| /*	A C version of Kahan's Floating Point Test "Paranoia" | 
 |  | 
 | Thos Sumner, UCSF, Feb. 1985 | 
 | David Gay, BTL, Jan. 1986 | 
 |  | 
 | This is a rewrite from the Pascal version by | 
 |  | 
 | B. A. Wichmann, 18 Jan. 1985 | 
 |  | 
 | (and does NOT exhibit good C programming style). | 
 |  | 
 | Adjusted to use Standard C headers 19 Jan. 1992 (dmg); | 
 |  | 
 | (C) Apr 19 1983 in BASIC version by: | 
 | Professor W. M. Kahan, | 
 | 567 Evans Hall | 
 | Electrical Engineering & Computer Science Dept. | 
 | University of California | 
 | Berkeley, California 94720 | 
 | USA | 
 |  | 
 | converted to Pascal by: | 
 | B. A. Wichmann | 
 | National Physical Laboratory | 
 | Teddington Middx | 
 | TW11 OLW | 
 | UK | 
 |  | 
 | converted to C by: | 
 |  | 
 | David M. Gay		and	Thos Sumner | 
 | AT&T Bell Labs			Computer Center, Rm. U-76 | 
 | 600 Mountain Avenue		University of California | 
 | Murray Hill, NJ 07974		San Francisco, CA 94143 | 
 | USA				USA | 
 |  | 
 | with simultaneous corrections to the Pascal source (reflected | 
 | in the Pascal source available over netlib). | 
 | [A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.] | 
 |  | 
 | Reports of results on various systems from all the versions | 
 | of Paranoia are being collected by Richard Karpinski at the | 
 | same address as Thos Sumner.  This includes sample outputs, | 
 | bug reports, and criticisms. | 
 |  | 
 | You may copy this program freely if you acknowledge its source. | 
 | Comments on the Pascal version to NPL, please. | 
 |  | 
 | The following is from the introductory commentary from Wichmann's work: | 
 |  | 
 | The BASIC program of Kahan is written in Microsoft BASIC using many | 
 | facilities which have no exact analogy in Pascal.  The Pascal | 
 | version below cannot therefore be exactly the same.  Rather than be | 
 | a minimal transcription of the BASIC program, the Pascal coding | 
 | follows the conventional style of block-structured languages.  Hence | 
 | the Pascal version could be useful in producing versions in other | 
 | structured languages. | 
 |  | 
 | Rather than use identifiers of minimal length (which therefore have | 
 | little mnemonic significance), the Pascal version uses meaningful | 
 | identifiers as follows [Note: A few changes have been made for C]: | 
 |  | 
 |  | 
 | BASIC   C               BASIC   C               BASIC   C | 
 |  | 
 | A                       J                       S    StickyBit | 
 | A1   AInverse           J0   NoErrors           T | 
 | B    Radix                    [Failure]         T0   Underflow | 
 | B1   BInverse           J1   NoErrors           T2   ThirtyTwo | 
 | B2   RadixD2                  [SeriousDefect]   T5   OneAndHalf | 
 | B9   BMinusU2           J2   NoErrors           T7   TwentySeven | 
 | C                             [Defect]          T8   TwoForty | 
 | C1   CInverse           J3   NoErrors           U    OneUlp | 
 | D                             [Flaw]            U0   UnderflowThreshold | 
 | D4   FourD              K    PageNo             U1 | 
 | E0                      L    Milestone          U2 | 
 | E1                      M                       V | 
 | E2   Exp2               N                       V0 | 
 | E3                      N1                      V8 | 
 | E5   MinSqEr            O    Zero               V9 | 
 | E6   SqEr               O1   One                W | 
 | E7   MaxSqEr            O2   Two                X | 
 | E8                      O3   Three              X1 | 
 | E9                      O4   Four               X8 | 
 | F1   MinusOne           O5   Five               X9   Random1 | 
 | F2   Half               O8   Eight              Y | 
 | F3   Third              O9   Nine               Y1 | 
 | F6                      P    Precision          Y2 | 
 | F9                      Q                       Y9   Random2 | 
 | G1   GMult              Q8                      Z | 
 | G2   GDiv               Q9                      Z0   PseudoZero | 
 | G3   GAddSub            R                       Z1 | 
 | H                       R1   RMult              Z2 | 
 | H1   HInverse           R2   RDiv               Z9 | 
 | I                       R3   RAddSub | 
 | IO   NoTrials           R4   RSqrt | 
 | I3   IEEE               R9   Random9 | 
 |  | 
 | SqRWrng | 
 |  | 
 | All the variables in BASIC are true variables and in consequence, | 
 | the program is more difficult to follow since the "constants" must | 
 | be determined (the glossary is very helpful).  The Pascal version | 
 | uses Real constants, but checks are added to ensure that the values | 
 | are correctly converted by the compiler. | 
 |  | 
 | The major textual change to the Pascal version apart from the | 
 | identifiersis that named procedures are used, inserting parameters | 
 | wherehelpful.  New procedures are also introduced.  The | 
 | correspondence is as follows: | 
 |  | 
 |  | 
 | BASIC       Pascal | 
 | lines | 
 |  | 
 | 90- 140   Pause | 
 | 170- 250   Instructions | 
 | 380- 460   Heading | 
 | 480- 670   Characteristics | 
 | 690- 870   History | 
 | 2940-2950   Random | 
 | 3710-3740   NewD | 
 | 4040-4080   DoesYequalX | 
 | 4090-4110   PrintIfNPositive | 
 | 4640-4850   TestPartialUnderflow | 
 |  | 
 | */ | 
 |  | 
 |   /* This version of paranoia has been modified to work with GCC's internal | 
 |      software floating point emulation library, as a sanity check of same. | 
 |  | 
 |      I'm doing this in C++ so that I can do operator overloading and not | 
 |      have to modify so damned much of the existing code.  */ | 
 |  | 
 |   extern "C" { | 
 | #include <stdio.h> | 
 | #include <stddef.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 | #include <stdlib.h> | 
 | #include <math.h> | 
 | #include <unistd.h> | 
 | #include <float.h> | 
 |  | 
 |     /* This part is made all the more awful because many gcc headers are | 
 |        not prepared at all to be parsed as C++.  The biggest stickler | 
 |        here is const structure members.  So we include exactly the pieces | 
 |        that we need.  */ | 
 |  | 
 | #define GTY(x) | 
 |  | 
 | #include "ansidecl.h" | 
 | #include "auto-host.h" | 
 | #include "hwint.h" | 
 |  | 
 | #undef EXTRA_MODES_FILE | 
 |  | 
 |     struct rtx_def; | 
 |     typedef struct rtx_def *rtx; | 
 |     struct rtvec_def; | 
 |     typedef struct rtvec_def *rtvec; | 
 |     union tree_node; | 
 |     typedef union tree_node *tree; | 
 |  | 
 | #define DEFTREECODE(SYM, STRING, TYPE, NARGS)   SYM, | 
 |     enum tree_code { | 
 | #include "tree.def" | 
 |       LAST_AND_UNUSED_TREE_CODE | 
 |     }; | 
 | #undef DEFTREECODE | 
 |  | 
 | #define class klass | 
 |  | 
 | #include "real.h" | 
 |  | 
 | #undef class | 
 |   } | 
 |  | 
 | /* We never produce signals from the library.  Thus setjmp need do nothing.  */ | 
 | #undef setjmp | 
 | #define setjmp(x)  (0) | 
 |  | 
 | static bool verbose = false; | 
 | static int verbose_index = 0; | 
 |  | 
 | /* ====================================================================== */ | 
 | /* The implementation of the abstract floating point class based on gcc's | 
 |    real.c.  I.e. the object of this exercise.  Templated so that we can | 
 |    all fp sizes.  */ | 
 |  | 
 | class real_c_float | 
 | { | 
 |  public: | 
 |   static const enum machine_mode MODE = SFmode; | 
 |  | 
 |  private: | 
 |   static const int external_max = 128 / 32; | 
 |   static const int internal_max | 
 |     = (sizeof (REAL_VALUE_TYPE) + sizeof (long) + 1) / sizeof (long); | 
 |   long image[external_max < internal_max ? internal_max : external_max]; | 
 |  | 
 |   void from_long(long); | 
 |   void from_str(const char *); | 
 |   void binop(int code, const real_c_float&); | 
 |   void unop(int code); | 
 |   bool cmp(int code, const real_c_float&) const; | 
 |  | 
 |  public: | 
 |   real_c_float() | 
 |     { } | 
 |   real_c_float(long l) | 
 |     { from_long(l); } | 
 |   real_c_float(const char *s) | 
 |     { from_str(s); } | 
 |   real_c_float(const real_c_float &b) | 
 |     { memcpy(image, b.image, sizeof(image)); } | 
 |  | 
 |   const real_c_float& operator= (long l) | 
 |     { from_long(l); return *this; } | 
 |   const real_c_float& operator= (const char *s) | 
 |     { from_str(s); return *this; } | 
 |   const real_c_float& operator= (const real_c_float &b) | 
 |     { memcpy(image, b.image, sizeof(image)); return *this; } | 
 |  | 
 |   const real_c_float& operator+= (const real_c_float &b) | 
 |     { binop(PLUS_EXPR, b); return *this; } | 
 |   const real_c_float& operator-= (const real_c_float &b) | 
 |     { binop(MINUS_EXPR, b); return *this; } | 
 |   const real_c_float& operator*= (const real_c_float &b) | 
 |     { binop(MULT_EXPR, b); return *this; } | 
 |   const real_c_float& operator/= (const real_c_float &b) | 
 |     { binop(RDIV_EXPR, b); return *this; } | 
 |  | 
 |   real_c_float operator- () const | 
 |     { real_c_float r(*this); r.unop(NEGATE_EXPR); return r; } | 
 |   real_c_float abs () const | 
 |     { real_c_float r(*this); r.unop(ABS_EXPR); return r; } | 
 |  | 
 |   bool operator <  (const real_c_float &b) const { return cmp(LT_EXPR, b); } | 
 |   bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); } | 
 |   bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); } | 
 |   bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); } | 
 |   bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); } | 
 |   bool operator >  (const real_c_float &b) const { return cmp(GT_EXPR, b); } | 
 |  | 
 |   const char * str () const; | 
 |   const char * hex () const; | 
 |   long integer () const; | 
 |   int exp () const; | 
 |   void ldexp (int); | 
 | }; | 
 |  | 
 | void | 
 | real_c_float::from_long (long l) | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |  | 
 |   real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0); | 
 |   real_to_target (image, &f, MODE); | 
 | } | 
 |  | 
 | void | 
 | real_c_float::from_str (const char *s) | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |   const char *p = s; | 
 |  | 
 |   if (*p == '-' || *p == '+') | 
 |     p++; | 
 |   if (strcasecmp(p, "inf") == 0) | 
 |     { | 
 |       real_inf (&f); | 
