| // Special functions -*- C++ -*- | 
 |  | 
 | // Copyright (C) 2006-2020 Free Software Foundation, Inc. | 
 | // | 
 | // This file is part of the GNU ISO C++ Library.  This library is free | 
 | // software; you can redistribute it and/or modify it under the | 
 | // terms of the GNU General Public License as published by the | 
 | // Free Software Foundation; either version 3, or (at your option) | 
 | // any later version. | 
 | // | 
 | // This library is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // Under Section 7 of GPL version 3, you are granted additional | 
 | // permissions described in the GCC Runtime Library Exception, version | 
 | // 3.1, as published by the Free Software Foundation. | 
 |  | 
 | // You should have received a copy of the GNU General Public License and | 
 | // a copy of the GCC Runtime Library Exception along with this program; | 
 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | // <http://www.gnu.org/licenses/>. | 
 |  | 
 | /** @file tr1/hypergeometric.tcc | 
 |  *  This is an internal header file, included by other library headers. | 
 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
 |  */ | 
 |  | 
 | // | 
 | // ISO C++ 14882 TR1: 5.2  Special functions | 
 | // | 
 |  | 
 | // Written by Edward Smith-Rowland based: | 
 | //   (1) Handbook of Mathematical Functions, | 
 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
 | //       Dover Publications, | 
 | //       Section 6, pp. 555-566 | 
 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
 |  | 
 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC | 
 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 | 
 |  | 
 | namespace std _GLIBCXX_VISIBILITY(default) | 
 | { | 
 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 |  | 
 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
 | # define _GLIBCXX_MATH_NS ::std | 
 | #elif defined(_GLIBCXX_TR1_CMATH) | 
 | namespace tr1 | 
 | { | 
 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
 | #else | 
 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
 | #endif | 
 |   // [5.2] Special functions | 
 |  | 
 |   // Implementation-space details. | 
 |   namespace __detail | 
 |   { | 
 |     /** | 
 |      *   @brief This routine returns the confluent hypergeometric function | 
 |      *          by series expansion. | 
 |      *  | 
 |      *   @f[ | 
 |      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} | 
 |      *                      \sum_{n=0}^{\infty} | 
 |      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)} | 
 |      *                      \frac{x^n}{n!} | 
 |      *   @f] | 
 |      *  | 
 |      *   If a and b are integers and a < 0 and either b > 0 or b < a | 
 |      *   then the series is a polynomial with a finite number of | 
 |      *   terms.  If b is an integer and b <= 0 the confluent | 
 |      *   hypergeometric function is undefined. | 
 |      * | 
 |      *   @param  __a  The "numerator" parameter. | 
 |      *   @param  __c  The "denominator" parameter. | 
 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
 |      *   @return  The confluent hypergeometric function. | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) | 
 |     { | 
 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 |  | 
 |       _Tp __term = _Tp(1); | 
 |       _Tp __Fac = _Tp(1); | 
 |       const unsigned int __max_iter = 100000; | 
 |       unsigned int __i; | 
 |       for (__i = 0; __i < __max_iter; ++__i) | 
 |         { | 
 |           __term *= (__a + _Tp(__i)) * __x | 
 |                   / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
 |           if (std::abs(__term) < __eps) | 
 |             { | 
 |               break; | 
 |             } | 
 |           __Fac += __term; | 
 |         } | 
 |       if (__i == __max_iter) | 
 |         std::__throw_runtime_error(__N("Series failed to converge " | 
 |                                        "in __conf_hyperg_series.")); | 
 |  | 
 |       return __Fac; | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 |      *          by an iterative procedure described in | 
 |      *          Luke, Algorithms for the Computation of Mathematical Functions. | 
 |      * | 
 |      *  Like the case of the 2F1 rational approximations, these are  | 
 |      *  probably guaranteed to converge for x < 0, barring gross     | 
 |      *  numerical instability in the pre-asymptotic regime.          | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) | 
