 
|  | The value is only used for calculation of the | 
|  | memory by the buffer.  */ | 
|  | bystride = 256; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  | bystride = GFC_DESCRIPTOR_STRIDE(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | bbase = b->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Now that everything is set up, we perform the multiplication | 
|  | itself.  */ | 
|  |  | 
|  | #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) | 
|  | #define min(a,b) ((a) <= (b) ? (a) : (b)) | 
|  | #define max(a,b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) | 
|  | && (bxstride == 1 || bystride == 1) | 
|  | && (((float) xcount) * ((float) ycount) * ((float) count) | 
|  | > POW3(blas_limit))) | 
|  | { | 
|  | const int m = xcount, n = ycount, k = count, ldc = rystride; | 
|  | const GFC_INTEGER_16 one = 1, zero = 0; | 
|  | const int lda = (axstride == 1) ? aystride : axstride, | 
|  | ldb = (bxstride == 1) ? bystride : bxstride; | 
|  |  | 
|  | if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) | 
|  | { | 
|  | assert (gemm != NULL); | 
|  | gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, | 
|  | &n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest, | 
|  | &ldc, 1, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxstride == 1 && axstride == 1 && bxstride == 1) | 
|  | { | 
|  | /* This block of code implements a tuned matmul, derived from | 
|  | Superscalar GEMM-based level 3 BLAS,  Beta version 0.1 | 
|  |  | 
|  | Bo Kagstrom and Per Ling | 
|  | Department of Computing Science | 
|  | Umea University | 
|  | S-901 87 Umea, Sweden | 
|  |  | 
|  | from netlib.org, translated to C, and modified for matmul.m4.  */ | 
|  |  | 
|  | const GFC_INTEGER_16 *a, *b; | 
|  | GFC_INTEGER_16 *c; | 
|  | const index_type m = xcount, n = ycount, k = count; | 
|  |  | 
|  | /* System generated locals */ | 
|  | index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, | 
|  | i1, i2, i3, i4, i5, i6; | 
|  |  | 
|  | /* Local variables */ | 
|  | GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42, | 
|  | f13, f14, f23, f24, f33, f34, f43, f44; | 
|  | index_type i, j, l, ii, jj, ll; | 
|  | index_type isec, jsec, lsec, uisec, ujsec, ulsec; | 
|  | GFC_INTEGER_16 *t1; | 
|  |  | 
|  | a = abase; | 
|  | b = bbase; | 
|  | c = retarray->base_addr; | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | c_dim1 = rystride; | 
|  | c_offset = 1 + c_dim1; | 
|  | c -= c_offset; | 
|  | a_dim1 = aystride; | 
|  | a_offset = 1 + a_dim1; | 
|  | a -= a_offset; | 
|  | b_dim1 = bystride; | 
|  | b_offset = 1 + b_dim1; | 
|  | b -= b_offset; | 
|  |  | 
|  | /* Empty c first.  */ | 
|  | for (j=1; j<=n; j++) | 
|  | for (i=1; i<=m; i++) | 
|  | c[i + j * c_dim1] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | /* Early exit if possible */ | 
|  | if (m == 0 || n == 0 || k == 0) | 
|  | return; | 
|  |  | 
|  | /* Adjust size of t1 to what is needed.  */ | 
|  | index_type t1_dim; | 
|  | t1_dim = (a_dim1-1) * 256 + b_dim1; | 
|  | if (t1_dim > 65536) | 
|  | t1_dim = 65536; | 
|  |  | 
|  | t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16)); | 
|  |  | 
|  | /* Start turning the crank. */ | 
|  | i1 = n; | 
|  | for (jj = 1; jj <= i1; jj += 512) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i2 = 512; | 
|  | i3 = n - jj + 1; | 
|  | jsec = min(i2,i3); | 
|  | ujsec = jsec - jsec % 4; | 
|  | i2 = k; | 
|  | for (ll = 1; ll <= i2; ll += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i3 = 256; | 
|  | i4 = k - ll + 1; | 
|  | lsec = min(i3,i4); | 
|  | ulsec = lsec - lsec % 2; | 
|  |  | 
|  | i3 = m; | 
|  | for (ii = 1; ii <= i3; ii += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i4 = 256; | 
|  | i5 = m - ii + 1; | 
|  | isec = min(i4,i5); | 
|  | uisec = isec - isec % 2; | 
|  | i4 = ll + ulsec - 1; | 
|  | for (l = ll; l <= i4; l += 2) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 2) | 
|  | { | 
|  | t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (l + 1) * a_dim1]; | 
|  | t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | t1[l - ll + 1 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  | if (ulsec < lsec) | 
|  | { | 
|  | i4 = ii + isec - 1; | 