 |       if (*s == '-') | 
 |         real_arithmetic (&f, NEGATE_EXPR, &f, NULL); | 
 |     } | 
 |   else if (strcasecmp(p, "nan") == 0) | 
 |     real_nan (&f, "", 1, MODE); | 
 |   else | 
 |     real_from_string (&f, s); | 
 |  | 
 |   real_to_target (image, &f, MODE); | 
 | } | 
 |  | 
 | void | 
 | real_c_float::binop (int code, const real_c_float &b) | 
 | { | 
 |   REAL_VALUE_TYPE ai, bi, ri; | 
 |  | 
 |   real_from_target (&ai, image, MODE); | 
 |   real_from_target (&bi, b.image, MODE); | 
 |   real_arithmetic (&ri, code, &ai, &bi); | 
 |   real_to_target (image, &ri, MODE); | 
 |  | 
 |   if (verbose) | 
 |     { | 
 |       char ab[64], bb[64], rb[64]; | 
 |       const real_format *fmt = real_format_for_mode[MODE - QFmode]; | 
 |       const int digits = (fmt->p * fmt->log2_b + 3) / 4; | 
 |       char symbol_for_code; | 
 |  | 
 |       real_from_target (&ri, image, MODE); | 
 |       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0); | 
 |       real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0); | 
 |       real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0); | 
 |  | 
 |       switch (code) | 
 | 	{ | 
 | 	case PLUS_EXPR: | 
 | 	  symbol_for_code = '+'; | 
 | 	  break; | 
 | 	case MINUS_EXPR: | 
 | 	  symbol_for_code = '-'; | 
 | 	  break; | 
 | 	case MULT_EXPR: | 
 | 	  symbol_for_code = '*'; | 
 | 	  break; | 
 | 	case RDIV_EXPR: | 
 | 	  symbol_for_code = '/'; | 
 | 	  break; | 
 | 	default: | 
 | 	  abort (); | 
 | 	} | 
 |  | 
 |       fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++, | 
 | 	       ab, symbol_for_code, bb, rb); | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | real_c_float::unop (int code) | 
 | { | 
 |   REAL_VALUE_TYPE ai, ri; | 
 |  | 
 |   real_from_target (&ai, image, MODE); | 
 |   real_arithmetic (&ri, code, &ai, NULL); | 
 |   real_to_target (image, &ri, MODE); | 
 |  | 
 |   if (verbose) | 
 |     { | 
 |       char ab[64], rb[64]; | 
 |       const real_format *fmt = real_format_for_mode[MODE - QFmode]; | 
 |       const int digits = (fmt->p * fmt->log2_b + 3) / 4; | 
 |       const char *symbol_for_code; | 
 |  | 
 |       real_from_target (&ri, image, MODE); | 
 |       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0); | 
 |       real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0); | 
 |  | 
 |       switch (code) | 
 | 	{ | 
 | 	case NEGATE_EXPR: | 
 | 	  symbol_for_code = "-"; | 
 | 	  break; | 
 | 	case ABS_EXPR: | 
 | 	  symbol_for_code = "abs "; | 
 | 	  break; | 
 | 	default: | 
 | 	  abort (); | 
 | 	} | 
 |  | 
 |       fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++, | 
 | 	       symbol_for_code, ab, rb); | 
 |     } | 
 | } | 
 |  | 
 | bool | 
 | real_c_float::cmp (int code, const real_c_float &b) const | 
 | { | 
 |   REAL_VALUE_TYPE ai, bi; | 
 |   bool ret; | 
 |  | 
 |   real_from_target (&ai, image, MODE); | 
 |   real_from_target (&bi, b.image, MODE); | 
 |   ret = real_compare (code, &ai, &bi); | 
 |  | 
 |   if (verbose) | 
 |     { | 
 |       char ab[64], bb[64]; | 
 |       const real_format *fmt = real_format_for_mode[MODE - QFmode]; | 
 |       const int digits = (fmt->p * fmt->log2_b + 3) / 4; | 
 |       const char *symbol_for_code; | 
 |  | 
 |       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0); | 
 |       real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0); | 
 |  | 
 |       switch (code) | 
 | 	{ | 
 | 	case LT_EXPR: | 
 | 	  symbol_for_code = "<"; | 
 | 	  break; | 
 | 	case LE_EXPR: | 
 | 	  symbol_for_code = "<="; | 
 | 	  break; | 
 | 	case EQ_EXPR: | 
 | 	  symbol_for_code = "=="; | 
 | 	  break; | 
 | 	case NE_EXPR: | 
 | 	  symbol_for_code = "!="; | 
 | 	  break; | 
 | 	case GE_EXPR: | 
 | 	  symbol_for_code = ">="; | 
 | 	  break; | 
 | 	case GT_EXPR: | 
 | 	  symbol_for_code = ">"; | 
 | 	  break; | 
 | 	default: | 
 | 	  abort (); | 
 | 	} | 
 |  | 
 |       fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++, | 
 | 	       ab, symbol_for_code, bb, (ret ? "true" : "false")); | 
 |     } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | const char * | 
 | real_c_float::str() const | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |   const real_format *fmt = real_format_for_mode[MODE - QFmode]; | 
 |   const int digits = int(fmt->p * fmt->log2_b * .30102999566398119521 + 1); | 
 |  | 
 |   real_from_target (&f, image, MODE); | 
 |   char *buf = new char[digits + 10]; | 
 |   real_to_decimal (buf, &f, digits+10, digits, 0); | 
 |  | 
 |   return buf; | 
 | } | 
 |  | 
 | const char * | 
 | real_c_float::hex() const | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |   const real_format *fmt = real_format_for_mode[MODE - QFmode]; | 
 |   const int digits = (fmt->p * fmt->log2_b + 3) / 4; | 
 |  | 
 |   real_from_target (&f, image, MODE); | 
 |   char *buf = new char[digits + 10]; | 
 |   real_to_hexadecimal (buf, &f, digits+10, digits, 0); | 
 |  | 
 |   return buf; | 
 | } | 
 |  | 
 | long | 
 | real_c_float::integer() const | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |   real_from_target (&f, image, MODE); | 
 |   return real_to_integer (&f); | 
 | } | 
 |  | 
 | int | 
 | real_c_float::exp() const | 
 | { | 
 |   REAL_VALUE_TYPE f; | 
 |   real_from_target (&f, image, MODE); | 
 |   return real_exponent (&f); | 
 | } | 
 |  | 
 | void | 
 | real_c_float::ldexp (int exp) | 
 | { | 
 |   REAL_VALUE_TYPE ai; | 
 |  | 
 |   real_from_target (&ai, image, MODE); | 
 |   real_ldexp (&ai, &ai, exp); | 
 |   real_to_target (image, &ai, MODE); | 
 | } | 
 |  | 
 | /* ====================================================================== */ | 
 | /* An implementation of the abstract floating point class that uses native | 
 |    arithmetic.  Exists for reference and debugging.  */ | 
 |  | 
 | template<typename T> | 
 | class native_float | 
 | { | 
 |  private: | 
 |   // Force intermediate results back to memory. | 
 |   volatile T image; | 
 |  | 
 |   static T from_str (const char *); | 
 |   static T do_abs (T); | 
 |   static T verbose_binop (T, char, T, T); | 
 |   static T verbose_unop (const char *, T, T); | 
 |   static bool verbose_cmp (T, const char *, T, bool); | 
 |  | 
 |  public: | 
 |   native_float() | 
 |     { } | 
 |   native_float(long l) | 
 |     { image = l; } | 
 |   native_float(const char *s) | 
 |     { image = from_str(s); } | 
 |   native_float(const native_float &b) | 
 |     { image = b.image; } | 
 |  | 
 |   const native_float& operator= (long l) | 
 |     { image = l; return *this; } | 
 |   const native_float& operator= (const char *s) | 
 |     { image = from_str(s); return *this; } | 
 |   const native_float& operator= (const native_float &b) | 
 |     { image = b.image; return *this; } | 
 |  | 
 |   const native_float& operator+= (const native_float &b) | 
 |     { | 
 |       image = verbose_binop(image, '+', b.image, image + b.image); | 
 |       return *this; | 
 |     } | 
 |   const native_float& operator-= (const native_float &b) | 
 |     { | 
 |       image = verbose_binop(image, '-', b.image, image - b.image); | 
 |       return *this; | 
 |     } | 
 |   const native_float& operator*= (const native_float &b) | 
 |     { | 
 |       image = verbose_binop(image, '*', b.image, image * b.image); | 
 |       return *this; | 
 |     } | 
 |   const native_float& operator/= (const native_float &b) | 
 |     { | 
 |       image = verbose_binop(image, '/', b.image, image / b.image); | 
 |       return *this; | 
 |     } | 
 |  | 
 |   native_float operator- () const | 
 |     { | 
 |       native_float r; | 
 |       r.image = verbose_unop("-", image, -image); | 
 |       return r; | 
 |     } | 
 |   native_float abs () const | 
 |     { | 
 |       native_float r; | 
 |       r.image = verbose_unop("abs ", image, do_abs(image)); | 
 |       return r; | 
 |     } | 
 |  | 
 |   bool operator <  (const native_float &b) const | 
 |     { return verbose_cmp(image, "<", b.image, image <  b.image); } | 
 |   bool operator <= (const native_float &b) const | 
 |     { return verbose_cmp(image, "<=", b.image, image <= b.image); } | 
 |   bool operator == (const native_float &b) const | 
 |     { return verbose_cmp(image, "==", b.image, image == b.image); } | 
 |   bool operator != (const native_float &b) const | 
 |     { return verbose_cmp(image, "!=", b.image, image != b.image); } | 
 |   bool operator >= (const native_float &b) const | 
 |     { return verbose_cmp(image, ">=", b.image, image >= b.image); } | 
 |   bool operator >  (const native_float &b) const | 
 |     { return verbose_cmp(image, ">", b.image, image > b.image); } | 
 |  | 
 |   const char * str () const; | 
 |   const char * hex () const; | 
 |   long integer () const | 
 |     { return long(image); } | 
 |   int exp () const; | 
 |   void ldexp (int); | 
 | }; | 
 |  | 
 | template<typename T> | 
 | inline T | 
 | native_float<T>::from_str (const char *s) | 
 | { | 
 |   return strtold (s, NULL); | 
 | } | 
 |  | 
 | template<> | 
 | inline float | 
 | native_float<float>::from_str (const char *s) | 
 | { | 
 |   return strtof (s, NULL); | 
 | } | 
 |  | 
 | template<> | 
 | inline double | 
 | native_float<double>::from_str (const char *s) | 
 | { | 
 |   return strtod (s, NULL); | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline T | 
 | native_float<T>::do_abs (T image) | 
 | { | 
 |   return fabsl (image); | 
 | } | 
 |  | 
 | template<> | 
 | inline float | 
 | native_float<float>::do_abs (float image) | 
 | { | 
 |   return fabsf (image); | 
 | } | 
 |  | 
 | template<> | 
 | inline double | 
 | native_float<double>::do_abs (double image) | 
 | { | 
 |   return fabs (image); | 
 | } | 
 |  | 
 | template<typename T> | 
 | T | 
 | native_float<T>::verbose_binop (T a, char symbol, T b, T r) | 
 | { | 
 |   if (verbose) | 
 |     { | 
 |       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; | 
 | #ifdef NO_LONG_DOUBLE | 
 |       fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++, | 
 | 	       digits, (double)a, symbol, | 
 | 	       digits, (double)b, digits, (double)r); | 
 | #else | 
 |       fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++, | 
 | 	       digits, (long double)a, symbol, | 
