|  | // Copyright 2017 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | //go:generate go run make_tables.go | 
|  |  | 
|  | // Package bits implements bit counting and manipulation | 
|  | // functions for the predeclared unsigned integer types. | 
|  | package bits | 
|  |  | 
|  | const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64 | 
|  |  | 
|  | // UintSize is the size of a uint in bits. | 
|  | const UintSize = uintSize | 
|  |  | 
|  | // --- LeadingZeros --- | 
|  |  | 
|  | // LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0. | 
|  | func LeadingZeros(x uint) int { return UintSize - Len(x) } | 
|  |  | 
|  | // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. | 
|  | func LeadingZeros8(x uint8) int { return 8 - Len8(x) } | 
|  |  | 
|  | // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0. | 
|  | func LeadingZeros16(x uint16) int { return 16 - Len16(x) } | 
|  |  | 
|  | // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0. | 
|  | func LeadingZeros32(x uint32) int { return 32 - Len32(x) } | 
|  |  | 
|  | // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. | 
|  | func LeadingZeros64(x uint64) int { return 64 - Len64(x) } | 
|  |  | 
|  | // --- TrailingZeros --- | 
|  |  | 
|  | // See http://supertech.csail.mit.edu/papers/debruijn.pdf | 
|  | const deBruijn32 = 0x077CB531 | 
|  |  | 
|  | var deBruijn32tab = [32]byte{ | 
|  | 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, | 
|  | 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, | 
|  | } | 
|  |  | 
|  | const deBruijn64 = 0x03f79d71b4ca8b09 | 
|  |  | 
|  | var deBruijn64tab = [64]byte{ | 
|  | 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, | 
|  | 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, | 
|  | 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, | 
|  | 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, | 
|  | } | 
|  |  | 
|  | // TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0. | 
|  | func TrailingZeros(x uint) int { | 
|  | if UintSize == 32 { | 
|  | return TrailingZeros32(uint32(x)) | 
|  | } | 
|  | return TrailingZeros64(uint64(x)) | 
|  | } | 
|  |  | 
|  | // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. | 
|  | func TrailingZeros8(x uint8) int { | 
|  | return int(ntz8tab[x]) | 
|  | } | 
|  |  | 
|  | // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0. | 
|  | func TrailingZeros16(x uint16) int { | 
|  | if x == 0 { | 
|  | return 16 | 
|  | } | 
|  | // see comment in TrailingZeros64 | 
|  | return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)]) | 
|  | } | 
|  |  | 
|  | // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. | 
|  | func TrailingZeros32(x uint32) int { | 
|  | if x == 0 { | 
|  | return 32 | 
|  | } | 
|  | // see comment in TrailingZeros64 | 
|  | return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)]) | 
|  | } | 
|  |  | 
|  | // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. | 
|  | func TrailingZeros64(x uint64) int { | 
|  | if x == 0 { | 
|  | return 64 | 
|  | } | 
|  | // If popcount is fast, replace code below with return popcount(^x & (x - 1)). | 
|  | // | 
|  | // x & -x leaves only the right-most bit set in the word. Let k be the | 
|  | // index of that bit. Since only a single bit is set, the value is two | 
|  | // to the power of k. Multiplying by a power of two is equivalent to | 
|  | // left shifting, in this case by k bits. The de Bruijn (64 bit) constant | 
|  | // is such that all six bit, consecutive substrings are distinct. | 
|  | // Therefore, if we have a left shifted version of this constant we can | 
|  | // find by how many bits it was shifted by looking at which six bit | 
|  | // substring ended up at the top of the word. | 
|  | // (Knuth, volume 4, section 7.3.1) | 
|  | return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)]) | 
|  | } | 
|  |  | 
|  | // --- OnesCount --- | 
|  |  | 
|  | const m0 = 0x5555555555555555 // 01010101 ... | 
|  | const m1 = 0x3333333333333333 // 00110011 ... | 