|  | for (i = ii; i<= i4; ++i) | 
|  | { | 
|  | t1[lsec + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (ll + lsec - 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uisec = isec - isec % 4; | 
|  | i4 = jj + ujsec - 1; | 
|  | for (j = jj; j <= i4; j += 4) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f22 = c[i + 1 + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f23 = c[i + 1 + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | f24 = c[i + 1 + (j + 3) * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | f32 = c[i + 2 + (j + 1) * c_dim1]; | 
|  | f42 = c[i + 3 + (j + 1) * c_dim1]; | 
|  | f33 = c[i + 2 + (j + 2) * c_dim1]; | 
|  | f43 = c[i + 3 + (j + 2) * c_dim1]; | 
|  | f34 = c[i + 2 + (j + 3) * c_dim1]; | 
|  | f44 = c[i + 3 + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + 1 + (j + 1) * c_dim1] = f22; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + 1 + (j + 2) * c_dim1] = f23; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | c[i + 1 + (j + 3) * c_dim1] = f24; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | c[i + 2 + (j + 1) * c_dim1] = f32; | 
|  | c[i + 3 + (j + 1) * c_dim1] = f42; | 
|  | c[i + 2 + (j + 2) * c_dim1] = f33; | 
|  | c[i + 3 + (j + 2) * c_dim1] = f43; | 
|  | c[i + 2 + (j + 3) * c_dim1] = f34; | 
|  | c[i + 3 + (j + 3) * c_dim1] = f44; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ujsec < jsec) | 
|  | { | 
|  | i4 = jj + jsec - 1; | 
|  | for (j = jj + ujsec; j <= i4; ++j) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | } | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | free(t1); | 
|  | return; | 
|  | } | 
|  | else if (rxstride == 1 && aystride == 1 && bxstride == 1) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) != 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n] * bbase_y[n]; | 
|  | dest_y[x] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n]; | 
|  | dest[y*rystride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (axstride < aystride) | 
|  | { | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (n = 0; n < count; n++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | /* dest[x,y] += a[x,n] * b[n,y] */ | 
|  | dest[x*rxstride + y*rystride] += | 
|  | abase[x*axstride + n*aystride] * | 
|  | bbase[n*bxstride + y*bystride]; | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n*bxstride]; | 
|  | dest[y*rxstride] = s; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n*aystride] * bbase_y[n*bxstride]; | 
|  | dest_y[x*rxstride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef POW3 | 
|  | #undef min | 
|  | #undef max | 
|  |  | 
|  | #endif  /* HAVE_AVX512F */ | 
|  |  | 
|  | /* AMD-specifix funtions with AVX128 and FMA3/FMA4.  */ | 
|  |  | 
|  | #if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128) | 
|  | void | 
|  | matmul_i16_avx128_fma3 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma"))); | 
|  | internal_proto(matmul_i16_avx128_fma3); | 
|  | #endif | 
|  |  | 
|  | #if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128) | 
|  | void | 
|  | matmul_i16_avx128_fma4 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4"))); | 
|  | internal_proto(matmul_i16_avx128_fma4); | 
|  | #endif | 
|  |  | 
|  | /* Function to fall back to if there is no special processor-specific version.  */ | 
|  | static void | 
|  | matmul_i16_vanilla (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | const GFC_INTEGER_16 * restrict abase; | 
|  | const GFC_INTEGER_16 * restrict bbase; | 
|  | GFC_INTEGER_16 * restrict dest; | 
|  |  | 
|  | index_type rxstride, rystride, axstride, aystride, bxstride, bystride; | 
|  | index_type x, y, n, count, xcount, ycount; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] | 
|  |  | 
|  | Either A or B (but not both) can be rank 1: | 
|  |  | 
|  | o One-dimensional argument A is implicitly treated as a row matrix | 
|  | dimensioned [1,count], so xcount=1. | 
|  |  | 
|  | o One-dimensional argument B is implicitly treated as a column matrix | 
|  | dimensioned [count, 1], so ycount=1. | 
|  | */ | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | /* One-dimensional result may be addressed in the code below | 
|  | either as a row or a column matrix. We want both cases to | 