 |     { | 
 |       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
 |       const int __nmax = 20000; | 
 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 |       const _Tp __x  = -__xin; | 
 |       const _Tp __x3 = __x * __x * __x; | 
 |       const _Tp __t0 = __a / __c; | 
 |       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); | 
 |       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); | 
 |       _Tp __F = _Tp(1); | 
 |       _Tp __prec; | 
 |  | 
 |       _Tp __Bnm3 = _Tp(1); | 
 |       _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
 |       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
 |  | 
 |       _Tp __Anm3 = _Tp(1); | 
 |       _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
 |       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
 |                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
 |  | 
 |       int __n = 3; | 
 |       while(1) | 
 |         { | 
 |           _Tp __npam1 = _Tp(__n - 1) + __a; | 
 |           _Tp __npcm1 = _Tp(__n - 1) + __c; | 
 |           _Tp __npam2 = _Tp(__n - 2) + __a; | 
 |           _Tp __npcm2 = _Tp(__n - 2) + __c; | 
 |           _Tp __tnm1  = _Tp(2 * __n - 1); | 
 |           _Tp __tnm3  = _Tp(2 * __n - 3); | 
 |           _Tp __tnm5  = _Tp(2 * __n - 5); | 
 |           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); | 
 |           _Tp __F2 =  (_Tp(__n) + __a) * __npam1 | 
 |                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
 |           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) | 
 |                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
 |                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
 |           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c) | 
 |                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
 |  | 
 |           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
 |                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
 |           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
 |                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
 |           _Tp __r = __An / __Bn; | 
 |  | 
 |           __prec = std::abs((__F - __r) / __F); | 
 |           __F = __r; | 
 |  | 
 |           if (__prec < __eps || __n > __nmax) | 
 |             break; | 
 |  | 
 |           if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
 |             { | 
 |               __An   /= __big; | 
 |               __Bn   /= __big; | 
 |               __Anm1 /= __big; | 
 |               __Bnm1 /= __big; | 
 |               __Anm2 /= __big; | 
 |               __Bnm2 /= __big; | 
 |               __Anm3 /= __big; | 
 |               __Bnm3 /= __big; | 
 |             } | 
 |           else if (std::abs(__An) < _Tp(1) / __big | 
 |                 || std::abs(__Bn) < _Tp(1) / __big) | 
 |             { | 
 |               __An   *= __big; | 
 |               __Bn   *= __big; | 
 |               __Anm1 *= __big; | 
 |               __Bnm1 *= __big; | 
 |               __Anm2 *= __big; | 
 |               __Bnm2 *= __big; | 
 |               __Anm3 *= __big; | 
 |               __Bnm3 *= __big; | 
 |             } | 
 |  | 
 |           ++__n; | 
 |           __Bnm3 = __Bnm2; | 
 |           __Bnm2 = __Bnm1; | 
 |           __Bnm1 = __Bn; | 
 |           __Anm3 = __Anm2; | 
 |           __Anm2 = __Anm1; | 
 |           __Anm1 = __An; | 
 |         } | 
 |  | 
 |       if (__n >= __nmax) | 
 |         std::__throw_runtime_error(__N("Iteration failed to converge " | 
 |                                        "in __conf_hyperg_luke.")); | 
 |  | 
 |       return __F; | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *   @brief  Return the confluent hypogeometric function | 
 |      *           @f$ _1F_1(a;c;x) @f$. | 
 |      *  | 
 |      *   @todo  Handle b == nonpositive integer blowup - return NaN. | 
 |      * | 
 |      *   @param  __a  The @a numerator parameter. | 
 |      *   @param  __c  The @a denominator parameter. | 
 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
 |      *   @return  The confluent hypergeometric function. | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) | 
 |     { | 
 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 |       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
 | #else | 
 |       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
 | #endif | 
 |       if (__isnan(__a) || __isnan(__c) || __isnan(__x)) | 
