|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* Expansions and modifications for 128-bit long double are | 
|  | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> | 
|  | and are incorporated herein by permission of the author.  The author | 
|  | reserves the right to distribute this material elsewhere under different | 
|  | copying permissions.  These modifications are distributed here under | 
|  | the following terms: | 
|  |  | 
|  | This library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | This library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* powq(x,y) return x**y | 
|  | * | 
|  | *		      n | 
|  | * Method:  Let x =  2   * (1+f) | 
|  | *	1. Compute and return log2(x) in two pieces: | 
|  | *		log2(x) = w1 + w2, | 
|  | *	   where w1 has 113-53 = 60 bit trailing zeros. | 
|  | *	2. Perform y*log2(x) = n+y' by simulating muti-precision | 
|  | *	   arithmetic, where |y'|<=0.5. | 
|  | *	3. Return x**y = 2**n*exp(y'*log2) | 
|  | * | 
|  | * Special cases: | 
|  | *	1.  (anything) ** 0  is 1 | 
|  | *	2.  (anything) ** 1  is itself | 
|  | *	3.  (anything) ** NAN is NAN | 
|  | *	4.  NAN ** (anything except 0) is NAN | 
|  | *	5.  +-(|x| > 1) **  +INF is +INF | 
|  | *	6.  +-(|x| > 1) **  -INF is +0 | 
|  | *	7.  +-(|x| < 1) **  +INF is +0 | 
|  | *	8.  +-(|x| < 1) **  -INF is +INF | 
|  | *	9.  +-1         ** +-INF is NAN | 
|  | *	10. +0 ** (+anything except 0, NAN)               is +0 | 
|  | *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0 | 
|  | *	12. +0 ** (-anything except 0, NAN)               is +INF | 
|  | *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF | 
|  | *	14. -0 ** (odd integer) = -( +0 ** (odd integer) ) | 
|  | *	15. +INF ** (+anything except 0,NAN) is +INF | 
|  | *	16. +INF ** (-anything except 0,NAN) is +0 | 
|  | *	17. -INF ** (anything)  = -0 ** (-anything) | 
|  | *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | 
|  | *	19. (-anything except 0 and inf) ** (non-integer) is NAN | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 bp[] = { | 
|  | 1, | 
|  | 1.5Q, | 
|  | }; | 
|  |  | 
|  | /* log_2(1.5) */ | 
|  | static const __float128 dp_h[] = { | 
|  | 0.0, | 
|  | 5.8496250072115607565592654282227158546448E-1Q | 
|  | }; | 
|  |  | 
|  | /* Low part of log_2(1.5) */ | 
|  | static const __float128 dp_l[] = { | 
|  | 0.0, | 
|  | 1.0579781240112554492329533686862998106046E-16Q | 
|  | }; | 
|  |  | 
|  | static const __float128 zero = 0, | 
|  | one = 1, | 
|  | two = 2, | 
|  | two113 = 1.0384593717069655257060992658440192E34Q, | 
|  | huge = 1.0e3000Q, | 
|  | tiny = 1.0e-3000Q; | 
|  |  | 
|  | /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) | 
|  | z = (x-1)/(x+1) | 
|  | 1 <= x <= 1.25 | 
|  | Peak relative error 2.3e-37 */ | 
|  | static const __float128 LN[] = | 
|  | { | 
|  | -3.0779177200290054398792536829702930623200E1Q, | 
|  | 6.5135778082209159921251824580292116201640E1Q, | 
|  | -4.6312921812152436921591152809994014413540E1Q, | 
|  | 1.2510208195629420304615674658258363295208E1Q, | 
|  | -9.9266909031921425609179910128531667336670E-1Q | 
|  | }; | 
|  | static const __float128 LD[] = | 
|  | { | 
|  | -5.129862866715009066465422805058933131960E1Q, | 
|  | 1.452015077564081884387441590064272782044E2Q, | 
|  | -1.524043275549860505277434040464085593165E2Q, | 
|  | 7.236063513651544224319663428634139768808E1Q, | 