|  | work. */ | 
|  | rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | /* Treat it as a a row matrix A[1,count]. */ | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = 1; | 
|  |  | 
|  | xcount = 1; | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = GFC_DESCRIPTOR_STRIDE(a,1); | 
|  |  | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  |  | 
|  | if (count != GFC_DESCRIPTOR_EXTENT(b,0)) | 
|  | { | 
|  | if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) | 
|  | runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); | 
|  | } | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | /* Treat it as a column matrix B[count,1] */ | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  |  | 
|  | /* bystride should never be used for 1-dimensional b. | 
|  | The value is only used for calculation of the | 
|  | memory by the buffer.  */ | 
|  | bystride = 256; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  | bystride = GFC_DESCRIPTOR_STRIDE(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | bbase = b->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Now that everything is set up, we perform the multiplication | 
|  | itself.  */ | 
|  |  | 
|  | #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) | 
|  | #define min(a,b) ((a) <= (b) ? (a) : (b)) | 
|  | #define max(a,b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) | 
|  | && (bxstride == 1 || bystride == 1) | 
|  | && (((float) xcount) * ((float) ycount) * ((float) count) | 
|  | > POW3(blas_limit))) | 
|  | { | 
|  | const int m = xcount, n = ycount, k = count, ldc = rystride; | 
|  | const GFC_INTEGER_16 one = 1, zero = 0; | 
|  | const int lda = (axstride == 1) ? aystride : axstride, | 
|  | ldb = (bxstride == 1) ? bystride : bxstride; | 
|  |  | 
|  | if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) | 
|  | { | 
|  | assert (gemm != NULL); | 
|  | gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, | 
|  | &n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest, | 
|  | &ldc, 1, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxstride == 1 && axstride == 1 && bxstride == 1) | 
|  | { | 
|  | /* This block of code implements a tuned matmul, derived from | 
|  | Superscalar GEMM-based level 3 BLAS,  Beta version 0.1 | 
|  |  | 
|  | Bo Kagstrom and Per Ling | 
|  | Department of Computing Science | 
|  | Umea University | 
|  | S-901 87 Umea, Sweden | 
|  |  | 
|  | from netlib.org, translated to C, and modified for matmul.m4.  */ | 
|  |  | 
|  | const GFC_INTEGER_16 *a, *b; | 
|  | GFC_INTEGER_16 *c; | 
|  | const index_type m = xcount, n = ycount, k = count; | 
|  |  | 
|  | /* System generated locals */ | 
|  | index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, | 
|  | i1, i2, i3, i4, i5, i6; | 
|  |  | 
|  | /* Local variables */ | 
|  | GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42, | 
|  | f13, f14, f23, f24, f33, f34, f43, f44; | 
|  | index_type i, j, l, ii, jj, ll; | 
|  | index_type isec, jsec, lsec, uisec, ujsec, ulsec; | 
|  | GFC_INTEGER_16 *t1; | 
|  |  | 
|  | a = abase; | 
|  | b = bbase; | 
|  | c = retarray->base_addr; | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | c_dim1 = rystride; | 
|  | c_offset = 1 + c_dim1; | 
|  | c -= c_offset; | 
|  | a_dim1 = aystride; | 
|  | a_offset = 1 + a_dim1; | 
|  | a -= a_offset; | 
|  | b_dim1 = bystride; | 
|  | b_offset = 1 + b_dim1; | 
|  | b -= b_offset; | 
|  |  | 
|  | /* Empty c first.  */ | 
|  | for (j=1; j<=n; j++) | 
|  | for (i=1; i<=m; i++) | 
|  | c[i + j * c_dim1] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | /* Early exit if possible */ | 
|  | if (m == 0 || n == 0 || k == 0) | 
|  | return; | 
|  |  | 
|  | /* Adjust size of t1 to what is needed.  */ | 
|  | index_type t1_dim; | 
|  | t1_dim = (a_dim1-1) * 256 + b_dim1; | 
|  | if (t1_dim > 65536) | 
|  | t1_dim = 65536; | 
|  |  | 
|  | t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16)); | 
|  |  | 
|  | /* Start turning the crank. */ | 
|  | i1 = n; | 
|  | for (jj = 1; jj <= i1; jj += 512) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i2 = 512; | 
|  | i3 = n - jj + 1; | 
|  | jsec = min(i2,i3); | 
|  | ujsec = jsec - jsec % 4; | 