 | 	       digits, (long double)b, digits, (long double)r); | 
 | #endif | 
 |     } | 
 |   return r; | 
 | } | 
 |  | 
 | template<typename T> | 
 | T | 
 | native_float<T>::verbose_unop (const char *symbol, T a, T r) | 
 | { | 
 |   if (verbose) | 
 |     { | 
 |       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; | 
 | #ifdef NO_LONG_DOUBLE | 
 |       fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++, | 
 | 	       symbol, digits, (double)a, digits, (double)r); | 
 | #else | 
 |       fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++, | 
 | 	       symbol, digits, (long double)a, digits, (long double)r); | 
 | #endif | 
 |     } | 
 |   return r; | 
 | } | 
 |  | 
 | template<typename T> | 
 | bool | 
 | native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r) | 
 | { | 
 |   if (verbose) | 
 |     { | 
 |       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; | 
 | #ifndef NO_LONG_DOUBLE | 
 |       fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++, | 
 | 	       digits, (double)a, symbol, | 
 | 	       digits, (double)b, (r ? "true" : "false")); | 
 | #else | 
 |       fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++, | 
 | 	       digits, (long double)a, symbol, | 
 | 	       digits, (long double)b, (r ? "true" : "false")); | 
 | #endif | 
 |     } | 
 |   return r; | 
 | } | 
 |  | 
 | template<typename T> | 
 | const char * | 
 | native_float<T>::str() const | 
 | { | 
 |   char *buf = new char[50]; | 
 |   const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1); | 
 | #ifndef NO_LONG_DOUBLE | 
 |   sprintf (buf, "%.*e", digits - 1, (double) image); | 
 | #else | 
 |   sprintf (buf, "%.*Le", digits - 1, (long double) image); | 
 | #endif | 
 |   return buf; | 
 | } | 
 |  | 
 | template<typename T> | 
 | const char * | 
 | native_float<T>::hex() const | 
 | { | 
 |   char *buf = new char[50]; | 
 |   const int digits = int(sizeof(T) * CHAR_BIT / 4); | 
 | #ifndef NO_LONG_DOUBLE | 
 |   sprintf (buf, "%.*a", digits - 1, (double) image); | 
 | #else | 
 |   sprintf (buf, "%.*La", digits - 1, (long double) image); | 
 | #endif | 
 |   return buf; | 
 | } | 
 |  | 
 | template<typename T> | 
 | int | 
 | native_float<T>::exp() const | 
 | { | 
 |   int e; | 
 |   frexp (image, &e); | 
 |   return e; | 
 | } | 
 |  | 
 | template<typename T> | 
 | void | 
 | native_float<T>::ldexp (int exp) | 
 | { | 
 |   image = ldexpl (image, exp); | 
 | } | 
 |  | 
 | template<> | 
 | void | 
 | native_float<float>::ldexp (int exp) | 
 | { | 
 |   image = ldexpf (image, exp); | 
 | } | 
 |  | 
 | template<> | 
 | void | 
 | native_float<double>::ldexp (int exp) | 
 | { | 
 |   image = ::ldexp (image, exp); | 
 | } | 
 |  | 
 | /* ====================================================================== */ | 
 | /* Some libm routines that Paranoia expects to be available.  */ | 
 |  | 
 | template<typename FLOAT> | 
 | inline FLOAT | 
 | FABS (const FLOAT &f) | 
 | { | 
 |   return f.abs(); | 
 | } | 
 |  | 
 | template<typename FLOAT, typename RHS> | 
 | inline FLOAT | 
 | operator+ (const FLOAT &a, const RHS &b) | 
 | { | 
 |   return FLOAT(a) += FLOAT(b); | 
 | } | 
 |  | 
 | template<typename FLOAT, typename RHS> | 
 | inline FLOAT | 
 | operator- (const FLOAT &a, const RHS &b) | 
 | { | 
 |   return FLOAT(a) -= FLOAT(b); | 
 | } | 
 |  | 
 | template<typename FLOAT, typename RHS> | 
 | inline FLOAT | 
 | operator* (const FLOAT &a, const RHS &b) | 
 | { | 
 |   return FLOAT(a) *= FLOAT(b); | 
 | } | 
 |  | 
 | template<typename FLOAT, typename RHS> | 
 | inline FLOAT | 
 | operator/ (const FLOAT &a, const RHS &b) | 
 | { | 
 |   return FLOAT(a) /= FLOAT(b); | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | FLOOR (const FLOAT &f) | 
 | { | 
 |   /* ??? This is only correct when F is representable as an integer.  */ | 
 |   long i = f.integer(); | 
 |   FLOAT r; | 
 |  | 
 |   r = i; | 
 |   if (i < 0 && f != r) | 
 |     r = i - 1; | 
 |  | 
 |   return r; | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | SQRT (const FLOAT &f) | 
 | { | 
 | #if 0 | 
 |   FLOAT zero = long(0); | 
 |   FLOAT two = 2; | 
 |   FLOAT one = 1; | 
 |   FLOAT diff, diff2; | 
 |   FLOAT z, t; | 
 |  | 
 |   if (f == zero) | 
 |     return zero; | 
 |   if (f < zero) | 
 |     return zero / zero; | 
 |   if (f == one) | 
 |     return f; | 
 |  | 
 |   z = f; | 
 |   z.ldexp (-f.exp() / 2); | 
 |  | 
 |   diff2 = FABS (z * z - f); | 
 |   if (diff2 > zero) | 
 |     while (1) | 
 |       { | 
 | 	t = (f / (two * z)) + (z / two); | 
 | 	diff = FABS (t * t - f); | 
 | 	if (diff >= diff2) | 
 | 	  break; | 
 | 	z = t; | 
 | 	diff2 = diff; | 
 |       } | 
 |  | 
 |   return z; | 
 | #elif defined(NO_LONG_DOUBLE) | 
 |   double d; | 
 |   char buf[64]; | 
 |  | 
 |   d = strtod (f.hex(), NULL); | 
 |   d = sqrt (d); | 
 |   sprintf(buf, "%.35a", d); | 
 |  | 
 |   return FLOAT(buf); | 
 | #else | 
 |   long double ld; | 
 |   char buf[64]; | 
 |  | 
 |   ld = strtold (f.hex(), NULL); | 
 |   ld = sqrtl (ld); | 
 |   sprintf(buf, "%.35La", ld); | 
 |  | 
 |   return FLOAT(buf); | 
 | #endif | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | LOG (FLOAT x) | 
 | { | 
 | #if 0 | 
 |   FLOAT zero = long(0); | 
 |   FLOAT one = 1; | 
 |  | 
 |   if (x <= zero) | 
 |     return zero / zero; | 
 |   if (x == one) | 
 |     return zero; | 
 |  | 
 |   int exp = x.exp() - 1; | 
 |   x.ldexp(-exp); | 
 |  | 
 |   FLOAT xm1 = x - one; | 
 |   FLOAT y = xm1; | 
 |   long n = 2; | 
 |  | 
 |   FLOAT sum = xm1; | 
 |   while (1) | 
 |     { | 
 |       y *= xm1; | 
 |       FLOAT term = y / FLOAT (n); | 
 |       FLOAT next = sum + term; | 
 |       if (next == sum) | 
 | 	break; | 
 |       sum = next; | 
 |       if (++n == 1000) | 
 | 	break; | 
 |     } | 
 |  | 
 |   if (exp) | 
 |     sum += FLOAT (exp) * FLOAT(".69314718055994530941"); | 
 |  | 
 |   return sum; | 
 | #elif defined (NO_LONG_DOUBLE) | 
 |   double d; | 
 |   char buf[64]; | 
 |  | 
 |   d = strtod (x.hex(), NULL); | 
 |   d = log (d); | 
 |   sprintf(buf, "%.35a", d); | 
 |  | 
 |   return FLOAT(buf); | 
 | #else | 
 |   long double ld; | 
 |   char buf[64]; | 
 |  | 
 |   ld = strtold (x.hex(), NULL); | 
 |   ld = logl (ld); | 
 |   sprintf(buf, "%.35La", ld); | 
 |  | 
 |   return FLOAT(buf); | 
 | #endif | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | EXP (const FLOAT &x) | 
 | { | 
 |   /* Cheat.  */ | 
 | #ifdef NO_LONG_DOUBLE | 
 |   double d; | 
 |   char buf[64]; | 
 |  | 
 |   d = strtod (x.hex(), NULL); | 
 |   d = exp (d); | 
 |   sprintf(buf, "%.35a", d); | 
 |  | 
 |   return FLOAT(buf); | 
 | #else | 
 |   long double ld; | 
 |   char buf[64]; | 
 |  | 
 |   ld = strtold (x.hex(), NULL); | 
 |   ld = expl (ld); | 
 |   sprintf(buf, "%.35La", ld); | 
 |  | 
 |   return FLOAT(buf); | 
 | #endif | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | POW (const FLOAT &base, const FLOAT &exp) | 
 | { | 
 |   /* Cheat.  */ | 
 | #ifdef NO_LONG_DOUBLE | 
 |   double d1, d2; | 
 |   char buf[64]; | 
 |  | 
 |   d1 = strtod (base.hex(), NULL); | 
 |   d2 = strtod (exp.hex(), NULL); | 
 |   d1 = pow (d1, d2); | 
 |   sprintf(buf, "%.35a", d1); | 
 |  | 
 |   return FLOAT(buf); | 
 | #else | 
 |   long double ld1, ld2; | 
 |   char buf[64]; | 
 |  | 
 |   ld1 = strtold (base.hex(), NULL); | 
 |   ld2 = strtold (exp.hex(), NULL); | 
 |   ld1 = powl (ld1, ld2); | 
 |   sprintf(buf, "%.35La", ld1); | 
 |  | 
 |   return FLOAT(buf); | 
 | #endif | 
 | } | 
 |  | 
 | /* ====================================================================== */ | 
 | /* Real Paranoia begins again here.  We wrap the thing in a template so | 
 |    that we can instantiate it for each floating point type we care for.  */ | 
 |  | 
 | int NoTrials = 20;		/*Number of tests for commutativity. */ | 
 | bool do_pause = false; | 
 |  | 
 | enum Guard { No, Yes }; | 
 | enum Rounding { Other, Rounded, Chopped }; | 
 | enum Class { Failure, Serious, Defect, Flaw }; | 
 |  | 
 | template<typename FLOAT> | 
 | struct Paranoia | 
 | { | 
 |   FLOAT Radix, BInvrse, RadixD2, BMinusU2; | 
 |  | 
 |   /* Small floating point constants.  */ | 
 |   FLOAT Zero; | 
 |   FLOAT Half; | 
 |   FLOAT One; | 
 |   FLOAT Two; | 
 |   FLOAT Three; | 
 |   FLOAT Four; | 
 |   FLOAT Five; | 
 |   FLOAT Eight; | 
 |   FLOAT Nine; | 
 |   FLOAT TwentySeven; | 
 |   FLOAT ThirtyTwo; | 
 |   FLOAT TwoForty; | 
 |   FLOAT MinusOne; | 
 |   FLOAT OneAndHalf; | 
 |  | 
 |   /* Declarations of Variables.  */ | 
 |   int Indx; | 
 |   char ch[8]; | 
 |   FLOAT AInvrse, A1; | 
 |   FLOAT C, CInvrse; | 
 |   FLOAT D, FourD; | 
 |   FLOAT E0, E1, Exp2, E3, MinSqEr; | 
 |   FLOAT SqEr, MaxSqEr, E9; | 
 |   FLOAT Third; | 
 |   FLOAT F6, F9; | 
 |   FLOAT H, HInvrse; | 
 |   int I; | 
 |   FLOAT StickyBit, J; | 
 |   FLOAT MyZero; | 
 |   FLOAT Precision; | 
 |   FLOAT Q, Q9; | 
 |   FLOAT R, Random9; | 
 |   FLOAT T, Underflow, S; | 
 |   FLOAT OneUlp, UfThold, U1, U2; | 
 |   FLOAT V, V0, V9; | 
 |   FLOAT W; | 
 |   FLOAT X, X1, X2, X8, Random1; | 
 |   FLOAT Y, Y1, Y2, Random2; | 
 |   FLOAT Z, PseudoZero, Z1, Z2, Z9; | 
 |   int ErrCnt[4]; | 
 |   int Milestone; | 
 |   int PageNo; | 
 |   int M, N, N1; | 
 |   Guard GMult, GDiv, GAddSub; | 
 |   Rounding RMult, RDiv, RAddSub, RSqrt; | 
 |   int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad; | 
 |  | 
 |   /* Computed constants. */ | 
 |   /*U1  gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */ | 
 |   /*U2  gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */ | 
 |  | 
 |   int main (); | 
 |  | 
 |   FLOAT Sign (FLOAT); | 
 |   FLOAT Random (); | 
 |   void Pause (); | 
 |   void BadCond (int, const char *); | 
 |   void SqXMinX (int); | 
 |   void TstCond (int, int, const char *); | 
 |   void notify (const char *); | 
 |   void IsYeqX (); | 
 |   void NewD (); | 
 |   void PrintIfNPositive (); | 
 |   void SR3750 (); | 
 |   void TstPtUf (); | 
 |  | 
 |   // Pretend we're bss. | 
 |   Paranoia() { memset(this, 0, sizeof (*this)); } | 
 | }; | 
 |  | 
 | template<typename FLOAT> | 
 | int | 
 | Paranoia<FLOAT>::main() | 
 | { | 
 |   /* First two assignments use integer right-hand sides. */ | 
 |   Zero = long(0); | 
 |   One = long(1); | 