|  | -1.494198912340228235853027849917095580053E1Q | 
|  | /* 1.0E0 */ | 
|  | }; | 
|  |  | 
|  | /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) | 
|  | 0 <= x <= 0.5 | 
|  | Peak relative error 5.7e-38  */ | 
|  | static const __float128 PN[] = | 
|  | { | 
|  | 5.081801691915377692446852383385968225675E8Q, | 
|  | 9.360895299872484512023336636427675327355E6Q, | 
|  | 4.213701282274196030811629773097579432957E4Q, | 
|  | 5.201006511142748908655720086041570288182E1Q, | 
|  | 9.088368420359444263703202925095675982530E-3Q, | 
|  | }; | 
|  | static const __float128 PD[] = | 
|  | { | 
|  | 3.049081015149226615468111430031590411682E9Q, | 
|  | 1.069833887183886839966085436512368982758E8Q, | 
|  | 8.259257717868875207333991924545445705394E5Q, | 
|  | 1.872583833284143212651746812884298360922E3Q, | 
|  | /* 1.0E0 */ | 
|  | }; | 
|  |  | 
|  | static const __float128 | 
|  | /* ln 2 */ | 
|  | lg2 = 6.9314718055994530941723212145817656807550E-1Q, | 
|  | lg2_h = 6.9314718055994528622676398299518041312695E-1Q, | 
|  | lg2_l = 2.3190468138462996154948554638754786504121E-17Q, | 
|  | ovt = 8.0085662595372944372e-0017Q, | 
|  | /* 2/(3*log(2)) */ | 
|  | cp = 9.6179669392597560490661645400126142495110E-1Q, | 
|  | cp_h = 9.6179669392597555432899980587535537779331E-1Q, | 
|  | cp_l = 5.0577616648125906047157785230014751039424E-17Q; | 
|  |  | 
|  | __float128 | 
|  | powq (__float128 x, __float128 y) | 
|  | { | 
|  | __float128 z, ax, z_h, z_l, p_h, p_l; | 
|  | __float128 y1, t1, t2, r, s, sgn, t, u, v, w; | 
|  | __float128 s2, s_h, s_l, t_h, t_l, ay; | 
|  | int32_t i, j, k, yisint, n; | 
|  | uint32_t ix, iy; | 
|  | int32_t hx, hy; | 
|  | ieee854_float128 o, p, q; | 
|  |  | 
|  | p.value = x; | 
|  | hx = p.words32.w0; | 
|  | ix = hx & 0x7fffffff; | 
|  |  | 
|  | q.value = y; | 
|  | hy = q.words32.w0; | 
|  | iy = hy & 0x7fffffff; | 
|  |  | 
|  |  | 
|  | /* y==zero: x**0 = 1 */ | 
|  | if ((iy | q.words32.w1 | q.words32.w2 | q.words32.w3) == 0 | 
|  | && !issignalingq (x)) | 
|  | return one; | 
|  |  | 
|  | /* 1.0**y = 1; -1.0**+-Inf = 1 */ | 
|  | if (x == one && !issignalingq (y)) | 
|  | return one; | 
|  | if (x == -1 && iy == 0x7fff0000 | 
|  | && (q.words32.w1 | q.words32.w2 | q.words32.w3) == 0) | 
|  | return one; | 
|  |  | 
|  | /* +-NaN return x+y */ | 
|  | if ((ix > 0x7fff0000) | 
|  | || ((ix == 0x7fff0000) | 
|  | && ((p.words32.w1 | p.words32.w2 | p.words32.w3) != 0)) | 
|  | || (iy > 0x7fff0000) | 
|  | || ((iy == 0x7fff0000) | 
|  | && ((q.words32.w1 | q.words32.w2 | q.words32.w3) != 0))) | 
|  | return x + y; | 
|  |  | 
|  | /* determine if y is an odd int when x < 0 | 
|  | * yisint = 0       ... y is not an integer | 
|  | * yisint = 1       ... y is an odd int | 
|  | * yisint = 2       ... y is an even int | 
|  | */ | 
|  | yisint = 0; | 
|  | if (hx < 0) | 
|  | { | 
|  | if (iy >= 0x40700000)	/* 2^113 */ | 
|  | yisint = 2;		/* even integer y */ | 
|  | else if (iy >= 0x3fff0000)	/* 1.0 */ | 
|  | { | 
|  | if (floorq (y) == y) | 
|  | { | 
|  | z = 0.5 * y; | 
|  | if (floorq (z) == z) | 
|  | yisint = 2; | 
|  | else | 
|  | yisint = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* special value of y */ | 
|  | if ((q.words32.w1 | q.words32.w2 | q.words32.w3) == 0) | 
|  | { | 
|  | if (iy == 0x7fff0000)	/* y is +-inf */ | 
|  | { | 
|  | if (((ix - 0x3fff0000) | p.words32.w1 | p.words32.w2 | p.words32.w3) | 