|  | i2 = k; | 
|  | for (ll = 1; ll <= i2; ll += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i3 = 256; | 
|  | i4 = k - ll + 1; | 
|  | lsec = min(i3,i4); | 
|  | ulsec = lsec - lsec % 2; | 
|  |  | 
|  | i3 = m; | 
|  | for (ii = 1; ii <= i3; ii += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i4 = 256; | 
|  | i5 = m - ii + 1; | 
|  | isec = min(i4,i5); | 
|  | uisec = isec - isec % 2; | 
|  | i4 = ll + ulsec - 1; | 
|  | for (l = ll; l <= i4; l += 2) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 2) | 
|  | { | 
|  | t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (l + 1) * a_dim1]; | 
|  | t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | t1[l - ll + 1 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  | if (ulsec < lsec) | 
|  | { | 
|  | i4 = ii + isec - 1; | 
|  | for (i = ii; i<= i4; ++i) | 
|  | { | 
|  | t1[lsec + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (ll + lsec - 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uisec = isec - isec % 4; | 
|  | i4 = jj + ujsec - 1; | 
|  | for (j = jj; j <= i4; j += 4) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f22 = c[i + 1 + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f23 = c[i + 1 + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | f24 = c[i + 1 + (j + 3) * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | f32 = c[i + 2 + (j + 1) * c_dim1]; | 
|  | f42 = c[i + 3 + (j + 1) * c_dim1]; | 
|  | f33 = c[i + 2 + (j + 2) * c_dim1]; | 
|  | f43 = c[i + 3 + (j + 2) * c_dim1]; | 
|  | f34 = c[i + 2 + (j + 3) * c_dim1]; | 
|  | f44 = c[i + 3 + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + 1 + (j + 1) * c_dim1] = f22; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + 1 + (j + 2) * c_dim1] = f23; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | c[i + 1 + (j + 3) * c_dim1] = f24; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | c[i + 2 + (j + 1) * c_dim1] = f32; | 
|  | c[i + 3 + (j + 1) * c_dim1] = f42; | 
|  | c[i + 2 + (j + 2) * c_dim1] = f33; | 
|  | c[i + 3 + (j + 2) * c_dim1] = f43; | 
|  | c[i + 2 + (j + 3) * c_dim1] = f34; | 
|  | c[i + 3 + (j + 3) * c_dim1] = f44; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ujsec < jsec) | 
|  | { | 
|  | i4 = jj + jsec - 1; | 
|  | for (j = jj + ujsec; j <= i4; ++j) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | } | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | free(t1); | 
|  | return; | 
|  | } | 
|  | else if (rxstride == 1 && aystride == 1 && bxstride == 1) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) != 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n] * bbase_y[n]; | 
|  | dest_y[x] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n]; | 
|  | dest[y*rystride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (axstride < aystride) | 
|  | { | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (n = 0; n < count; n++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | /* dest[x,y] += a[x,n] * b[n,y] */ | 
|  | dest[x*rxstride + y*rystride] += | 
|  | abase[x*axstride + n*aystride] * | 
|  | bbase[n*bxstride + y*bystride]; | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n*bxstride]; | 
|  | dest[y*rxstride] = s; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n*aystride] * bbase_y[n*bxstride]; | 
|  | dest_y[x*rxstride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef POW3 | 
|  | #undef min | 
|  | #undef max | 
|  |  | 
|  |  | 
|  | /* Compiling main function, with selection code for the processor.  */ | 
|  |  | 
|  | /* Currently, this is i386 only.  Adjust for other architectures.  */ | 
|  |  | 
|  | #include <config/i386/cpuinfo.h> | 
|  | void matmul_i16 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | static void (*matmul_p) (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm); | 
|  |  | 
|  | void (*matmul_fn) (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm); | 
|  |  | 
|  | matmul_fn = __atomic_load_n (&matmul_p, __ATOMIC_RELAXED); | 
|  | if (matmul_fn == NULL) | 
|  | { | 
|  | matmul_fn = matmul_i16_vanilla; | 
|  | if (__cpu_model.__cpu_vendor == VENDOR_INTEL) | 
|  | { | 
|  | /* Run down the available processors in order of preference.  */ | 
|  | #ifdef HAVE_AVX512F | 