 |   Two = long(2); | 
 |   Three = long(3); | 
 |   Four = long(4); | 
 |   Five = long(5); | 
 |   Eight = long(8); | 
 |   Nine = long(9); | 
 |   TwentySeven = long(27); | 
 |   ThirtyTwo = long(32); | 
 |   TwoForty = long(240); | 
 |   MinusOne = long(-1); | 
 |   Half = "0x1p-1"; | 
 |   OneAndHalf = "0x3p-1"; | 
 |   ErrCnt[Failure] = 0; | 
 |   ErrCnt[Serious] = 0; | 
 |   ErrCnt[Defect] = 0; | 
 |   ErrCnt[Flaw] = 0; | 
 |   PageNo = 1; | 
 | 	/*=============================================*/ | 
 |   Milestone = 7; | 
 | 	/*=============================================*/ | 
 |   printf ("Program is now RUNNING tests on small integers:\n"); | 
 |  | 
 |   TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0"); | 
 |   TstCond (Failure, (One - One == Zero), "1-1 != 0"); | 
 |   TstCond (Failure, (One > Zero), "1 <= 0"); | 
 |   TstCond (Failure, (One + One == Two), "1+1 != 2"); | 
 |  | 
 |   Z = -Zero; | 
 |   if (Z != Zero) | 
 |     { | 
 |       ErrCnt[Failure] = ErrCnt[Failure] + 1; | 
 |       printf ("Comparison alleges that -0.0 is Non-zero!\n"); | 
 |       U2 = "0.001"; | 
 |       Radix = 1; | 
 |       TstPtUf (); | 
 |     } | 
 |  | 
 |   TstCond (Failure, (Three == Two + One), "3 != 2+1"); | 
 |   TstCond (Failure, (Four == Three + One), "4 != 3+1"); | 
 |   TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0"); | 
 |   TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0"); | 
 |  | 
 |   TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1"); | 
 |   TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0"); | 
 |   TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0"); | 
 |   TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0"); | 
 |   TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero), | 
 | 	   "-1+(-1)*(-1) != 0"); | 
 |  | 
 |   TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0"); | 
 |  | 
 | 	/*=============================================*/ | 
 |   Milestone = 10; | 
 | 	/*=============================================*/ | 
 |  | 
 |   TstCond (Failure, (Nine == Three * Three), "9 != 3*3"); | 
 |   TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3"); | 
 |   TstCond (Failure, (Eight == Four + Four), "8 != 4+4"); | 
 |   TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4"); | 
 |   TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero), | 
 | 	   "32-27-4-1 != 0"); | 
 |  | 
 |   TstCond (Failure, Five == Four + One, "5 != 4+1"); | 
 |   TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4"); | 
 |   TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero, | 
 | 	   "240/3 - 4*4*5 != 0"); | 
 |   TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero, | 
 | 	   "240/4 - 5*3*4 != 0"); | 
 |   TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero, | 
 | 	   "240/5 - 4*3*4 != 0"); | 
 |  | 
 |   if (ErrCnt[Failure] == 0) | 
 |     { | 
 |       printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n"); | 
 |       printf ("\n"); | 
 |     } | 
 |   printf ("Searching for Radix and Precision.\n"); | 
 |   W = One; | 
 |   do | 
 |     { | 
 |       W = W + W; | 
 |       Y = W + One; | 
 |       Z = Y - W; | 
 |       Y = Z - One; | 
 |     } | 
 |   while (MinusOne + FABS (Y) < Zero); | 
 |   /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */ | 
 |   Precision = Zero; | 
 |   Y = One; | 
 |   do | 
 |     { | 
 |       Radix = W + Y; | 
 |       Y = Y + Y; | 
 |       Radix = Radix - W; | 
 |     } | 
 |   while (Radix == Zero); | 
 |   if (Radix < Two) | 
 |     Radix = One; | 
 |   printf ("Radix = %s .\n", Radix.str()); | 
 |   if (Radix != One) | 
 |     { | 
 |       W = One; | 
 |       do | 
 | 	{ | 
 | 	  Precision = Precision + One; | 
 | 	  W = W * Radix; | 
 | 	  Y = W + One; | 
 | 	} | 
 |       while ((Y - W) == One); | 
 |     } | 
 |   /*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1 | 
 |      ... */ | 
 |   U1 = One / W; | 
 |   U2 = Radix * U1; | 
 |   printf ("Closest relative separation found is U1 = %s .\n\n", U1.str()); | 
 |   printf ("Recalculating radix and precision\n "); | 
 |  | 
 |   /*save old values */ | 
 |   E0 = Radix; | 
 |   E1 = U1; | 
 |   E9 = U2; | 
 |   E3 = Precision; | 
 |  | 
 |   X = Four / Three; | 
 |   Third = X - One; | 
 |   F6 = Half - Third; | 
 |   X = F6 + F6; | 
 |   X = FABS (X - Third); | 
 |   if (X < U2) | 
 |     X = U2; | 
 |  | 
 |   /*... now X = (unknown no.) ulps of 1+... */ | 
 |   do | 
 |     { | 
 |       U2 = X; | 
 |       Y = Half * U2 + ThirtyTwo * U2 * U2; | 
 |       Y = One + Y; | 
 |       X = Y - One; | 
 |     } | 
 |   while (!((U2 <= X) || (X <= Zero))); | 
 |  | 
 |   /*... now U2 == 1 ulp of 1 + ... */ | 
 |   X = Two / Three; | 
 |   F6 = X - Half; | 
 |   Third = F6 + F6; | 
 |   X = Third - Half; | 
 |   X = FABS (X + F6); | 
 |   if (X < U1) | 
 |     X = U1; | 
 |  | 
 |   /*... now  X == (unknown no.) ulps of 1 -... */ | 
 |   do | 
 |     { | 
 |       U1 = X; | 
 |       Y = Half * U1 + ThirtyTwo * U1 * U1; | 
 |       Y = Half - Y; | 
 |       X = Half + Y; | 
 |       Y = Half - X; | 
 |       X = Half + Y; | 
 |     } | 
 |   while (!((U1 <= X) || (X <= Zero))); | 
 |   /*... now U1 == 1 ulp of 1 - ... */ | 
 |   if (U1 == E1) | 
 |     printf ("confirms closest relative separation U1 .\n"); | 
 |   else | 
 |     printf ("gets better closest relative separation U1 = %s .\n", U1.str()); | 
 |   W = One / U1; | 
 |   F9 = (Half - U1) + Half; | 
 |  | 
 |   Radix = FLOOR (FLOAT ("0.01") + U2 / U1); | 
 |   if (Radix == E0) | 
 |     printf ("Radix confirmed.\n"); | 
 |   else | 
 |     printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str()); | 
 |   TstCond (Defect, Radix <= Eight + Eight, | 
 | 	   "Radix is too big: roundoff problems"); | 
 |   TstCond (Flaw, (Radix == Two) || (Radix == 10) | 
 | 	   || (Radix == One), "Radix is not as good as 2 or 10"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 20; | 
 | 	/*=============================================*/ | 
 |   TstCond (Failure, F9 - Half < Half, | 
 | 	   "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?"); | 
 |   X = F9; | 
 |   I = 1; | 
 |   Y = X - Half; | 
 |   Z = Y - Half; | 
 |   TstCond (Failure, (X != One) | 
 | 	   || (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0"); | 
 |   X = One + U2; | 
 |   I = 0; | 
 | 	/*=============================================*/ | 
 |   Milestone = 25; | 
 | 	/*=============================================*/ | 
 |   /*... BMinusU2 = nextafter(Radix, 0) */ | 
 |   BMinusU2 = Radix - One; | 
 |   BMinusU2 = (BMinusU2 - U2) + One; | 
 |   /* Purify Integers */ | 
 |   if (Radix != One) | 
 |     { | 
 |       X = -TwoForty * LOG (U1) / LOG (Radix); | 
 |       Y = FLOOR (Half + X); | 
 |       if (FABS (X - Y) * Four < One) | 
 | 	X = Y; | 
 |       Precision = X / TwoForty; | 
 |       Y = FLOOR (Half + Precision); | 
 |       if (FABS (Precision - Y) * TwoForty < Half) | 
 | 	Precision = Y; | 
 |     } | 
 |   if ((Precision != FLOOR (Precision)) || (Radix == One)) | 
 |     { | 
 |       printf ("Precision cannot be characterized by an Integer number\n"); | 
 |       printf | 
 | 	("of significant digits but, by itself, this is a minor flaw.\n"); | 
 |     } | 
 |   if (Radix == One) | 
 |     printf | 
 |       ("logarithmic encoding has precision characterized solely by U1.\n"); | 
 |   else | 
 |     printf ("The number of significant digits of the Radix is %s .\n", | 
 | 	    Precision.str()); | 
 |   TstCond (Serious, U2 * Nine * Nine * TwoForty < One, | 
 | 	   "Precision worse than 5 decimal figures  "); | 
 | 	/*=============================================*/ | 
 |   Milestone = 30; | 
 | 	/*=============================================*/ | 
 |   /* Test for extra-precise subexpressions */ | 
 |   X = FABS (((Four / Three - One) - One / Four) * Three - One / Four); | 
 |   do | 
 |     { | 
 |       Z2 = X; | 
 |       X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One; | 
 |     } | 
 |   while (!((Z2 <= X) || (X <= Zero))); | 
 |   X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four); | 
 |   do | 
 |     { | 
 |       Z1 = Z; | 
 |       Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1)) | 
 | 			+ One / Two)) + One / Two; | 
 |     } | 
 |   while (!((Z1 <= Z) || (Z <= Zero))); | 
 |   do | 
 |     { | 
 |       do | 
 | 	{ | 
 | 	  Y1 = Y; | 
 | 	  Y = | 
 | 	    (Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) + | 
 | 	    Half; | 
 | 	} | 
 |       while (!((Y1 <= Y) || (Y <= Zero))); | 
 |       X1 = X; | 
 |       X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9; | 
 |     } | 
 |   while (!((X1 <= X) || (X <= Zero))); | 
 |   if ((X1 != Y1) || (X1 != Z1)) | 
 |     { | 
 |       BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n"); | 
 |       printf ("respectively  %s,  %s,  %s,\n", X1.str(), Y1.str(), Z1.str()); | 
 |       printf ("are symptoms of inconsistencies introduced\n"); | 
 |       printf ("by extra-precise evaluation of arithmetic subexpressions.\n"); | 
 |       notify ("Possibly some part of this"); | 
 |       if ((X1 == U1) || (Y1 == U1) || (Z1 == U1)) | 
 | 	printf ("That feature is not tested further by this program.\n"); | 
 |     } | 
 |   else | 
 |     { | 
 |       if ((Z1 != U1) || (Z2 != U2)) | 
 | 	{ | 
 | 	  if ((Z1 >= U1) || (Z2 >= U2)) | 
 | 	    { | 
 | 	      BadCond (Failure, ""); | 
 | 	      notify ("Precision"); | 
 | 	      printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str()); | 
 | 	      printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str()); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if ((Z1 <= Zero) || (Z2 <= Zero)) | 
 | 		{ | 
 | 		  printf ("Because of unusual Radix = %s", Radix.str()); | 
 | 		  printf (", or exact rational arithmetic a result\n"); | 
 | 		  printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str()); | 
 | 		  notify ("of an\nextra-precision"); | 
 | 		} | 
 | 	      if (Z1 != Z2 || Z1 > Zero) | 
 | 		{ | 
 | 		  X = Z1 / U1; | 
 | 		  Y = Z2 / U2; | 
 | 		  if (Y > X) | 
 | 		    X = Y; | 
 | 		  Q = -LOG (X); | 
 | 		  printf ("Some subexpressions appear to be calculated " | 
 | 			  "extra precisely\n"); | 
 | 		  printf ("with about %s extra B-digits, i.e.\n", | 