|  | == 0) | 
|  | return y - y;	/* +-1**inf is NaN */ | 
|  | else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */ | 
|  | return (hy >= 0) ? y : zero; | 
|  | else			/* (|x|<1)**-,+inf = inf,0 */ | 
|  | return (hy < 0) ? -y : zero; | 
|  | } | 
|  | if (iy == 0x3fff0000) | 
|  | {			/* y is  +-1 */ | 
|  | if (hy < 0) | 
|  | return one / x; | 
|  | else | 
|  | return x; | 
|  | } | 
|  | if (hy == 0x40000000) | 
|  | return x * x;		/* y is  2 */ | 
|  | if (hy == 0x3ffe0000) | 
|  | {			/* y is  0.5 */ | 
|  | if (hx >= 0)		/* x >= +0 */ | 
|  | return sqrtq (x); | 
|  | } | 
|  | } | 
|  |  | 
|  | ax = fabsq (x); | 
|  | /* special value of x */ | 
|  | if ((p.words32.w1 | p.words32.w2 | p.words32.w3) == 0) | 
|  | { | 
|  | if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) | 
|  | { | 
|  | z = ax;		/*x is +-0,+-inf,+-1 */ | 
|  | if (hy < 0) | 
|  | z = one / z;	/* z = (1/|x|) */ | 
|  | if (hx < 0) | 
|  | { | 
|  | if (((ix - 0x3fff0000) | yisint) == 0) | 
|  | { | 
|  | z = (z - z) / (z - z);	/* (-1)**non-int is NaN */ | 
|  | } | 
|  | else if (yisint == 1) | 
|  | z = -z;		/* (x<0)**odd = -(|x|**odd) */ | 
|  | } | 
|  | return z; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* (x<0)**(non-int) is NaN */ | 
|  | if (((((uint32_t) hx >> 31) - 1) | yisint) == 0) | 
|  | return (x - x) / (x - x); | 
|  |  | 
|  | /* sgn (sign of result -ve**odd) = -1 else = 1 */ | 
|  | sgn = one; | 
|  | if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0) | 
|  | sgn = -one;			/* (-ve)**(odd int) */ | 
|  |  | 
|  | /* |y| is huge. | 
|  | 2^-16495 = 1/2 of smallest representable value. | 
|  | If (1 - 1/131072)^y underflows, y > 1.4986e9 */ | 
|  | if (iy > 0x401d654b) | 
|  | { | 
|  | /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ | 
|  | if (iy > 0x407d654b) | 
|  | { | 
|  | if (ix <= 0x3ffeffff) | 
|  | return (hy < 0) ? huge * huge : tiny * tiny; | 
|  | if (ix >= 0x3fff0000) | 
|  | return (hy > 0) ? huge * huge : tiny * tiny; | 
|  | } | 
|  | /* over/underflow if x is not close to one */ | 
|  | if (ix < 0x3ffeffff) | 
|  | return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny; | 
|  | if (ix > 0x3fff0000) | 
|  | return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny; | 
|  | } | 
|  |  | 
|  | ay = y > 0 ? y : -y; | 
|  | if (ay < 0x1p-128) | 
|  | y = y < 0 ? -0x1p-128 : 0x1p-128; | 
|  |  | 
|  | n = 0; | 
|  | /* take care subnormal number */ | 
|  | if (ix < 0x00010000) | 
|  | { | 
|  | ax *= two113; | 
|  | n -= 113; | 
|  | o.value = ax; | 
|  | ix = o.words32.w0; | 
|  | } | 
|  | n += ((ix) >> 16) - 0x3fff; | 
|  | j = ix & 0x0000ffff; | 
|  | /* determine interval */ | 
|  | ix = j | 0x3fff0000;		/* normalize ix */ | 
|  | if (j <= 0x3988) | 
|  | k = 0;			/* |x|<sqrt(3/2) */ | 
|  | else if (j < 0xbb67) | 
|  | k = 1;			/* |x|<sqrt(3)   */ | 
|  | else | 
|  | { | 
|  | k = 0; | 
|  | n += 1; | 
|  | ix -= 0x00010000; | 
|  | } | 
|  |  | 
|  | o.value = ax; | 
|  | o.words32.w0 = ix; | 
|  | ax = o.value; | 
|  |  | 
|  | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | 
|  | u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */ | 
|  | v = one / (ax + bp[k]); | 
|  | s = u * v; | 
|  | s_h = s; | 
|  |  | 
|  | o.value = s_h; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | s_h = o.value; | 
|  | /* t_h=ax+bp[k] High */ | 
|  | t_h = ax + bp[k]; | 