 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
 |       else if (__c_nint == __c && __c_nint <= 0) | 
 |         return std::numeric_limits<_Tp>::infinity(); | 
 |       else if (__a == _Tp(0)) | 
 |         return _Tp(1); | 
 |       else if (__c == __a) | 
 |         return std::exp(__x); | 
 |       else if (__x < _Tp(0)) | 
 |         return __conf_hyperg_luke(__a, __c, __x); | 
 |       else | 
 |         return __conf_hyperg_series(__a, __c, __x); | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 |      *   by series expansion. | 
 |      *  | 
 |      *   The hypogeometric function is defined by | 
 |      *   @f[ | 
 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 |      *                      \sum_{n=0}^{\infty} | 
 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 |      *                      \frac{x^n}{n!} | 
 |      *   @f] | 
 |      *  | 
 |      *   This works and it's pretty fast. | 
 |      * | 
 |      *   @param  __a  The first @a numerator parameter. | 
 |      *   @param  __a  The second @a numerator parameter. | 
 |      *   @param  __c  The @a denominator parameter. | 
 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
 |      *   @return  The confluent hypergeometric function. | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 |     { | 
 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 |  | 
 |       _Tp __term = _Tp(1); | 
 |       _Tp __Fabc = _Tp(1); | 
 |       const unsigned int __max_iter = 100000; | 
 |       unsigned int __i; | 
 |       for (__i = 0; __i < __max_iter; ++__i) | 
 |         { | 
 |           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x | 
 |                   / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
 |           if (std::abs(__term) < __eps) | 
 |             { | 
 |               break; | 
 |             } | 
 |           __Fabc += __term; | 
 |         } | 
 |       if (__i == __max_iter) | 
 |         std::__throw_runtime_error(__N("Series failed to converge " | 
 |                                        "in __hyperg_series.")); | 
 |  | 
 |       return __Fabc; | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 |      *           by an iterative procedure described in | 
 |      *           Luke, Algorithms for the Computation of Mathematical Functions. | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) | 
 |     { | 
 |       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
 |       const int __nmax = 20000; | 
 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 |       const _Tp __x  = -__xin; | 
 |       const _Tp __x3 = __x * __x * __x; | 
 |       const _Tp __t0 = __a * __b / __c; | 
 |       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); | 
 |       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) | 
 |                      / (_Tp(2) * (__c + _Tp(1))); | 
 |  | 
 |       _Tp __F = _Tp(1); | 
 |  | 
 |       _Tp __Bnm3 = _Tp(1); | 
 |       _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
 |       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
 |  | 
 |       _Tp __Anm3 = _Tp(1); | 
 |       _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
 |       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
 |                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
 |  | 
 |       int __n = 3; | 
 |       while (1) | 
 |         { | 
 |           const _Tp __npam1 = _Tp(__n - 1) + __a; | 
 |           const _Tp __npbm1 = _Tp(__n - 1) + __b; | 
 |           const _Tp __npcm1 = _Tp(__n - 1) + __c; | 
 |           const _Tp __npam2 = _Tp(__n - 2) + __a; | 
 |           const _Tp __npbm2 = _Tp(__n - 2) + __b; | 
 |           const _Tp __npcm2 = _Tp(__n - 2) + __c; | 
 |           const _Tp __tnm1  = _Tp(2 * __n - 1); | 
 |           const _Tp __tnm3  = _Tp(2 * __n - 3); | 
 |           const _Tp __tnm5  = _Tp(2 * __n - 5); | 
 |           const _Tp __n2 = __n * __n; | 
 |           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n | 
 |                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) | 
 |                          / (_Tp(2) * __tnm3 * __npcm1); | 
 |           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n | 
 |                          + _Tp(2) - __a * __b) * __npam1 * __npbm1 | 
 |                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
 |           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 | 
 |                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) | 