 | 			  (Q / LOG (Radix)).str()); | 
 | 		  printf ("roughly %s extra significant decimals.\n", | 
 | 			  (Q / LOG (FLOAT (10))).str()); | 
 | 		} | 
 | 	      printf | 
 | 		("That feature is not tested further by this program.\n"); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   Pause (); | 
 | 	/*=============================================*/ | 
 |   Milestone = 35; | 
 | 	/*=============================================*/ | 
 |   if (Radix >= Two) | 
 |     { | 
 |       X = W / (Radix * Radix); | 
 |       Y = X + One; | 
 |       Z = Y - X; | 
 |       T = Z + U2; | 
 |       X = T - Z; | 
 |       TstCond (Failure, X == U2, | 
 | 	       "Subtraction is not normalized X=Y,X+Z != Y+Z!"); | 
 |       if (X == U2) | 
 | 	printf ("Subtraction appears to be normalized, as it should be."); | 
 |     } | 
 |   printf ("\nChecking for guard digit in *, /, and -.\n"); | 
 |   Y = F9 * One; | 
 |   Z = One * F9; | 
 |   X = F9 - Half; | 
 |   Y = (Y - Half) - X; | 
 |   Z = (Z - Half) - X; | 
 |   X = One + U2; | 
 |   T = X * Radix; | 
 |   R = Radix * X; | 
 |   X = T - Radix; | 
 |   X = X - Radix * U2; | 
 |   T = R - Radix; | 
 |   T = T - Radix * U2; | 
 |   X = X * (Radix - One); | 
 |   T = T * (Radix - One); | 
 |   if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)) | 
 |     GMult = Yes; | 
 |   else | 
 |     { | 
 |       GMult = No; | 
 |       TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X"); | 
 |     } | 
 |   Z = Radix * U2; | 
 |   X = One + Z; | 
 |   Y = FABS ((X + Z) - X * X) - U2; | 
 |   X = One - U2; | 
 |   Z = FABS ((X - U2) - X * X) - U1; | 
 |   TstCond (Failure, (Y <= Zero) | 
 | 	   && (Z <= Zero), "* gets too many final digits wrong.\n"); | 
 |   Y = One - U2; | 
 |   X = One + U2; | 
 |   Z = One / Y; | 
 |   Y = Z - X; | 
 |   X = One / Three; | 
 |   Z = Three / Nine; | 
 |   X = X - Z; | 
 |   T = Nine / TwentySeven; | 
 |   Z = Z - T; | 
 |   TstCond (Defect, X == Zero && Y == Zero && Z == Zero, | 
 | 	   "Division lacks a Guard Digit, so error can exceed 1 ulp\n" | 
 | 	   "or  1/3  and  3/9  and  9/27 may disagree"); | 
 |   Y = F9 / One; | 
 |   X = F9 - Half; | 
 |   Y = (Y - Half) - X; | 
 |   X = One + U2; | 
 |   T = X / One; | 
 |   X = T - X; | 
 |   if ((X == Zero) && (Y == Zero) && (Z == Zero)) | 
 |     GDiv = Yes; | 
 |   else | 
 |     { | 
 |       GDiv = No; | 
 |       TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X"); | 
 |     } | 
 |   X = One / (One + U2); | 
 |   Y = X - Half - Half; | 
 |   TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1"); | 
 |   X = One - U2; | 
 |   Y = One + Radix * U2; | 
 |   Z = X * Radix; | 
 |   T = Y * Radix; | 
 |   R = Z / Radix; | 
 |   StickyBit = T / Radix; | 
 |   X = R - X; | 
 |   Y = StickyBit - Y; | 
 |   TstCond (Failure, X == Zero && Y == Zero, | 
 | 	   "* and/or / gets too many last digits wrong"); | 
 |   Y = One - U1; | 
 |   X = One - F9; | 
 |   Y = One - Y; | 
 |   T = Radix - U2; | 
 |   Z = Radix - BMinusU2; | 
 |   T = Radix - T; | 
 |   if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2)) | 
 |     GAddSub = Yes; | 
 |   else | 
 |     { | 
 |       GAddSub = No; | 
 |       TstCond (Serious, false, | 
 | 	       "- lacks Guard Digit, so cancellation is obscured"); | 
 |     } | 
 |   if (F9 != One && F9 - One >= Zero) | 
 |     { | 
 |       BadCond (Serious, "comparison alleges  (1-U1) < 1  although\n"); | 
 |       printf ("  subtraction yields  (1-U1) - 1 = 0 , thereby vitiating\n"); | 
 |       printf ("  such precautions against division by zero as\n"); | 
 |       printf ("  ...  if (X == 1.0) {.....} else {.../(X-1.0)...}\n"); | 
 |     } | 
 |   if (GMult == Yes && GDiv == Yes && GAddSub == Yes) | 
 |     printf | 
 |       ("     *, /, and - appear to have guard digits, as they should.\n"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 40; | 
 | 	/*=============================================*/ | 
 |   Pause (); | 
 |   printf ("Checking rounding on multiply, divide and add/subtract.\n"); | 
 |   RMult = Other; | 
 |   RDiv = Other; | 
 |   RAddSub = Other; | 
 |   RadixD2 = Radix / Two; | 
 |   A1 = Two; | 
 |   Done = false; | 
 |   do | 
 |     { | 
 |       AInvrse = Radix; | 
 |       do | 
 | 	{ | 
 | 	  X = AInvrse; | 
 | 	  AInvrse = AInvrse / A1; | 
 | 	} | 
 |       while (!(FLOOR (AInvrse) != AInvrse)); | 
 |       Done = (X == One) || (A1 > Three); | 
 |       if (!Done) | 
 | 	A1 = Nine + One; | 
 |     } | 
 |   while (!(Done)); | 
 |   if (X == One) | 
 |     A1 = Radix; | 
 |   AInvrse = One / A1; | 
 |   X = A1; | 
 |   Y = AInvrse; | 
 |   Done = false; | 
 |   do | 
 |     { | 
 |       Z = X * Y - Half; | 
 |       TstCond (Failure, Z == Half, "X * (1/X) differs from 1"); | 
 |       Done = X == Radix; | 
 |       X = Radix; | 
 |       Y = One / X; | 
 |     } | 
 |   while (!(Done)); | 
 |   Y2 = One + U2; | 
 |   Y1 = One - U2; | 
 |   X = OneAndHalf - U2; | 
 |   Y = OneAndHalf + U2; | 
 |   Z = (X - U2) * Y2; | 
 |   T = Y * Y1; | 
 |   Z = Z - X; | 
 |   T = T - X; | 
 |   X = X * Y2; | 
 |   Y = (Y + U2) * Y1; | 
 |   X = X - OneAndHalf; | 
 |   Y = Y - OneAndHalf; | 
 |   if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero)) | 
 |     { | 
 |       X = (OneAndHalf + U2) * Y2; | 
 |       Y = OneAndHalf - U2 - U2; | 
 |       Z = OneAndHalf + U2 + U2; | 
 |       T = (OneAndHalf - U2) * Y1; | 
 |       X = X - (Z + U2); | 
 |       StickyBit = Y * Y1; | 
 |       S = Z * Y2; | 
 |       T = T - Y; | 
 |       Y = (U2 - Y) + StickyBit; | 
 |       Z = S - (Z + U2 + U2); | 
 |       StickyBit = (Y2 + U2) * Y1; | 
 |       Y1 = Y2 * Y1; | 
 |       StickyBit = StickyBit - Y2; | 
 |       Y1 = Y1 - Half; | 
 |       if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero) | 
 | 	  && (StickyBit == Zero) && (Y1 == Half)) | 
 | 	{ | 
 | 	  RMult = Rounded; | 
 | 	  printf ("Multiplication appears to round correctly.\n"); | 
 | 	} | 
 |       else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero) | 
 | 	       && (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half)) | 
 | 	{ | 
 | 	  RMult = Chopped; | 
 | 	  printf ("Multiplication appears to chop.\n"); | 
 | 	} | 
 |       else | 
 | 	printf ("* is neither chopped nor correctly rounded.\n"); | 
 |       if ((RMult == Rounded) && (GMult == No)) | 
 | 	notify ("Multiplication"); | 
 |     } | 
 |   else | 
 |     printf ("* is neither chopped nor correctly rounded.\n"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 45; | 
 | 	/*=============================================*/ | 
 |   Y2 = One + U2; | 
 |   Y1 = One - U2; | 
 |   Z = OneAndHalf + U2 + U2; | 
 |   X = Z / Y2; | 
 |   T = OneAndHalf - U2 - U2; | 
 |   Y = (T - U2) / Y1; | 
 |   Z = (Z + U2) / Y2; | 
 |   X = X - OneAndHalf; | 
 |   Y = Y - T; | 
 |   T = T / Y1; | 
 |   Z = Z - (OneAndHalf + U2); | 
 |   T = (U2 - OneAndHalf) + T; | 
 |   if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero))) | 
 |     { | 
 |       X = OneAndHalf / Y2; | 
 |       Y = OneAndHalf - U2; | 
 |       Z = OneAndHalf + U2; | 
 |       X = X - Y; | 
 |       T = OneAndHalf / Y1; | 
 |       Y = Y / Y1; | 
 |       T = T - (Z + U2); | 
 |       Y = Y - Z; | 
 |       Z = Z / Y2; | 
 |       Y1 = (Y2 + U2) / Y2; | 
 |       Z = Z - OneAndHalf; | 
 |       Y2 = Y1 - Y2; | 
 |       Y1 = (F9 - U1) / F9; | 
 |       if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero) | 
 | 	  && (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half)) | 
 | 	{ | 
 | 	  RDiv = Rounded; | 
 | 	  printf ("Division appears to round correctly.\n"); | 
 | 	  if (GDiv == No) | 
 | 	    notify ("Division"); | 
 | 	} | 
 |       else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero) | 
 | 	       && (Y2 < Zero) && (Y1 - Half < F9 - Half)) | 
 | 	{ | 
 | 	  RDiv = Chopped; | 
 | 	  printf ("Division appears to chop.\n"); | 
 | 	} | 
 |     } | 
 |   if (RDiv == Other) | 
 |     printf ("/ is neither chopped nor correctly rounded.\n"); | 
 |   BInvrse = One / Radix; | 
 |   TstCond (Failure, (BInvrse * Radix - Half == Half), | 
 | 	   "Radix * ( 1 / Radix ) differs from 1"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 50; | 
 | 	/*=============================================*/ | 
 |   TstCond (Failure, ((F9 + U1) - Half == Half) | 
 | 	   && ((BMinusU2 + U2) - One == Radix - One), | 
 | 	   "Incomplete carry-propagation in Addition"); | 
 |   X = One - U1 * U1; | 
 |   Y = One + U2 * (One - U2); | 
 |   Z = F9 - Half; | 
 |   X = (X - Half) - Z; | 
 |   Y = Y - One; | 
 |   if ((X == Zero) && (Y == Zero)) | 
 |     { | 
 |       RAddSub = Chopped; | 
 |       printf ("Add/Subtract appears to be chopped.\n"); | 
 |     } | 
 |   if (GAddSub == Yes) | 
 |     { | 
 |       X = (Half + U2) * U2; | 
 |       Y = (Half - U2) * U2; | 
 |       X = One + X; | 
 |       Y = One + Y; | 
 |       X = (One + U2) - X; | 
 |       Y = One - Y; | 
 |       if ((X == Zero) && (Y == Zero)) | 
 | 	{ | 
 | 	  X = (Half + U2) * U1; | 
 | 	  Y = (Half - U2) * U1; | 
 | 	  X = One - X; | 
 | 	  Y = One - Y; | 
 | 	  X = F9 - X; | 
 | 	  Y = One - Y; | 
 | 	  if ((X == Zero) && (Y == Zero)) | 
 | 	    { | 
 | 	      RAddSub = Rounded; | 
 | 	      printf ("Addition/Subtraction appears to round correctly.\n"); | 
 | 	      if (GAddSub == No) | 
 | 		notify ("Add/Subtract"); | 
 | 	    } | 
 | 	  else | 
 | 	    printf ("Addition/Subtraction neither rounds nor chops.\n"); | 
 | 	} | 
 |       else | 
 | 	printf ("Addition/Subtraction neither rounds nor chops.\n"); | 
 |     } | 
 |   else | 
 |     printf ("Addition/Subtraction neither rounds nor chops.\n"); | 
 |   S = One; | 
 |   X = One + Half * (One + Half); | 
 |   Y = (One + U2) * Half; | 
 |   Z = X - Y; | 
 |   T = Y - X; | 
 |   StickyBit = Z + T; | 
 |   if (StickyBit != Zero) | 
 |     { | 
 |       S = Zero; | 
 |       BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n"); | 
 |     } | 
 |   StickyBit = Zero; | 
 |   if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes) | 
 |       && (RMult == Rounded) && (RDiv == Rounded) | 
 |       && (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2)) | 
 |     { | 
 |       printf ("Checking for sticky bit.\n"); | 
 |       X = (Half + U1) * U2; | 