|  | o.value = t_h; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | t_h = o.value; | 
|  | t_l = ax - (t_h - bp[k]); | 
|  | s_l = v * ((u - s_h * t_h) - s_h * t_l); | 
|  | /* compute log(ax) */ | 
|  | s2 = s * s; | 
|  | u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4]))); | 
|  | v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2)))); | 
|  | r = s2 * s2 * u / v; | 
|  | r += s_l * (s_h + s); | 
|  | s2 = s_h * s_h; | 
|  | t_h = 3.0 + s2 + r; | 
|  | o.value = t_h; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | t_h = o.value; | 
|  | t_l = r - ((t_h - 3.0) - s2); | 
|  | /* u+v = s*(1+...) */ | 
|  | u = s_h * t_h; | 
|  | v = s_l * t_h + t_l * s; | 
|  | /* 2/(3log2)*(s+...) */ | 
|  | p_h = u + v; | 
|  | o.value = p_h; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | p_h = o.value; | 
|  | p_l = v - (p_h - u); | 
|  | z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */ | 
|  | z_l = cp_l * p_h + p_l * cp + dp_l[k]; | 
|  | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | 
|  | t = (__float128) n; | 
|  | t1 = (((z_h + z_l) + dp_h[k]) + t); | 
|  | o.value = t1; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | t1 = o.value; | 
|  | t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); | 
|  |  | 
|  | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | 
|  | y1 = y; | 
|  | o.value = y1; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | y1 = o.value; | 
|  | p_l = (y - y1) * t1 + y * t2; | 
|  | p_h = y1 * t1; | 
|  | z = p_l + p_h; | 
|  | o.value = z; | 
|  | j = o.words32.w0; | 
|  | if (j >= 0x400d0000) /* z >= 16384 */ | 
|  | { | 
|  | /* if z > 16384 */ | 
|  | if (((j - 0x400d0000) | o.words32.w1 | o.words32.w2 | o.words32.w3) != 0) | 
|  | return sgn * huge * huge;	/* overflow */ | 
|  | else | 
|  | { | 
|  | if (p_l + ovt > z - p_h) | 
|  | return sgn * huge * huge;	/* overflow */ | 
|  | } | 
|  | } | 
|  | else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */ | 
|  | { | 
|  | /* z < -16495 */ | 
|  | if (((j - 0xc00d01bc) | o.words32.w1 | o.words32.w2 | o.words32.w3) | 
|  | != 0) | 
|  | return sgn * tiny * tiny;	/* underflow */ | 
|  | else | 
|  | { | 
|  | if (p_l <= z - p_h) | 
|  | return sgn * tiny * tiny;	/* underflow */ | 
|  | } | 
|  | } | 
|  | /* compute 2**(p_h+p_l) */ | 
|  | i = j & 0x7fffffff; | 
|  | k = (i >> 16) - 0x3fff; | 
|  | n = 0; | 
|  | if (i > 0x3ffe0000) | 
|  | {				/* if |z| > 0.5, set n = [z+0.5] */ | 
|  | n = floorq (z + 0.5Q); | 
|  | t = n; | 
|  | p_h -= t; | 
|  | } | 
|  | t = p_l + p_h; | 
|  | o.value = t; | 
|  | o.words32.w3 = 0; | 
|  | o.words32.w2 &= 0xf8000000; | 
|  | t = o.value; | 
|  | u = t * lg2_h; | 
|  | v = (p_l - (t - p_h)) * lg2 + t * lg2_l; | 
|  | z = u + v; | 
|  | w = v - (z - u); | 
|  | /*  exp(z) */ | 
|  | t = z * z; | 
|  | u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); | 
|  | v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); | 
|  | t1 = z - t * u / v; | 
|  | r = (z * t1) / (t1 - two) - (w + z * w); | 
|  | z = one - (r - z); | 
|  | o.value = z; | 
|  | j = o.words32.w0; | 
|  | j += (n << 16); | 
|  | if ((j >> 16) <= 0) | 
|  | { | 
|  | z = scalbnq (z, n);	/* subnormal output */ | 
|  | __float128 force_underflow = z * z; | 
|  | math_force_eval (force_underflow); | 
|  | } | 
|  | else | 
|  | { | 
|  | o.words32.w0 = j; | 
|  | z = o.value; | 
|  | } | 
|  | return sgn * z; | 
|  | } |