|  | if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F)) | 
|  | { | 
|  | matmul_fn = matmul_i16_avx512f; | 
|  | goto store; | 
|  | } | 
|  |  | 
|  | #endif  /* HAVE_AVX512F */ | 
|  |  | 
|  | #ifdef HAVE_AVX2 | 
|  | if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2)) | 
|  | && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA))) | 
|  | { | 
|  | matmul_fn = matmul_i16_avx2; | 
|  | goto store; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef HAVE_AVX | 
|  | if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX)) | 
|  | { | 
|  | matmul_fn = matmul_i16_avx; | 
|  | goto store; | 
|  | } | 
|  | #endif  /* HAVE_AVX */ | 
|  | } | 
|  | else if (__cpu_model.__cpu_vendor == VENDOR_AMD) | 
|  | { | 
|  | #if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128) | 
|  | if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX)) | 
|  | && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA))) | 
|  | { | 
|  | matmul_fn = matmul_i16_avx128_fma3; | 
|  | goto store; | 
|  | } | 
|  | #endif | 
|  | #if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128) | 
|  | if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX)) | 
|  | && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA4))) | 
|  | { | 
|  | matmul_fn = matmul_i16_avx128_fma4; | 
|  | goto store; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } | 
|  | store: | 
|  | __atomic_store_n (&matmul_p, matmul_fn, __ATOMIC_RELAXED); | 
|  | } | 
|  |  | 
|  | (*matmul_fn) (retarray, a, b, try_blas, blas_limit, gemm); | 
|  | } | 
|  |  | 
|  | #else  /* Just the vanilla function.  */ | 
|  |  | 
|  | void | 
|  | matmul_i16 (gfc_array_i16 * const restrict retarray, | 
|  | gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas, | 
|  | int blas_limit, blas_call gemm) | 
|  | { | 
|  | const GFC_INTEGER_16 * restrict abase; | 
|  | const GFC_INTEGER_16 * restrict bbase; | 
|  | GFC_INTEGER_16 * restrict dest; | 
|  |  | 
|  | index_type rxstride, rystride, axstride, aystride, bxstride, bystride; | 
|  | index_type x, y, n, count, xcount, ycount; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] | 
|  |  | 
|  | Either A or B (but not both) can be rank 1: | 
|  |  | 
|  | o One-dimensional argument A is implicitly treated as a row matrix | 
|  | dimensioned [1,count], so xcount=1. | 
|  |  | 
|  | o One-dimensional argument B is implicitly treated as a column matrix | 
|  | dimensioned [count, 1], so ycount=1. | 
|  | */ | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | /* One-dimensional result may be addressed in the code below | 
|  | either as a row or a column matrix. We want both cases to | 
|  | work. */ | 
|  | rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | /* Treat it as a a row matrix A[1,count]. */ | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = 1; | 
|  |  | 
|  | xcount = 1; | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | else | 
|  | { | 
|  | axstride = GFC_DESCRIPTOR_STRIDE(a,0); | 
|  | aystride = GFC_DESCRIPTOR_STRIDE(a,1); | 
|  |  | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  |  | 
|  | if (count != GFC_DESCRIPTOR_EXTENT(b,0)) | 
|  | { | 
|  | if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) | 
|  | runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); | 
|  | } | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | /* Treat it as a column matrix B[count,1] */ | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  |  | 
|  | /* bystride should never be used for 1-dimensional b. | 
|  | The value is only used for calculation of the | 
|  | memory by the buffer.  */ | 
|  | bystride = 256; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bxstride = GFC_DESCRIPTOR_STRIDE(b,0); | 
|  | bystride = GFC_DESCRIPTOR_STRIDE(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | bbase = b->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | /* Now that everything is set up, we perform the multiplication | 
|  | itself.  */ | 
|  |  | 
|  | #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) | 
|  | #define min(a,b) ((a) <= (b) ? (a) : (b)) | 
|  | #define max(a,b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) | 
|  | && (bxstride == 1 || bystride == 1) | 