 |       Y = Half * U2; | 
 |       Z = One + Y; | 
 |       T = One + X; | 
 |       if ((Z - One <= Zero) && (T - One >= U2)) | 
 | 	{ | 
 | 	  Z = T + Y; | 
 | 	  Y = Z - X; | 
 | 	  if ((Z - T >= U2) && (Y - T == Zero)) | 
 | 	    { | 
 | 	      X = (Half + U1) * U1; | 
 | 	      Y = Half * U1; | 
 | 	      Z = One - Y; | 
 | 	      T = One - X; | 
 | 	      if ((Z - One == Zero) && (T - F9 == Zero)) | 
 | 		{ | 
 | 		  Z = (Half - U1) * U1; | 
 | 		  T = F9 - Z; | 
 | 		  Q = F9 - Y; | 
 | 		  if ((T - F9 == Zero) && (F9 - U1 - Q == Zero)) | 
 | 		    { | 
 | 		      Z = (One + U2) * OneAndHalf; | 
 | 		      T = (OneAndHalf + U2) - Z + U2; | 
 | 		      X = One + Half / Radix; | 
 | 		      Y = One + Radix * U2; | 
 | 		      Z = X * Y; | 
 | 		      if (T == Zero && X + Radix * U2 - Z == Zero) | 
 | 			{ | 
 | 			  if (Radix != Two) | 
 | 			    { | 
 | 			      X = Two + U2; | 
 | 			      Y = X / Two; | 
 | 			      if ((Y - One == Zero)) | 
 | 				StickyBit = S; | 
 | 			    } | 
 | 			  else | 
 | 			    StickyBit = S; | 
 | 			} | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   if (StickyBit == One) | 
 |     printf ("Sticky bit apparently used correctly.\n"); | 
 |   else | 
 |     printf ("Sticky bit used incorrectly or not at all.\n"); | 
 |   TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No || | 
 | 		   RMult == Other || RDiv == Other || RAddSub == Other), | 
 | 	   "lack(s) of guard digits or failure(s) to correctly round or chop\n\ | 
 | (noted above) count as one flaw in the final tally below"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 60; | 
 | 	/*=============================================*/ | 
 |   printf ("\n"); | 
 |   printf ("Does Multiplication commute?  "); | 
 |   printf ("Testing on %d random pairs.\n", NoTrials); | 
 |   Random9 = SQRT (FLOAT (3)); | 
 |   Random1 = Third; | 
 |   I = 1; | 
 |   do | 
 |     { | 
 |       X = Random (); | 
 |       Y = Random (); | 
 |       Z9 = Y * X; | 
 |       Z = X * Y; | 
 |       Z9 = Z - Z9; | 
 |       I = I + 1; | 
 |     } | 
 |   while (!((I > NoTrials) || (Z9 != Zero))); | 
 |   if (I == NoTrials) | 
 |     { | 
 |       Random1 = One + Half / Three; | 
 |       Random2 = (U2 + U1) + One; | 
 |       Z = Random1 * Random2; | 
 |       Y = Random2 * Random1; | 
 |       Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half / | 
 | 						       Three) * ((U2 + U1) + | 
 | 								 One); | 
 |     } | 
 |   if (!((I == NoTrials) || (Z9 == Zero))) | 
 |     BadCond (Defect, "X * Y == Y * X trial fails.\n"); | 
 |   else | 
 |     printf ("     No failures found in %d integer pairs.\n", NoTrials); | 
 | 	/*=============================================*/ | 
 |   Milestone = 70; | 
 | 	/*=============================================*/ | 
 |   printf ("\nRunning test of square root(x).\n"); | 
 |   TstCond (Failure, (Zero == SQRT (Zero)) | 
 | 	   && (-Zero == SQRT (-Zero)) | 
 | 	   && (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong"); | 
 |   MinSqEr = Zero; | 
 |   MaxSqEr = Zero; | 
 |   J = Zero; | 
 |   X = Radix; | 
 |   OneUlp = U2; | 
 |   SqXMinX (Serious); | 
 |   X = BInvrse; | 
 |   OneUlp = BInvrse * U1; | 
 |   SqXMinX (Serious); | 
 |   X = U1; | 
 |   OneUlp = U1 * U1; | 
 |   SqXMinX (Serious); | 
 |   if (J != Zero) | 
 |     Pause (); | 
 |   printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials); | 
 |   J = Zero; | 
 |   X = Two; | 
 |   Y = Radix; | 
 |   if ((Radix != One)) | 
 |     do | 
 |       { | 
 | 	X = Y; | 
 | 	Y = Radix * Y; | 
 |       } | 
 |     while (!((Y - X >= NoTrials))); | 
 |   OneUlp = X * U2; | 
 |   I = 1; | 
 |   while (I <= NoTrials) | 
 |     { | 
 |       X = X + One; | 
 |       SqXMinX (Defect); | 
 |       if (J > Zero) | 
 | 	break; | 
 |       I = I + 1; | 
 |     } | 
 |   printf ("Test for sqrt monotonicity.\n"); | 
 |   I = -1; | 
 |   X = BMinusU2; | 
 |   Y = Radix; | 
 |   Z = Radix + Radix * U2; | 
 |   NotMonot = false; | 
 |   Monot = false; | 
 |   while (!(NotMonot || Monot)) | 
 |     { | 
 |       I = I + 1; | 
 |       X = SQRT (X); | 
 |       Q = SQRT (Y); | 
 |       Z = SQRT (Z); | 
 |       if ((X > Q) || (Q > Z)) | 
 | 	NotMonot = true; | 
 |       else | 
 | 	{ | 
 | 	  Q = FLOOR (Q + Half); | 
 | 	  if (!(I > 0 || Radix == Q * Q)) | 
 | 	    Monot = true; | 
 | 	  else if (I > 0) | 
 | 	    { | 
 | 	      if (I > 1) | 
 | 		Monot = true; | 
 | 	      else | 
 | 		{ | 
 | 		  Y = Y * BInvrse; | 
 | 		  X = Y - U1; | 
 | 		  Z = Y + U1; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      Y = Q; | 
 | 	      X = Y - U2; | 
 | 	      Z = Y + U2; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   if (Monot) | 
 |     printf ("sqrt has passed a test for Monotonicity.\n"); | 
 |   else | 
 |     { | 
 |       BadCond (Defect, ""); | 
 |       printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str()); | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 110; | 
 | 	/*=============================================*/ | 
 |   printf ("Seeking Underflow thresholds UfThold and E0.\n"); | 
 |   D = U1; | 
 |   if (Precision != FLOOR (Precision)) | 
 |     { | 
 |       D = BInvrse; | 
 |       X = Precision; | 
 |       do | 
 | 	{ | 
 | 	  D = D * BInvrse; | 
 | 	  X = X - One; | 
 | 	} | 
 |       while (X > Zero); | 
 |     } | 
 |   Y = One; | 
 |   Z = D; | 
 |   /* ... D is power of 1/Radix < 1. */ | 
 |   do | 
 |     { | 
 |       C = Y; | 
 |       Y = Z; | 
 |       Z = Y * Y; | 
 |     } | 
 |   while ((Y > Z) && (Z + Z > Z)); | 
 |   Y = C; | 
 |   Z = Y * D; | 
 |   do | 
 |     { | 
 |       C = Y; | 
 |       Y = Z; | 
 |       Z = Y * D; | 
 |     } | 
 |   while ((Y > Z) && (Z + Z > Z)); | 
 |   if (Radix < Two) | 
 |     HInvrse = Two; | 
 |   else | 
 |     HInvrse = Radix; | 
 |   H = One / HInvrse; | 
 |   /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */ | 
 |   CInvrse = One / C; | 
 |   E0 = C; | 
 |   Z = E0 * H; | 
 |   /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */ | 
 |   do | 
 |     { | 
 |       Y = E0; | 
 |       E0 = Z; | 
 |       Z = E0 * H; | 
 |     } | 
 |   while ((E0 > Z) && (Z + Z > Z)); | 
 |   UfThold = E0; | 
 |   E1 = Zero; | 
 |   Q = Zero; | 
 |   E9 = U2; | 
 |   S = One + E9; | 
 |   D = C * S; | 
 |   if (D <= C) | 
 |     { | 
 |       E9 = Radix * U2; | 
 |       S = One + E9; | 
 |       D = C * S; | 
 |       if (D <= C) | 
 | 	{ | 
 | 	  BadCond (Failure, | 
 | 		   "multiplication gets too many last digits wrong.\n"); | 
 | 	  Underflow = E0; | 
 | 	  Y1 = Zero; | 
 | 	  PseudoZero = Z; | 
 | 	  Pause (); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       Underflow = D; | 
 |       PseudoZero = Underflow * H; | 
 |       UfThold = Zero; | 
 |       do | 
 | 	{ | 
 | 	  Y1 = Underflow; | 
 | 	  Underflow = PseudoZero; | 
 | 	  if (E1 + E1 <= E1) | 
 | 	    { | 
 | 	      Y2 = Underflow * HInvrse; | 
 | 	      E1 = FABS (Y1 - Y2); | 
 | 	      Q = Y1; | 
 | 	      if ((UfThold == Zero) && (Y1 != Y2)) | 
 | 		UfThold = Y1; | 
 | 	    } | 
 | 	  PseudoZero = PseudoZero * H; | 
 | 	} | 
 |       while ((Underflow > PseudoZero) | 
 | 	     && (PseudoZero + PseudoZero > PseudoZero)); | 
 |     } | 
 |   /* Comment line 4530 .. 4560 */ | 
 |   if (PseudoZero != Zero) | 
 |     { | 
 |       printf ("\n"); | 
 |       Z = PseudoZero; | 
 |       /* ... Test PseudoZero for "phoney- zero" violates */ | 
 |       /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero | 
 |          ... */ | 
 |       if (PseudoZero <= Zero) | 
 | 	{ | 
 | 	  BadCond (Failure, "Positive expressions can underflow to an\n"); | 
 | 	  printf ("allegedly negative value\n"); | 
 | 	  printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str()); | 
 | 	  X = -PseudoZero; | 
 | 	  if (X <= Zero) | 
 | 	    { | 
 | 	      printf ("But -PseudoZero, which should be\n"); | 
 | 	      printf ("positive, isn't; it prints out as  %s .\n", X.str()); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  BadCond (Flaw, "Underflow can stick at an allegedly positive\n"); | 
 | 	  printf ("value PseudoZero that prints out as %s .\n", | 
 | 		  PseudoZero.str()); | 
 | 	} | 
 |       TstPtUf (); | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 120; | 
 | 	/*=============================================*/ | 
 |   if (CInvrse * Y > CInvrse * Y1) | 
 |     { | 
 |       S = H * S; | 
 |       E0 = Underflow; | 
 |     } | 
 |   if (!((E1 == Zero) || (E1 == E0))) | 
 |     { | 
 |       BadCond (Defect, ""); | 
 |       if (E1 < E0) | 
 | 	{ | 
 | 	  printf ("Products underflow at a higher"); | 
 | 	  printf (" threshold than differences.\n"); | 
 | 	  if (PseudoZero == Zero) | 
 | 	    E0 = E1; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  printf ("Difference underflows at a higher"); | 
 | 	  printf (" threshold than products.\n"); | 
 | 	} | 
 |     } | 
 |   printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str()); | 
 |   Z = E0; | 
 |   TstPtUf (); | 
 |   Underflow = E0; | 
 |   if (N == 1) | 
 |     Underflow = Y; | 
 |   I = 4; | 
 |   if (E1 == Zero) | 
 |     I = 3; | 
 |   if (UfThold == Zero) | 
 |     I = I - 2; | 
 |   UfNGrad = true; | 
 |   switch (I) | 
 |     { | 
 |     case 1: | 
 |       UfThold = Underflow; | 
 |       if ((CInvrse * Q) != ((CInvrse * Y) * S)) | 
 | 	{ | 
 | 	  UfThold = Y; | 
 | 	  BadCond (Failure, "Either accuracy deteriorates as numbers\n"); | 
 | 	  printf ("approach a threshold = %s\n", UfThold.str()); | 
 | 	  printf (" coming down from %s\n", C.str()); | 
 | 	  printf | 
 | 	    (" or else multiplication gets too many last digits wrong.\n"); | 
 | 	} | 
 |       Pause (); | 
 |       break; | 
 |  | 
 |     case 2: | 
 |       BadCond (Failure, | 
 | 	       "Underflow confuses Comparison, which alleges that\n"); | 
 |       printf ("Q == Y while denying that |Q - Y| == 0; these values\n"); | 
 |       printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str()); | 
 |       printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str()); | 
 |       UfThold = Q; | 
 |       break; | 
 |  | 
 |     case 3: | 
 |       X = X; | 
 |       break; | 
 |  | 
 |     case 4: | 
 |       if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1)) | 