|  | const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... | 
|  | const m3 = 0x00ff00ff00ff00ff // etc. | 
|  | const m4 = 0x0000ffff0000ffff | 
|  |  | 
|  | // OnesCount returns the number of one bits ("population count") in x. | 
|  | func OnesCount(x uint) int { | 
|  | if UintSize == 32 { | 
|  | return OnesCount32(uint32(x)) | 
|  | } | 
|  | return OnesCount64(uint64(x)) | 
|  | } | 
|  |  | 
|  | // OnesCount8 returns the number of one bits ("population count") in x. | 
|  | func OnesCount8(x uint8) int { | 
|  | return int(pop8tab[x]) | 
|  | } | 
|  |  | 
|  | // OnesCount16 returns the number of one bits ("population count") in x. | 
|  | func OnesCount16(x uint16) int { | 
|  | return int(pop8tab[x>>8] + pop8tab[x&0xff]) | 
|  | } | 
|  |  | 
|  | // OnesCount32 returns the number of one bits ("population count") in x. | 
|  | func OnesCount32(x uint32) int { | 
|  | return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff]) | 
|  | } | 
|  |  | 
|  | // OnesCount64 returns the number of one bits ("population count") in x. | 
|  | func OnesCount64(x uint64) int { | 
|  | // Implementation: Parallel summing of adjacent bits. | 
|  | // See "Hacker's Delight", Chap. 5: Counting Bits. | 
|  | // The following pattern shows the general approach: | 
|  | // | 
|  | //   x = x>>1&(m0&m) + x&(m0&m) | 
|  | //   x = x>>2&(m1&m) + x&(m1&m) | 
|  | //   x = x>>4&(m2&m) + x&(m2&m) | 
|  | //   x = x>>8&(m3&m) + x&(m3&m) | 
|  | //   x = x>>16&(m4&m) + x&(m4&m) | 
|  | //   x = x>>32&(m5&m) + x&(m5&m) | 
|  | //   return int(x) | 
|  | // | 
|  | // Masking (& operations) can be left away when there's no | 
|  | // danger that a field's sum will carry over into the next | 
|  | // field: Since the result cannot be > 64, 8 bits is enough | 
|  | // and we can ignore the masks for the shifts by 8 and up. | 
|  | // Per "Hacker's Delight", the first line can be simplified | 
|  | // more, but it saves at best one instruction, so we leave | 
|  | // it alone for clarity. | 
|  | const m = 1<<64 - 1 | 
|  | x = x>>1&(m0&m) + x&(m0&m) | 
|  | x = x>>2&(m1&m) + x&(m1&m) | 
|  | x = (x>>4 + x) & (m2 & m) | 
|  | x += x >> 8 | 
|  | x += x >> 16 | 
|  | x += x >> 32 | 
|  | return int(x) & (1<<7 - 1) | 
|  | } | 
|  |  | 
|  | // --- RotateLeft --- | 
|  |  | 
|  | // RotateLeft returns the value of x rotated left by (k mod UintSize) bits. | 
|  | // To rotate x right by k bits, call RotateLeft(x, -k). | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func RotateLeft(x uint, k int) uint { | 
|  | if UintSize == 32 { | 
|  | return uint(RotateLeft32(uint32(x), k)) | 
|  | } | 
|  | return uint(RotateLeft64(uint64(x), k)) | 
|  | } | 
|  |  | 
|  | // RotateLeft8 returns the value of x rotated left by (k mod 8) bits. | 
|  | // To rotate x right by k bits, call RotateLeft8(x, -k). | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func RotateLeft8(x uint8, k int) uint8 { | 
|  | const n = 8 | 
|  | s := uint(k) & (n - 1) | 
|  | return x<<s | x>>(n-s) | 
|  | } | 
|  |  | 
|  | // RotateLeft16 returns the value of x rotated left by (k mod 16) bits. | 
|  | // To rotate x right by k bits, call RotateLeft16(x, -k). | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func RotateLeft16(x uint16, k int) uint16 { | 
|  | const n = 16 | 
|  | s := uint(k) & (n - 1) | 
|  | return x<<s | x>>(n-s) | 
|  | } | 
|  |  | 
|  | // RotateLeft32 returns the value of x rotated left by (k mod 32) bits. | 
|  | // To rotate x right by k bits, call RotateLeft32(x, -k). | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func RotateLeft32(x uint32, k int) uint32 { | 
|  | const n = 32 | 
|  | s := uint(k) & (n - 1) | 
|  | return x<<s | x>>(n-s) | 
|  | } | 
|  |  | 
|  | // RotateLeft64 returns the value of x rotated left by (k mod 64) bits. | 
|  | // To rotate x right by k bits, call RotateLeft64(x, -k). | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func RotateLeft64(x uint64, k int) uint64 { | 
|  | const n = 64 | 
|  | s := uint(k) & (n - 1) | 
|  | return x<<s | x>>(n-s) | 
|  | } | 
|  |  | 
|  | // --- Reverse --- | 