 |                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
 |                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
 |           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) | 
 |                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
 |  | 
 |           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
 |                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
 |           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
 |                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
 |           const _Tp __r = __An / __Bn; | 
 |  | 
 |           const _Tp __prec = std::abs((__F - __r) / __F); | 
 |           __F = __r; | 
 |  | 
 |           if (__prec < __eps || __n > __nmax) | 
 |             break; | 
 |  | 
 |           if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
 |             { | 
 |               __An   /= __big; | 
 |               __Bn   /= __big; | 
 |               __Anm1 /= __big; | 
 |               __Bnm1 /= __big; | 
 |               __Anm2 /= __big; | 
 |               __Bnm2 /= __big; | 
 |               __Anm3 /= __big; | 
 |               __Bnm3 /= __big; | 
 |             } | 
 |           else if (std::abs(__An) < _Tp(1) / __big | 
 |                 || std::abs(__Bn) < _Tp(1) / __big) | 
 |             { | 
 |               __An   *= __big; | 
 |               __Bn   *= __big; | 
 |               __Anm1 *= __big; | 
 |               __Bnm1 *= __big; | 
 |               __Anm2 *= __big; | 
 |               __Bnm2 *= __big; | 
 |               __Anm3 *= __big; | 
 |               __Bnm3 *= __big; | 
 |             } | 
 |  | 
 |           ++__n; | 
 |           __Bnm3 = __Bnm2; | 
 |           __Bnm2 = __Bnm1; | 
 |           __Bnm1 = __Bn; | 
 |           __Anm3 = __Anm2; | 
 |           __Anm2 = __Anm1; | 
 |           __Anm1 = __An; | 
 |         } | 
 |  | 
 |       if (__n >= __nmax) | 
 |         std::__throw_runtime_error(__N("Iteration failed to converge " | 
 |                                        "in __hyperg_luke.")); | 
 |  | 
 |       return __F; | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$  | 
 |      *  by the reflection formulae in Abramowitz & Stegun formula | 
 |      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for | 
 |      *  d = c - a - b integral.  This assumes a, b, c != negative | 
 |      *  integer. | 
 |      * | 
 |      *   The hypogeometric function is defined by | 
 |      *   @f[ | 
 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 |      *                      \sum_{n=0}^{\infty} | 
 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 |      *                      \frac{x^n}{n!} | 
 |      *   @f] | 
 |      * | 
 |      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is: | 
 |      *   @f[ | 
 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} | 
 |      *                            _2F_1(a,b;1-d;1-x) | 
 |      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} | 
 |      *                            _2F_1(c-a,c-b;1+d;1-x) | 
 |      *   @f] | 
 |      * | 
 |      *   The reflection formula for integral @f$ m = c - a - b @f$ is: | 
 |      *   @f[ | 
 |      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} | 
 |      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} | 
 |      *                      -  | 
 |      *   @f] | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 |     { | 
 |       const _Tp __d = __c - __a - __b; | 
 |       const int __intd  = std::floor(__d + _Tp(0.5L)); | 
 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 |       const _Tp __toler = _Tp(1000) * __eps; | 
 |       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); | 
 |       const bool __d_integer = (std::abs(__d - __intd) < __toler); | 
 |  | 
 |       if (__d_integer) | 
 |         { | 
 |           const _Tp __ln_omx = std::log(_Tp(1) - __x); | 
 |           const _Tp __ad = std::abs(__d); | 
 |           _Tp __F1, __F2; | 
 |  | 
 |           _Tp __d1, __d2; | 
 |           if (__d >= _Tp(0)) | 
 |             { | 
 |               __d1 = __d; | 
 |               __d2 = _Tp(0); | 
 |             } | 
 |           else | 
 |             { | 
 |               __d1 = _Tp(0); | 
 |               __d2 = __d; | 
 |             } | 
 |  | 
 |           const _Tp __lng_c = __log_gamma(__c); | 
 |  | 
 |           //  Evaluate F1. | 
 |           if (__ad < __eps) | 
 |             { | 