 | 	{ | 
 | 	  UfNGrad = false; | 
 | 	  printf ("Underflow is gradual; it incurs Absolute Error =\n"); | 
 | 	  printf ("(roundoff in UfThold) < E0.\n"); | 
 | 	  Y = E0 * CInvrse; | 
 | 	  Y = Y * (OneAndHalf + U2); | 
 | 	  X = CInvrse * (One + U2); | 
 | 	  Y = Y / X; | 
 | 	  IEEE = (Y == E0); | 
 | 	} | 
 |     } | 
 |   if (UfNGrad) | 
 |     { | 
 |       printf ("\n"); | 
 |       if (setjmp (ovfl_buf)) | 
 | 	{ | 
 | 	  printf ("Underflow / UfThold failed!\n"); | 
 | 	  R = H + H; | 
 | 	} | 
 |       else | 
 | 	R = SQRT (Underflow / UfThold); | 
 |       if (R <= H) | 
 | 	{ | 
 | 	  Z = R * UfThold; | 
 | 	  X = Z * (One + R * H * (One + H)); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  Z = UfThold; | 
 | 	  X = Z * (One + H * H * (One + H)); | 
 | 	} | 
 |       if (!((X == Z) || (X - Z != Zero))) | 
 | 	{ | 
 | 	  BadCond (Flaw, ""); | 
 | 	  printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str()); | 
 | 	  Z9 = X - Z; | 
 | 	  printf ("yet X - Z yields %s .\n", Z9.str()); | 
 | 	  printf ("    Should this NOT signal Underflow, "); | 
 | 	  printf ("this is a SERIOUS DEFECT\nthat causes "); | 
 | 	  printf ("confusion when innocent statements like\n");; | 
 | 	  printf ("    if (X == Z)  ...  else"); | 
 | 	  printf ("  ... (f(X) - f(Z)) / (X - Z) ...\n"); | 
 | 	  printf ("encounter Division by Zero although actually\n"); | 
 | 	  if (setjmp (ovfl_buf)) | 
 | 	    printf ("X / Z fails!\n"); | 
 | 	  else | 
 | 	    printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str()); | 
 | 	} | 
 |     } | 
 |   printf ("The Underflow threshold is %s, below which\n", UfThold.str()); | 
 |   printf ("calculation may suffer larger Relative error than "); | 
 |   printf ("merely roundoff.\n"); | 
 |   Y2 = U1 * U1; | 
 |   Y = Y2 * Y2; | 
 |   Y2 = Y * U1; | 
 |   if (Y2 <= UfThold) | 
 |     { | 
 |       if (Y > E0) | 
 | 	{ | 
 | 	  BadCond (Defect, ""); | 
 | 	  I = 5; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  BadCond (Serious, ""); | 
 | 	  I = 4; | 
 | 	} | 
 |       printf ("Range is too narrow; U1^%d Underflows.\n", I); | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 130; | 
 | 	/*=============================================*/ | 
 |   Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty; | 
 |   Y2 = Y + Y; | 
 |   printf ("Since underflow occurs below the threshold\n"); | 
 |   printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str()); | 
 |   printf ("should afflict the expression\n\t(%s) ^ (%s);\n", | 
 | 	  HInvrse.str(), Y2.str()); | 
 |   printf ("actually calculating yields:"); | 
 |   if (setjmp (ovfl_buf)) | 
 |     { | 
 |       BadCond (Serious, "trap on underflow.\n"); | 
 |     } | 
 |   else | 
 |     { | 
 |       V9 = POW (HInvrse, Y2); | 
 |       printf (" %s .\n", V9.str()); | 
 |       if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold))) | 
 | 	{ | 
 | 	  BadCond (Serious, "this is not between 0 and underflow\n"); | 
 | 	  printf ("   threshold = %s .\n", UfThold.str()); | 
 | 	} | 
 |       else if (!(V9 > UfThold * (One + E9))) | 
 | 	printf ("This computed value is O.K.\n"); | 
 |       else | 
 | 	{ | 
 | 	  BadCond (Defect, "this is not between 0 and underflow\n"); | 
 | 	  printf ("   threshold = %s .\n", UfThold.str()); | 
 | 	} | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 160; | 
 | 	/*=============================================*/ | 
 |   Pause (); | 
 |   printf ("Searching for Overflow threshold:\n"); | 
 |   printf ("This may generate an error.\n"); | 
 |   Y = -CInvrse; | 
 |   V9 = HInvrse * Y; | 
 |   if (setjmp (ovfl_buf)) | 
 |     { | 
 |       I = 0; | 
 |       V9 = Y; | 
 |       goto overflow; | 
 |     } | 
 |   do | 
 |     { | 
 |       V = Y; | 
 |       Y = V9; | 
 |       V9 = HInvrse * Y; | 
 |     } | 
 |   while (V9 < Y); | 
 |   I = 1; | 
 | overflow: | 
 |   Z = V9; | 
 |   printf ("Can `Z = -Y' overflow?\n"); | 
 |   printf ("Trying it on Y = %s .\n", Y.str()); | 
 |   V9 = -Y; | 
 |   V0 = V9; | 
 |   if (V - Y == V + V0) | 
 |     printf ("Seems O.K.\n"); | 
 |   else | 
 |     { | 
 |       printf ("finds a "); | 
 |       BadCond (Flaw, "-(-Y) differs from Y.\n"); | 
 |     } | 
 |   if (Z != Y) | 
 |     { | 
 |       BadCond (Serious, ""); | 
 |       printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str()); | 
 |     } | 
 |   if (I) | 
 |     { | 
 |       Y = V * (HInvrse * U2 - HInvrse); | 
 |       Z = Y + ((One - HInvrse) * U2) * V; | 
 |       if (Z < V0) | 
 | 	Y = Z; | 
 |       if (Y < V0) | 
 | 	V = Y; | 
 |       if (V0 - V < V0) | 
 | 	V = V0; | 
 |     } | 
 |   else | 
 |     { | 
 |       V = Y * (HInvrse * U2 - HInvrse); | 
 |       V = V + ((One - HInvrse) * U2) * Y; | 
 |     } | 
 |   printf ("Overflow threshold is V  = %s .\n", V.str()); | 
 |   if (I) | 
 |     printf ("Overflow saturates at V0 = %s .\n", V0.str()); | 
 |   else | 
 |     printf ("There is no saturation value because " | 
 | 	    "the system traps on overflow.\n"); | 
 |   V9 = V * One; | 
 |   printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str()); | 
 |   V9 = V / One; | 
 |   printf ("                           nor for V / 1 = %s.\n", V9.str()); | 
 |   printf ("Any overflow signal separating this * from the one\n"); | 
 |   printf ("above is a DEFECT.\n"); | 
 | 	/*=============================================*/ | 
 |   Milestone = 170; | 
 | 	/*=============================================*/ | 
 |   if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V)) | 
 |     { | 
 |       BadCond (Failure, "Comparisons involving "); | 
 |       printf ("+-%s, +-%s\nand +-%s are confused by Overflow.", | 
 | 	      V.str(), V0.str(), UfThold.str()); | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 175; | 
 | 	/*=============================================*/ | 
 |   printf ("\n"); | 
 |   for (Indx = 1; Indx <= 3; ++Indx) | 
 |     { | 
 |       switch (Indx) | 
 | 	{ | 
 | 	case 1: | 
 | 	  Z = UfThold; | 
 | 	  break; | 
 | 	case 2: | 
 | 	  Z = E0; | 
 | 	  break; | 
 | 	case 3: | 
 | 	  Z = PseudoZero; | 
 | 	  break; | 
 | 	} | 
 |       if (Z != Zero) | 
 | 	{ | 
 | 	  V9 = SQRT (Z); | 
 | 	  Y = V9 * V9; | 
 | 	  if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z) | 
 | 	    {			/* dgh: + E9 --> * E9 */ | 
 | 	      if (V9 > U1) | 
 | 		BadCond (Serious, ""); | 
 | 	      else | 
 | 		BadCond (Defect, ""); | 
 | 	      printf ("Comparison alleges that what prints as Z = %s\n", | 
 | 		      Z.str()); | 
 | 	      printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str()); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 180; | 
 | 	/*=============================================*/ | 
 |   for (Indx = 1; Indx <= 2; ++Indx) | 
 |     { | 
 |       if (Indx == 1) | 
 | 	Z = V; | 
 |       else | 
 | 	Z = V0; | 
 |       V9 = SQRT (Z); | 
 |       X = (One - Radix * E9) * V9; | 
 |       V9 = V9 * X; | 
 |       if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z))) | 
 | 	{ | 
 | 	  Y = V9; | 
 | 	  if (X < W) | 
 | 	    BadCond (Serious, ""); | 
 | 	  else | 
 | 	    BadCond (Defect, ""); | 
 | 	  printf ("Comparison alleges that Z = %s\n", Z.str()); | 
 | 	  printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str()); | 
 | 	} | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 190; | 
 | 	/*=============================================*/ | 
 |   Pause (); | 
 |   X = UfThold * V; | 
 |   Y = Radix * Radix; | 
 |   if (X * Y < One || X > Y) | 
 |     { | 
 |       if (X * Y < U1 || X > Y / U1) | 
 | 	BadCond (Defect, "Badly"); | 
 |       else | 
 | 	BadCond (Flaw, ""); | 
 |  | 
 |       printf (" unbalanced range; UfThold * V = %s\n\t%s\n", | 
 | 	      X.str(), "is too far from 1.\n"); | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 200; | 
 | 	/*=============================================*/ | 
 |   for (Indx = 1; Indx <= 5; ++Indx) | 
 |     { | 
 |       X = F9; | 
 |       switch (Indx) | 
 | 	{ | 
 | 	case 2: | 
 | 	  X = One + U2; | 
 | 	  break; | 
 | 	case 3: | 
 | 	  X = V; | 
 | 	  break; | 
 | 	case 4: | 
 | 	  X = UfThold; | 
 | 	  break; | 
 | 	case 5: | 
 | 	  X = Radix; | 
 | 	} | 
 |       Y = X; | 
 |       if (setjmp (ovfl_buf)) | 
 | 	printf ("  X / X  traps when X = %s\n", X.str()); | 
 |       else | 
 | 	{ | 
 | 	  V9 = (Y / X - Half) - Half; | 
 | 	  if (V9 == Zero) | 
 | 	    continue; | 
 | 	  if (V9 == -U1 && Indx < 5) | 
 | 	    BadCond (Flaw, ""); | 
 | 	  else | 
 | 	    BadCond (Serious, ""); | 
 | 	  printf ("  X / X differs from 1 when X = %s\n", X.str()); | 
 | 	  printf ("  instead, X / X - 1/2 - 1/2 = %s .\n", V9.str()); | 
 | 	} | 
 |     } | 
 | 	/*=============================================*/ | 
 |   Milestone = 210; | 
 | 	/*=============================================*/ | 
 |   MyZero = Zero; | 
 |   printf ("\n"); | 
 |   printf ("What message and/or values does Division by Zero produce?\n"); | 
 |   printf ("    Trying to compute 1 / 0 produces ..."); | 
 |   if (!setjmp (ovfl_buf)) | 
 |     printf ("  %s .\n", (One / MyZero).str()); | 
 |   printf ("\n    Trying to compute 0 / 0 produces ..."); | 
 |   if (!setjmp (ovfl_buf)) | 
 |     printf ("  %s .\n", (Zero / MyZero).str()); | 
 | 	/*=============================================*/ | 
 |   Milestone = 220; | 
 | 	/*=============================================*/ | 
 |   Pause (); | 
 |   printf ("\n"); | 
 |   { | 
 |     static const char *msg[] = { | 
 |       "FAILUREs  encountered =", | 
 |       "SERIOUS DEFECTs  discovered =", | 
 |       "DEFECTs  discovered =", | 
 |       "FLAWs  discovered =" | 
 |     }; | 
 |     int i; | 
 |     for (i = 0; i < 4; i++) | 
 |       if (ErrCnt[i]) | 
 | 	printf ("The number of  %-29s %d.\n", msg[i], ErrCnt[i]); | 
 |   } | 
 |   printf ("\n"); | 
 |   if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0) | 
 |     { | 
 |       if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0) | 
 | 	  && (ErrCnt[Flaw] > 0)) | 
 | 	{ | 
 | 	  printf ("The arithmetic diagnosed seems "); | 
 | 	  printf ("Satisfactory though flawed.\n"); | 
 | 	} | 
 |       if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0)) | 
 | 	{ | 
 | 	  printf ("The arithmetic diagnosed may be Acceptable\n"); | 