|  |  | 
|  | // Reverse returns the value of x with its bits in reversed order. | 
|  | func Reverse(x uint) uint { | 
|  | if UintSize == 32 { | 
|  | return uint(Reverse32(uint32(x))) | 
|  | } | 
|  | return uint(Reverse64(uint64(x))) | 
|  | } | 
|  |  | 
|  | // Reverse8 returns the value of x with its bits in reversed order. | 
|  | func Reverse8(x uint8) uint8 { | 
|  | return rev8tab[x] | 
|  | } | 
|  |  | 
|  | // Reverse16 returns the value of x with its bits in reversed order. | 
|  | func Reverse16(x uint16) uint16 { | 
|  | return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8 | 
|  | } | 
|  |  | 
|  | // Reverse32 returns the value of x with its bits in reversed order. | 
|  | func Reverse32(x uint32) uint32 { | 
|  | const m = 1<<32 - 1 | 
|  | x = x>>1&(m0&m) | x&(m0&m)<<1 | 
|  | x = x>>2&(m1&m) | x&(m1&m)<<2 | 
|  | x = x>>4&(m2&m) | x&(m2&m)<<4 | 
|  | return ReverseBytes32(x) | 
|  | } | 
|  |  | 
|  | // Reverse64 returns the value of x with its bits in reversed order. | 
|  | func Reverse64(x uint64) uint64 { | 
|  | const m = 1<<64 - 1 | 
|  | x = x>>1&(m0&m) | x&(m0&m)<<1 | 
|  | x = x>>2&(m1&m) | x&(m1&m)<<2 | 
|  | x = x>>4&(m2&m) | x&(m2&m)<<4 | 
|  | return ReverseBytes64(x) | 
|  | } | 
|  |  | 
|  | // --- ReverseBytes --- | 
|  |  | 
|  | // ReverseBytes returns the value of x with its bytes in reversed order. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func ReverseBytes(x uint) uint { | 
|  | if UintSize == 32 { | 
|  | return uint(ReverseBytes32(uint32(x))) | 
|  | } | 
|  | return uint(ReverseBytes64(uint64(x))) | 
|  | } | 
|  |  | 
|  | // ReverseBytes16 returns the value of x with its bytes in reversed order. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func ReverseBytes16(x uint16) uint16 { | 
|  | return x>>8 | x<<8 | 
|  | } | 
|  |  | 
|  | // ReverseBytes32 returns the value of x with its bytes in reversed order. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func ReverseBytes32(x uint32) uint32 { | 
|  | const m = 1<<32 - 1 | 
|  | x = x>>8&(m3&m) | x&(m3&m)<<8 | 
|  | return x>>16 | x<<16 | 
|  | } | 
|  |  | 
|  | // ReverseBytes64 returns the value of x with its bytes in reversed order. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func ReverseBytes64(x uint64) uint64 { | 
|  | const m = 1<<64 - 1 | 
|  | x = x>>8&(m3&m) | x&(m3&m)<<8 | 
|  | x = x>>16&(m4&m) | x&(m4&m)<<16 | 
|  | return x>>32 | x<<32 | 
|  | } | 
|  |  | 
|  | // --- Len --- | 
|  |  | 
|  | // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0. | 
|  | func Len(x uint) int { | 
|  | if UintSize == 32 { | 
|  | return Len32(uint32(x)) | 
|  | } | 
|  | return Len64(uint64(x)) | 
|  | } | 
|  |  | 
|  | // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. | 
|  | func Len8(x uint8) int { | 
|  | return int(len8tab[x]) | 
|  | } | 
|  |  | 
|  | // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. | 
|  | func Len16(x uint16) (n int) { | 
|  | if x >= 1<<8 { | 
|  | x >>= 8 | 
|  | n = 8 | 
|  | } | 
|  | return n + int(len8tab[x]) | 
|  | } | 
|  |  | 
|  | // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. | 
|  | func Len32(x uint32) (n int) { | 
|  | if x >= 1<<16 { | 
|  | x >>= 16 | 
|  | n = 16 | 
|  | } | 
|  | if x >= 1<<8 { | 
|  | x >>= 8 | 
|  | n += 8 | 
|  | } | 
|  | return n + int(len8tab[x]) | 
|  | } | 
|  |  | 
|  | // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. | 
|  | func Len64(x uint64) (n int) { | 
|  | if x >= 1<<32 { | 
|  | x >>= 32 | 
|  | n = 32 | 
|  | } | 
|  | if x >= 1<<16 { | 
|  | x >>= 16 | 
|  | n += 16 | 
|  | } | 
|  | if x >= 1<<8 { | 
|  | x >>= 8 | 
|  | n += 8 | 
|  | } | 
|  | return n + int(len8tab[x]) | 
|  | } | 
|  |  | 
|  | // --- Add with carry --- | 
|  |  | 
|  | // Add returns the sum with carry of x, y and carry: sum = x + y + carry. | 
|  | // The carry input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The carryOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Add(x, y, carry uint) (sum, carryOut uint) { | 
|  | if UintSize == 32 { | 