|  | && (((float) xcount) * ((float) ycount) * ((float) count) | 
|  | > POW3(blas_limit))) | 
|  | { | 
|  | const int m = xcount, n = ycount, k = count, ldc = rystride; | 
|  | const GFC_INTEGER_16 one = 1, zero = 0; | 
|  | const int lda = (axstride == 1) ? aystride : axstride, | 
|  | ldb = (bxstride == 1) ? bystride : bxstride; | 
|  |  | 
|  | if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) | 
|  | { | 
|  | assert (gemm != NULL); | 
|  | gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, | 
|  | &n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest, | 
|  | &ldc, 1, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxstride == 1 && axstride == 1 && bxstride == 1) | 
|  | { | 
|  | /* This block of code implements a tuned matmul, derived from | 
|  | Superscalar GEMM-based level 3 BLAS,  Beta version 0.1 | 
|  |  | 
|  | Bo Kagstrom and Per Ling | 
|  | Department of Computing Science | 
|  | Umea University | 
|  | S-901 87 Umea, Sweden | 
|  |  | 
|  | from netlib.org, translated to C, and modified for matmul.m4.  */ | 
|  |  | 
|  | const GFC_INTEGER_16 *a, *b; | 
|  | GFC_INTEGER_16 *c; | 
|  | const index_type m = xcount, n = ycount, k = count; | 
|  |  | 
|  | /* System generated locals */ | 
|  | index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, | 
|  | i1, i2, i3, i4, i5, i6; | 
|  |  | 
|  | /* Local variables */ | 
|  | GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42, | 
|  | f13, f14, f23, f24, f33, f34, f43, f44; | 
|  | index_type i, j, l, ii, jj, ll; | 
|  | index_type isec, jsec, lsec, uisec, ujsec, ulsec; | 
|  | GFC_INTEGER_16 *t1; | 
|  |  | 
|  | a = abase; | 
|  | b = bbase; | 
|  | c = retarray->base_addr; | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | c_dim1 = rystride; | 
|  | c_offset = 1 + c_dim1; | 
|  | c -= c_offset; | 
|  | a_dim1 = aystride; | 
|  | a_offset = 1 + a_dim1; | 
|  | a -= a_offset; | 
|  | b_dim1 = bystride; | 
|  | b_offset = 1 + b_dim1; | 
|  | b -= b_offset; | 
|  |  | 
|  | /* Empty c first.  */ | 
|  | for (j=1; j<=n; j++) | 
|  | for (i=1; i<=m; i++) | 
|  | c[i + j * c_dim1] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | /* Early exit if possible */ | 
|  | if (m == 0 || n == 0 || k == 0) | 
|  | return; | 
|  |  | 
|  | /* Adjust size of t1 to what is needed.  */ | 
|  | index_type t1_dim; | 
|  | t1_dim = (a_dim1-1) * 256 + b_dim1; | 
|  | if (t1_dim > 65536) | 
|  | t1_dim = 65536; | 
|  |  | 
|  | t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16)); | 
|  |  | 
|  | /* Start turning the crank. */ | 
|  | i1 = n; | 
|  | for (jj = 1; jj <= i1; jj += 512) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i2 = 512; | 
|  | i3 = n - jj + 1; | 
|  | jsec = min(i2,i3); | 
|  | ujsec = jsec - jsec % 4; | 
|  | i2 = k; | 
|  | for (ll = 1; ll <= i2; ll += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i3 = 256; | 
|  | i4 = k - ll + 1; | 
|  | lsec = min(i3,i4); | 
|  | ulsec = lsec - lsec % 2; | 
|  |  | 
|  | i3 = m; | 
|  | for (ii = 1; ii <= i3; ii += 256) | 
|  | { | 
|  | /* Computing MIN */ | 
|  | i4 = 256; | 
|  | i5 = m - ii + 1; | 
|  | isec = min(i4,i5); | 
|  | uisec = isec - isec % 2; | 
|  | i4 = ll + ulsec - 1; | 
|  | for (l = ll; l <= i4; l += 2) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 2) | 
|  | { | 
|  | t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (l + 1) * a_dim1]; | 
|  | t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = | 
|  | a[i + 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | t1[l - ll + 1 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + l * a_dim1]; | 
|  | t1[l - ll + 2 + (isec << 8) - 257] = | 
|  | a[ii + isec - 1 + (l + 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  | if (ulsec < lsec) | 
|  | { | 
|  | i4 = ii + isec - 1; | 
|  | for (i = ii; i<= i4; ++i) | 
|  | { | 
|  | t1[lsec + ((i - ii + 1) << 8) - 257] = | 
|  | a[i + (ll + lsec - 1) * a_dim1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uisec = isec - isec % 4; | 
|  | i4 = jj + ujsec - 1; | 
|  | for (j = jj; j <= i4; j += 4) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f22 = c[i + 1 + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f23 = c[i + 1 + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | f24 = c[i + 1 + (j + 3) * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | f32 = c[i + 2 + (j + 1) * c_dim1]; | 