 |               //  d = c - a - b = 0. | 
 |               __F1 = _Tp(0); | 
 |             } | 
 |           else | 
 |             { | 
 |  | 
 |               bool __ok_d1 = true; | 
 |               _Tp __lng_ad, __lng_ad1, __lng_bd1; | 
 |               __try | 
 |                 { | 
 |                   __lng_ad = __log_gamma(__ad); | 
 |                   __lng_ad1 = __log_gamma(__a + __d1); | 
 |                   __lng_bd1 = __log_gamma(__b + __d1); | 
 |                 } | 
 |               __catch(...) | 
 |                 { | 
 |                   __ok_d1 = false; | 
 |                 } | 
 |  | 
 |               if (__ok_d1) | 
 |                 { | 
 |                   /* Gamma functions in the denominator are ok. | 
 |                    * Proceed with evaluation. | 
 |                    */ | 
 |                   _Tp __sum1 = _Tp(1); | 
 |                   _Tp __term = _Tp(1); | 
 |                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx | 
 |                                 - __lng_ad1 - __lng_bd1; | 
 |  | 
 |                   /* Do F1 sum. | 
 |                    */ | 
 |                   for (int __i = 1; __i < __ad; ++__i) | 
 |                     { | 
 |                       const int __j = __i - 1; | 
 |                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j) | 
 |                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); | 
 |                       __sum1 += __term; | 
 |                     } | 
 |  | 
 |                   if (__ln_pre1 > __log_max) | 
 |                     std::__throw_runtime_error(__N("Overflow of gamma functions" | 
 |                                                    " in __hyperg_luke.")); | 
 |                   else | 
 |                     __F1 = std::exp(__ln_pre1) * __sum1; | 
 |                 } | 
 |               else | 
 |                 { | 
 |                   //  Gamma functions in the denominator were not ok. | 
 |                   //  So the F1 term is zero. | 
 |                   __F1 = _Tp(0); | 
 |                 } | 
 |             } // end F1 evaluation | 
 |  | 
 |           // Evaluate F2. | 
 |           bool __ok_d2 = true; | 
 |           _Tp __lng_ad2, __lng_bd2; | 
 |           __try | 
 |             { | 
 |               __lng_ad2 = __log_gamma(__a + __d2); | 
 |               __lng_bd2 = __log_gamma(__b + __d2); | 
 |             } | 
 |           __catch(...) | 
 |             { | 
 |               __ok_d2 = false; | 
 |             } | 
 |  | 
 |           if (__ok_d2) | 
 |             { | 
 |               //  Gamma functions in the denominator are ok. | 
 |               //  Proceed with evaluation. | 
 |               const int __maxiter = 2000; | 
 |               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); | 
 |               const _Tp __psi_1pd = __psi(_Tp(1) + __ad); | 
 |               const _Tp __psi_apd1 = __psi(__a + __d1); | 
 |               const _Tp __psi_bpd1 = __psi(__b + __d1); | 
 |  | 
 |               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 | 
 |                              - __psi_bpd1 - __ln_omx; | 
 |               _Tp __fact = _Tp(1); | 
 |               _Tp __sum2 = __psi_term; | 
 |               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx | 
 |                             - __lng_ad2 - __lng_bd2; | 
 |  | 
 |               // Do F2 sum. | 
 |               int __j; | 
 |               for (__j = 1; __j < __maxiter; ++__j) | 
 |                 { | 
 |                   //  Values for psi functions use recurrence; | 
 |                   //  Abramowitz & Stegun 6.3.5 | 
 |                   const _Tp __term1 = _Tp(1) / _Tp(__j) | 
 |                                     + _Tp(1) / (__ad + __j); | 
 |                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) | 
 |                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); | 
 |                   __psi_term += __term1 - __term2; | 
 |                   __fact *= (__a + __d1 + _Tp(__j - 1)) | 
 |                           * (__b + __d1 + _Tp(__j - 1)) | 
 |                           / ((__ad + __j) * __j) * (_Tp(1) - __x); | 
 |                   const _Tp __delta = __fact * __psi_term; | 
 |                   __sum2 += __delta; | 
 |                   if (std::abs(__delta) < __eps * std::abs(__sum2)) | 
 |                     break; | 
 |                 } | 
 |               if (__j == __maxiter) | 