|  | s32, c32 := Add32(uint32(x), uint32(y), uint32(carry)) | 
|  | return uint(s32), uint(c32) | 
|  | } | 
|  | s64, c64 := Add64(uint64(x), uint64(y), uint64(carry)) | 
|  | return uint(s64), uint(c64) | 
|  | } | 
|  |  | 
|  | // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry. | 
|  | // The carry input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The carryOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Add32(x, y, carry uint32) (sum, carryOut uint32) { | 
|  | sum64 := uint64(x) + uint64(y) + uint64(carry) | 
|  | sum = uint32(sum64) | 
|  | carryOut = uint32(sum64 >> 32) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. | 
|  | // The carry input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The carryOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Add64(x, y, carry uint64) (sum, carryOut uint64) { | 
|  | sum = x + y + carry | 
|  | // The sum will overflow if both top bits are set (x & y) or if one of them | 
|  | // is (x | y), and a carry from the lower place happened. If such a carry | 
|  | // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). | 
|  | carryOut = ((x & y) | ((x | y) &^ sum)) >> 63 | 
|  | return | 
|  | } | 
|  |  | 
|  | // --- Subtract with borrow --- | 
|  |  | 
|  | // Sub returns the difference of x, y and borrow: diff = x - y - borrow. | 
|  | // The borrow input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The borrowOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Sub(x, y, borrow uint) (diff, borrowOut uint) { | 
|  | if UintSize == 32 { | 
|  | d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow)) | 
|  | return uint(d32), uint(b32) | 
|  | } | 
|  | d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow)) | 
|  | return uint(d64), uint(b64) | 
|  | } | 
|  |  | 
|  | // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow. | 
|  | // The borrow input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The borrowOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) { | 
|  | diff = x - y - borrow | 
|  | // The difference will underflow if the top bit of x is not set and the top | 
|  | // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow | 
|  | // from the lower place happens. If that borrow happens, the result will be | 
|  | // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). | 
|  | borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31 | 
|  | return | 
|  | } | 
|  |  | 
|  | // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow. | 
|  | // The borrow input must be 0 or 1; otherwise the behavior is undefined. | 
|  | // The borrowOut output is guaranteed to be 0 or 1. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) { | 
|  | diff = x - y - borrow | 
|  | // See Sub32 for the bit logic. | 
|  | borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63 | 
|  | return | 
|  | } | 
|  |  | 
|  | // --- Full-width multiply --- | 
|  |  | 
|  | // Mul returns the full-width product of x and y: (hi, lo) = x * y | 
|  | // with the product bits' upper half returned in hi and the lower | 
|  | // half returned in lo. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Mul(x, y uint) (hi, lo uint) { | 
|  | if UintSize == 32 { | 
|  | h, l := Mul32(uint32(x), uint32(y)) | 
|  | return uint(h), uint(l) | 
|  | } | 
|  | h, l := Mul64(uint64(x), uint64(y)) | 
|  | return uint(h), uint(l) | 
|  | } | 
|  |  | 
|  | // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y | 
|  | // with the product bits' upper half returned in hi and the lower | 
|  | // half returned in lo. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Mul32(x, y uint32) (hi, lo uint32) { | 
|  | tmp := uint64(x) * uint64(y) | 
|  | hi, lo = uint32(tmp>>32), uint32(tmp) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y | 
|  | // with the product bits' upper half returned in hi and the lower | 
|  | // half returned in lo. | 
|  | // | 
|  | // This function's execution time does not depend on the inputs. | 
|  | func Mul64(x, y uint64) (hi, lo uint64) { | 
|  | const mask32 = 1<<32 - 1 | 