|  | f42 = c[i + 3 + (j + 1) * c_dim1]; | 
|  | f33 = c[i + 2 + (j + 2) * c_dim1]; | 
|  | f43 = c[i + 3 + (j + 2) * c_dim1]; | 
|  | f34 = c[i + 2 + (j + 3) * c_dim1]; | 
|  | f44 = c[i + 3 + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + j * b_dim1]; | 
|  | f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 1) * b_dim1]; | 
|  | f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 2) * b_dim1]; | 
|  | f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] | 
|  | * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + 1 + (j + 1) * c_dim1] = f22; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + 1 + (j + 2) * c_dim1] = f23; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | c[i + 1 + (j + 3) * c_dim1] = f24; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | c[i + 2 + (j + 1) * c_dim1] = f32; | 
|  | c[i + 3 + (j + 1) * c_dim1] = f42; | 
|  | c[i + 2 + (j + 2) * c_dim1] = f33; | 
|  | c[i + 3 + (j + 2) * c_dim1] = f43; | 
|  | c[i + 2 + (j + 3) * c_dim1] = f34; | 
|  | c[i + 3 + (j + 3) * c_dim1] = f44; | 
|  | } | 
|  | if (uisec < isec) | 
|  | { | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f12 = c[i + (j + 1) * c_dim1]; | 
|  | f13 = c[i + (j + 2) * c_dim1]; | 
|  | f14 = c[i + (j + 3) * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 1) * b_dim1]; | 
|  | f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 2) * b_dim1]; | 
|  | f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + (j + 3) * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + (j + 1) * c_dim1] = f12; | 
|  | c[i + (j + 2) * c_dim1] = f13; | 
|  | c[i + (j + 3) * c_dim1] = f14; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ujsec < jsec) | 
|  | { | 
|  | i4 = jj + jsec - 1; | 
|  | for (j = jj + ujsec; j <= i4; ++j) | 
|  | { | 
|  | i5 = ii + uisec - 1; | 
|  | for (i = ii; i <= i5; i += 4) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | f21 = c[i + 1 + j * c_dim1]; | 
|  | f31 = c[i + 2 + j * c_dim1]; | 
|  | f41 = c[i + 3 + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | c[i + 1 + j * c_dim1] = f21; | 
|  | c[i + 2 + j * c_dim1] = f31; | 
|  | c[i + 3 + j * c_dim1] = f41; | 
|  | } | 
|  | i5 = ii + isec - 1; | 
|  | for (i = ii + uisec; i <= i5; ++i) | 
|  | { | 
|  | f11 = c[i + j * c_dim1]; | 
|  | i6 = ll + lsec - 1; | 
|  | for (l = ll; l <= i6; ++l) | 
|  | { | 
|  | f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - | 
|  | 257] * b[l + j * b_dim1]; | 
|  | } | 
|  | c[i + j * c_dim1] = f11; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | free(t1); | 
|  | return; | 
|  | } | 
|  | else if (rxstride == 1 && aystride == 1 && bxstride == 1) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) != 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n] * bbase_y[n]; | 
|  | dest_y[x] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n]; | 
|  | dest[y*rystride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (axstride < aystride) | 
|  | { | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | for (n = 0; n < count; n++) | 
|  | for (x = 0; x < xcount; x++) | 
|  | /* dest[x,y] += a[x,n] * b[n,y] */ | 
|  | dest[x*rxstride + y*rystride] += | 
|  | abase[x*axstride + n*aystride] * | 
|  | bbase[n*bxstride + y*bystride]; | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase[n*axstride] * bbase_y[n*bxstride]; | 
|  | dest[y*rxstride] = s; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const GFC_INTEGER_16 *restrict abase_x; | 
|  | const GFC_INTEGER_16 *restrict bbase_y; | 
|  | GFC_INTEGER_16 *restrict dest_y; | 
|  | GFC_INTEGER_16 s; | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | bbase_y = &bbase[y*bystride]; | 
|  | dest_y = &dest[y*rystride]; | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | abase_x = &abase[x*axstride]; | 
|  | s = (GFC_INTEGER_16) 0; | 
|  | for (n = 0; n < count; n++) | 
|  | s += abase_x[n*aystride] * bbase_y[n*bxstride]; | 
|  | dest_y[x*rxstride] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef POW3 | 
|  | #undef min | 
|  | #undef max | 
|  |  | 
|  | #endif | 
|  | #endif | 
|  |  |