 | 	  printf ("despite inconvenient Defects.\n"); | 
 | 	} | 
 |       if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0) | 
 | 	{ | 
 | 	  printf ("The arithmetic diagnosed has "); | 
 | 	  printf ("unacceptable Serious Defects.\n"); | 
 | 	} | 
 |       if (ErrCnt[Failure] > 0) | 
 | 	{ | 
 | 	  printf ("Potentially fatal FAILURE may have spoiled this"); | 
 | 	  printf (" program's subsequent diagnoses.\n"); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       printf ("No failures, defects nor flaws have been discovered.\n"); | 
 |       if (!((RMult == Rounded) && (RDiv == Rounded) | 
 | 	    && (RAddSub == Rounded) && (RSqrt == Rounded))) | 
 | 	printf ("The arithmetic diagnosed seems Satisfactory.\n"); | 
 |       else | 
 | 	{ | 
 | 	  if (StickyBit >= One && | 
 | 	      (Radix - Two) * (Radix - Nine - One) == Zero) | 
 | 	    { | 
 | 	      printf ("Rounding appears to conform to "); | 
 | 	      printf ("the proposed IEEE standard P"); | 
 | 	      if ((Radix == Two) && | 
 | 		  ((Precision - Four * Three * Two) * | 
 | 		   (Precision - TwentySeven - TwentySeven + One) == Zero)) | 
 | 		printf ("754"); | 
 | 	      else | 
 | 		printf ("854"); | 
 | 	      if (IEEE) | 
 | 		printf (".\n"); | 
 | 	      else | 
 | 		{ | 
 | 		  printf (",\nexcept for possibly Double Rounding"); | 
 | 		  printf (" during Gradual Underflow.\n"); | 
 | 		} | 
 | 	    } | 
 | 	  printf ("The arithmetic diagnosed appears to be Excellent!\n"); | 
 | 	} | 
 |     } | 
 |   printf ("END OF TEST.\n"); | 
 |   return 0; | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | Paranoia<FLOAT>::Sign (FLOAT X) | 
 | { | 
 |   return X >= FLOAT (long (0)) ? 1 : -1; | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::Pause () | 
 | { | 
 |   if (do_pause) | 
 |     { | 
 |       fputs ("Press return...", stdout); | 
 |       fflush (stdout); | 
 |       getchar(); | 
 |     } | 
 |   printf ("\nDiagnosis resumes after milestone Number %d", Milestone); | 
 |   printf ("          Page: %d\n\n", PageNo); | 
 |   ++Milestone; | 
 |   ++PageNo; | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T) | 
 | { | 
 |   if (!Valid) | 
 |     { | 
 |       BadCond (K, T); | 
 |       printf (".\n"); | 
 |     } | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::BadCond (int K, const char *T) | 
 | { | 
 |   static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" }; | 
 |  | 
 |   ErrCnt[K] = ErrCnt[K] + 1; | 
 |   printf ("%s:  %s", msg[K], T); | 
 | } | 
 |  | 
 | /* Random computes | 
 |      X = (Random1 + Random9)^5 | 
 |      Random1 = X - FLOOR(X) + 0.000005 * X; | 
 |    and returns the new value of Random1.  */ | 
 |  | 
 | template<typename FLOAT> | 
 | FLOAT | 
 | Paranoia<FLOAT>::Random () | 
 | { | 
 |   FLOAT X, Y; | 
 |  | 
 |   X = Random1 + Random9; | 
 |   Y = X * X; | 
 |   Y = Y * Y; | 
 |   X = X * Y; | 
 |   Y = X - FLOOR (X); | 
 |   Random1 = Y + X * FLOAT ("0.000005"); | 
 |   return (Random1); | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::SqXMinX (int ErrKind) | 
 | { | 
 |   FLOAT XA, XB; | 
 |  | 
 |   XB = X * BInvrse; | 
 |   XA = X - XB; | 
 |   SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp; | 
 |   if (SqEr != Zero) | 
 |     { | 
 |       if (SqEr < MinSqEr) | 
 | 	MinSqEr = SqEr; | 
 |       if (SqEr > MaxSqEr) | 
 | 	MaxSqEr = SqEr; | 
 |       J = J + 1; | 
 |       BadCond (ErrKind, "\n"); | 
 |       printf ("sqrt(%s) - %s  = %s\n", (X * X).str(), X.str(), | 
 | 	      (OneUlp * SqEr).str()); | 
 |       printf ("\tinstead of correct value 0 .\n"); | 
 |     } | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::NewD () | 
 | { | 
 |   X = Z1 * Q; | 
 |   X = FLOOR (Half - X / Radix) * Radix + X; | 
 |   Q = (Q - X * Z) / Radix + X * X * (D / Radix); | 
 |   Z = Z - Two * X * D; | 
 |   if (Z <= Zero) | 
 |     { | 
 |       Z = -Z; | 
 |       Z1 = -Z1; | 
 |     } | 
 |   D = Radix * D; | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::SR3750 () | 
 | { | 
 |   if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2))) | 
 |     { | 
 |       I = I + 1; | 
 |       X2 = SQRT (X * D); | 
 |       Y2 = (X2 - Z2) - (Y - Z2); | 
 |       X2 = X8 / (Y - Half); | 
 |       X2 = X2 - Half * X2 * X2; | 
 |       SqEr = (Y2 + Half) + (Half - X2); | 
 |       if (SqEr < MinSqEr) | 
 | 	MinSqEr = SqEr; | 
 |       SqEr = Y2 - X2; | 
 |       if (SqEr > MaxSqEr) | 
 | 	MaxSqEr = SqEr; | 
 |     } | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::IsYeqX () | 
 | { | 
 |   if (Y != X) | 
 |     { | 
 |       if (N <= 0) | 
 | 	{ | 
 | 	  if (Z == Zero && Q <= Zero) | 
 | 	    printf ("WARNING:  computing\n"); | 
 | 	  else | 
 | 	    BadCond (Defect, "computing\n"); | 
 | 	  printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str()); | 
 | 	  printf ("\tyielded %s;\n", Y.str()); | 
 | 	  printf ("\twhich compared unequal to correct %s ;\n", X.str()); | 
 | 	  printf ("\t\tthey differ by %s .\n", (Y - X).str()); | 
 | 	} | 
 |       N = N + 1;		/* ... count discrepancies. */ | 
 |     } | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::PrintIfNPositive () | 
 | { | 
 |   if (N > 0) | 
 |     printf ("Similar discrepancies have occurred %d times.\n", N); | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::TstPtUf () | 
 | { | 
 |   N = 0; | 
 |   if (Z != Zero) | 
 |     { | 
 |       printf ("Since comparison denies Z = 0, evaluating "); | 
 |       printf ("(Z + Z) / Z should be safe.\n"); | 
 |       if (setjmp (ovfl_buf)) | 
 | 	goto very_serious; | 
 |       Q9 = (Z + Z) / Z; | 
 |       printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str()); | 
 |       if (FABS (Q9 - Two) < Radix * U2) | 
 | 	{ | 
 | 	  printf ("This is O.K., provided Over/Underflow"); | 
 | 	  printf (" has NOT just been signaled.\n"); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if ((Q9 < One) || (Q9 > Two)) | 
 | 	    { | 
 | 	    very_serious: | 
 | 	      N = 1; | 
 | 	      ErrCnt[Serious] = ErrCnt[Serious] + 1; | 
 | 	      printf ("This is a VERY SERIOUS DEFECT!\n"); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      N = 1; | 
 | 	      ErrCnt[Defect] = ErrCnt[Defect] + 1; | 
 | 	      printf ("This is a DEFECT!\n"); | 
 | 	    } | 
 | 	} | 
 |       V9 = Z * One; | 
 |       Random1 = V9; | 
 |       V9 = One * Z; | 
 |       Random2 = V9; | 
 |       V9 = Z / One; | 
 |       if ((Z == Random1) && (Z == Random2) && (Z == V9)) | 
 | 	{ | 
 | 	  if (N > 0) | 
 | 	    Pause (); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  N = 1; | 
 | 	  BadCond (Defect, "What prints as Z = "); | 
 | 	  printf ("%s\n\tcompares different from  ", Z.str()); | 
 | 	  if (Z != Random1) | 
 | 	    printf ("Z * 1 = %s ", Random1.str()); | 
 | 	  if (!((Z == Random2) || (Random2 == Random1))) | 
 | 	    printf ("1 * Z == %s\n", Random2.str()); | 
 | 	  if (!(Z == V9)) | 
 | 	    printf ("Z / 1 = %s\n", V9.str()); | 
 | 	  if (Random2 != Random1) | 
 | 	    { | 
 | 	      ErrCnt[Defect] = ErrCnt[Defect] + 1; | 
 | 	      BadCond (Defect, "Multiplication does not commute!\n"); | 
 | 	      printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str()); | 
 | 	      printf ("\tdiffers from Z * 1 = %s\n", Random1.str()); | 
 | 	    } | 
 | 	  Pause (); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | template<typename FLOAT> | 
 | void | 
 | Paranoia<FLOAT>::notify (const char *s) | 
 | { | 
 |   printf ("%s test appears to be inconsistent...\n", s); | 
 |   printf ("   PLEASE NOTIFY KARPINKSI!\n"); | 
 | } | 
 |  | 
 | /* ====================================================================== */ | 
 |  | 
 | int main(int ac, char **av) | 
 | { | 
 |   setbuf(stdout, NULL); | 
 |   setbuf(stderr, NULL); | 
 |  | 
 |   while (1) | 
 |     switch (getopt (ac, av, "pvg:fdl")) | 
 |       { | 
 |       case -1: | 
 | 	return 0; | 
 |       case 'p': | 
 | 	do_pause = true; | 
 | 	break; | 
 |       case 'v': | 
 | 	verbose = true; | 
 | 	break; | 
 |       case 'g': | 
 | 	{ | 
 | 	  static const struct { | 
 | 	    const char *name; | 
 | 	    const struct real_format *fmt; | 
 | 	  } fmts[] = { | 
 | #define F(x) { #x, &x##_format } | 
 | 	    F(ieee_single), | 
 | 	    F(ieee_double), | 
 | 	    F(ieee_extended_motorola), | 
 | 	    F(ieee_extended_intel_96), | 
 | 	    F(ieee_extended_intel_128), | 
 | 	    F(ibm_extended), | 
 | 	    F(ieee_quad), | 
 | 	    F(vax_f), | 
 | 	    F(vax_d), | 
 | 	    F(vax_g), | 
 | 	    F(i370_single), | 
 | 	    F(i370_double), | 
 | 	    F(real_internal), | 
 | #undef F | 
 | 	  }; | 
 |  | 
 | 	  int i, n = sizeof (fmts)/sizeof(*fmts); | 
 |  | 
 | 	  for (i = 0; i < n; ++i) | 
 | 	    if (strcmp (fmts[i].name, optarg) == 0) | 
 | 	      break; | 
 |  | 
 | 	  if (i == n) | 
 | 	    { | 
 | 	      printf ("Unknown implementation \"%s\"; " | 
 | 		      "available implementations:\n", optarg); | 
 | 	      for (i = 0; i < n; ++i) | 
 | 		printf ("\t%s\n", fmts[i].name); | 
 | 	      return 1; | 
 | 	    } | 
 |  | 
 | 	  // We cheat and use the same mode all the time, but vary | 
 | 	  // the format used for that mode. | 
 | 	  real_format_for_mode[int(real_c_float::MODE) - int(QFmode)] | 
 | 	    = fmts[i].fmt; | 
 |  | 
 | 	  Paranoia<real_c_float>().main(); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       case 'f': | 
 | 	Paranoia < native_float<float> >().main(); | 
 | 	break; | 
 |       case 'd': | 
 | 	Paranoia < native_float<double> >().main(); | 
 | 	break; | 
 |       case 'l': | 
 | #ifndef NO_LONG_DOUBLE | 
 | 	Paranoia < native_float<long double> >().main(); | 
 | #endif | 
 | 	break; | 
 |  | 
 |       case '?': | 
 | 	puts ("-p\tpause between pages"); | 
 | 	puts ("-g<FMT>\treal.c implementation FMT"); | 
 | 	puts ("-f\tnative float"); | 
 | 	puts ("-d\tnative double"); | 
 | 	puts ("-l\tnative long double"); | 
 | 	return 0; | 
 |       } | 
 | } | 
 |  | 
 | /* GCC stuff referenced by real.o.  */ | 
 |  | 
 | extern "C" void | 
 | fancy_abort () | 
 | { | 
 |   abort (); | 
 | } | 
 |  | 
 | int target_flags = 0; | 
 |  | 
 | extern "C" int | 
 | floor_log2_wide (unsigned HOST_WIDE_INT x) | 
 | { | 
 |   int log = -1; | 
 |   while (x != 0) | 
 |     log++, | 
 |     x >>= 1; | 
 |   return log; | 
 | } |