 |                 std::__throw_runtime_error(__N("Sum F2 failed to converge " | 
 |                                                "in __hyperg_reflect")); | 
 |  | 
 |               if (__sum2 == _Tp(0)) | 
 |                 __F2 = _Tp(0); | 
 |               else | 
 |                 __F2 = std::exp(__ln_pre2) * __sum2; | 
 |             } | 
 |           else | 
 |             { | 
 |               // Gamma functions in the denominator not ok. | 
 |               // So the F2 term is zero. | 
 |               __F2 = _Tp(0); | 
 |             } // end F2 evaluation | 
 |  | 
 |           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); | 
 |           const _Tp __F = __F1 + __sgn_2 * __F2; | 
 |  | 
 |           return __F; | 
 |         } | 
 |       else | 
 |         { | 
 |           //  d = c - a - b not an integer. | 
 |  | 
 |           //  These gamma functions appear in the denominator, so we | 
 |           //  catch their harmless domain errors and set the terms to zero. | 
 |           bool __ok1 = true; | 
 |           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); | 
 |           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); | 
 |           __try | 
 |             { | 
 |               __sgn_g1ca = __log_gamma_sign(__c - __a); | 
 |               __ln_g1ca = __log_gamma(__c - __a); | 
 |               __sgn_g1cb = __log_gamma_sign(__c - __b); | 
 |               __ln_g1cb = __log_gamma(__c - __b); | 
 |             } | 
 |           __catch(...) | 
 |             { | 
 |               __ok1 = false; | 
 |             } | 
 |  | 
 |           bool __ok2 = true; | 
 |           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); | 
 |           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); | 
 |           __try | 
 |             { | 
 |               __sgn_g2a = __log_gamma_sign(__a); | 
 |               __ln_g2a = __log_gamma(__a); | 
 |               __sgn_g2b = __log_gamma_sign(__b); | 
 |               __ln_g2b = __log_gamma(__b); | 
 |             } | 
 |           __catch(...) | 
 |             { | 
 |               __ok2 = false; | 
 |             } | 
 |  | 
 |           const _Tp __sgn_gc = __log_gamma_sign(__c); | 
 |           const _Tp __ln_gc = __log_gamma(__c); | 
 |           const _Tp __sgn_gd = __log_gamma_sign(__d); | 
 |           const _Tp __ln_gd = __log_gamma(__d); | 
 |           const _Tp __sgn_gmd = __log_gamma_sign(-__d); | 
 |           const _Tp __ln_gmd = __log_gamma(-__d); | 
 |  | 
 |           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb; | 
 |           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b; | 
 |  | 
 |           _Tp __pre1, __pre2; | 
 |           if (__ok1 && __ok2) | 
 |             { | 
 |               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb; | 
 |               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b | 
 |                             + __d * std::log(_Tp(1) - __x); | 
 |               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) | 
 |                 { | 
 |                   __pre1 = std::exp(__ln_pre1); | 
 |                   __pre2 = std::exp(__ln_pre2); | 
 |                   __pre1 *= __sgn1; | 
 |                   __pre2 *= __sgn2; | 
 |                 } | 
 |               else | 
 |                 { | 
 |                   std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 |                                                  "in __hyperg_reflect")); | 
 |                 } | 
 |             } | 
 |           else if (__ok1 && !__ok2) | 
 |             { | 
 |               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; | 
 |               if (__ln_pre1 < __log_max) | 
 |                 { | 
 |                   __pre1 = std::exp(__ln_pre1); | 
 |                   __pre1 *= __sgn1; | 
 |                   __pre2 = _Tp(0); | 
 |                 } | 
 |               else | 
 |                 { | 
 |                   std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 |                                                  "in __hyperg_reflect")); | 
 |                 } | 
 |             } | 
 |           else if (!__ok1 && __ok2) | 
 |             { | 
 |               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b | 
 |                             + __d * std::log(_Tp(1) - __x); | 
 |               if (__ln_pre2 < __log_max) | 
 |                 { | 
 |                   __pre1 = _Tp(0); | 
 |                   __pre2 = std::exp(__ln_pre2); | 