|  | x0 := x & mask32 | 
|  | x1 := x >> 32 | 
|  | y0 := y & mask32 | 
|  | y1 := y >> 32 | 
|  | w0 := x0 * y0 | 
|  | t := x1*y0 + w0>>32 | 
|  | w1 := t & mask32 | 
|  | w2 := t >> 32 | 
|  | w1 += x0 * y1 | 
|  | hi = x1*y1 + w2 + w1>>32 | 
|  | lo = x * y | 
|  | return | 
|  | } | 
|  |  | 
|  | // --- Full-width divide --- | 
|  |  | 
|  | // Div returns the quotient and remainder of (hi, lo) divided by y: | 
|  | // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper | 
|  | // half in parameter hi and the lower half in parameter lo. | 
|  | // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow). | 
|  | func Div(hi, lo, y uint) (quo, rem uint) { | 
|  | if UintSize == 32 { | 
|  | q, r := Div32(uint32(hi), uint32(lo), uint32(y)) | 
|  | return uint(q), uint(r) | 
|  | } | 
|  | q, r := Div64(uint64(hi), uint64(lo), uint64(y)) | 
|  | return uint(q), uint(r) | 
|  | } | 
|  |  | 
|  | // Div32 returns the quotient and remainder of (hi, lo) divided by y: | 
|  | // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper | 
|  | // half in parameter hi and the lower half in parameter lo. | 
|  | // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). | 
|  | func Div32(hi, lo, y uint32) (quo, rem uint32) { | 
|  | if y != 0 && y <= hi { | 
|  | panic(getOverflowError()) | 
|  | } | 
|  | z := uint64(hi)<<32 | uint64(lo) | 
|  | quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y)) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Div64 returns the quotient and remainder of (hi, lo) divided by y: | 
|  | // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper | 
|  | // half in parameter hi and the lower half in parameter lo. | 
|  | // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). | 
|  | func Div64(hi, lo, y uint64) (quo, rem uint64) { | 
|  | const ( | 
|  | two32  = 1 << 32 | 
|  | mask32 = two32 - 1 | 
|  | ) | 
|  | if y == 0 { | 
|  | panic(getDivideError()) | 
|  | } | 
|  | if y <= hi { | 
|  | panic(getOverflowError()) | 
|  | } | 
|  |  | 
|  | s := uint(LeadingZeros64(y)) | 
|  | y <<= s | 
|  |  | 
|  | yn1 := y >> 32 | 
|  | yn0 := y & mask32 | 
|  | un32 := hi<<s | lo>>(64-s) | 
|  | un10 := lo << s | 
|  | un1 := un10 >> 32 | 
|  | un0 := un10 & mask32 | 
|  | q1 := un32 / yn1 | 
|  | rhat := un32 - q1*yn1 | 
|  |  | 
|  | for q1 >= two32 || q1*yn0 > two32*rhat+un1 { | 
|  | q1-- | 
|  | rhat += yn1 | 
|  | if rhat >= two32 { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | un21 := un32*two32 + un1 - q1*y | 
|  | q0 := un21 / yn1 | 
|  | rhat = un21 - q0*yn1 | 
|  |  | 
|  | for q0 >= two32 || q0*yn0 > two32*rhat+un0 { | 
|  | q0-- | 
|  | rhat += yn1 | 
|  | if rhat >= two32 { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s | 
|  | } | 
|  |  | 
|  | // Rem returns the remainder of (hi, lo) divided by y. Rem panics for | 
|  | // y == 0 (division by zero) but, unlike Div, it doesn't panic on a | 
|  | // quotient overflow. | 
|  | func Rem(hi, lo, y uint) uint { | 
|  | if UintSize == 32 { | 
|  | return uint(Rem32(uint32(hi), uint32(lo), uint32(y))) | 
|  | } | 
|  | return uint(Rem64(uint64(hi), uint64(lo), uint64(y))) | 
|  | } | 
|  |  | 
|  | // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics | 
|  | // for y == 0 (division by zero) but, unlike Div32, it doesn't panic | 
|  | // on a quotient overflow. | 
|  | func Rem32(hi, lo, y uint32) uint32 { | 
|  | return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y)) | 
|  | } | 
|  |  | 
|  | // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics | 
|  | // for y == 0 (division by zero) but, unlike Div64, it doesn't panic | 
|  | // on a quotient overflow. | 
|  | func Rem64(hi, lo, y uint64) uint64 { | 
|  | // We scale down hi so that hi < y, then use Div64 to compute the | 
|  | // rem with the guarantee that it won't panic on quotient overflow. | 
|  | // Given that | 
|  | //   hi ≡ hi%y    (mod y) | 
|  | // we have | 
|  | //   hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y) | 
|  | _, rem := Div64(hi%y, lo, y) | 
|  | return rem | 
|  | } |