 |                   __pre2 *= __sgn2; | 
 |                 } | 
 |               else | 
 |                 { | 
 |                   std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 |                                                  "in __hyperg_reflect")); | 
 |                 } | 
 |             } | 
 |           else | 
 |             { | 
 |               __pre1 = _Tp(0); | 
 |               __pre2 = _Tp(0); | 
 |               std::__throw_runtime_error(__N("Underflow of gamma functions " | 
 |                                              "in __hyperg_reflect")); | 
 |             } | 
 |  | 
 |           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, | 
 |                                            _Tp(1) - __x); | 
 |           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, | 
 |                                            _Tp(1) - __x); | 
 |  | 
 |           const _Tp __F = __pre1 * __F1 + __pre2 * __F2; | 
 |  | 
 |           return __F; | 
 |         } | 
 |     } | 
 |  | 
 |  | 
 |     /** | 
 |      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. | 
 |      * | 
 |      *   The hypogeometric function is defined by | 
 |      *   @f[ | 
 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 |      *                      \sum_{n=0}^{\infty} | 
 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 |      *                      \frac{x^n}{n!} | 
 |      *   @f] | 
 |      * | 
 |      *   @param  __a  The first @a numerator parameter. | 
 |      *   @param  __a  The second @a numerator parameter. | 
 |      *   @param  __c  The @a denominator parameter. | 
 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
 |      *   @return  The confluent hypergeometric function. | 
 |      */ | 
 |     template<typename _Tp> | 
 |     _Tp | 
 |     __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 |     { | 
 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 |       const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); | 
 |       const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); | 
 |       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
 | #else | 
 |       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); | 
 |       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); | 
 |       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
 | #endif | 
 |       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); | 
 |       if (std::abs(__x) >= _Tp(1)) | 
 |         std::__throw_domain_error(__N("Argument outside unit circle " | 
 |                                       "in __hyperg.")); | 
 |       else if (__isnan(__a) || __isnan(__b) | 
 |             || __isnan(__c) || __isnan(__x)) | 
 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
 |       else if (__c_nint == __c && __c_nint <= _Tp(0)) | 
 |         return std::numeric_limits<_Tp>::infinity(); | 
 |       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) | 
 |         return std::pow(_Tp(1) - __x, __c - __a - __b); | 
 |       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) | 
 |             && __x >= _Tp(0) && __x < _Tp(0.995L)) | 
 |         return __hyperg_series(__a, __b, __c, __x); | 
 |       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) | 
 |         { | 
 |           //  For integer a and b the hypergeometric function is a | 
 |           //  finite polynomial. | 
 |           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler) | 
 |             return __hyperg_series(__a_nint, __b, __c, __x); | 
 |           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler) | 
 |             return __hyperg_series(__a, __b_nint, __c, __x); | 
 |           else if (__x < -_Tp(0.25L)) | 
 |             return __hyperg_luke(__a, __b, __c, __x); | 
 |           else if (__x < _Tp(0.5L)) | 
 |             return __hyperg_series(__a, __b, __c, __x); | 
 |           else | 
 |             if (std::abs(__c) > _Tp(10)) | 
 |               return __hyperg_series(__a, __b, __c, __x); | 
 |             else | 
 |               return __hyperg_reflect(__a, __b, __c, __x); | 
 |         } | 
 |       else | 
 |         return __hyperg_luke(__a, __b, __c, __x); | 
 |     } | 
 |   } // namespace __detail | 
 | #undef _GLIBCXX_MATH_NS | 
 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
 | } // namespace tr1 | 
 | #endif | 
 |  | 
 | _GLIBCXX_END_NAMESPACE_VERSION | 
 | } | 
 |  | 
 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |