|  | /* Complex cosine hyperbolic function for float types. | 
|  | Copyright (C) 1997-2018 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | __complex128 | 
|  | ccoshq (__complex128 x) | 
|  | { | 
|  | __complex128 retval; | 
|  | int rcls = fpclassifyq (__real__ x); | 
|  | int icls = fpclassifyq (__imag__ x); | 
|  |  | 
|  | if (__glibc_likely (rcls >= QUADFP_ZERO)) | 
|  | { | 
|  | /* Real part is finite.  */ | 
|  | if (__glibc_likely (icls >= QUADFP_ZERO)) | 
|  | { | 
|  | /* Imaginary part is finite.  */ | 
|  | const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q); | 
|  | __float128 sinix, cosix; | 
|  |  | 
|  | if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN)) | 
|  | { | 
|  | sincosq (__imag__ x, &sinix, &cosix); | 
|  | } | 
|  | else | 
|  | { | 
|  | sinix = __imag__ x; | 
|  | cosix = 1; | 
|  | } | 
|  |  | 
|  | if (fabsq (__real__ x) > t) | 
|  | { | 
|  | __float128 exp_t = expq (t); | 
|  | __float128 rx = fabsq (__real__ x); | 
|  | if (signbitq (__real__ x)) | 
|  | sinix = -sinix; | 
|  | rx -= t; | 
|  | sinix *= exp_t / 2; | 
|  | cosix *= exp_t / 2; | 
|  | if (rx > t) | 
|  | { | 
|  | rx -= t; | 
|  | sinix *= exp_t; | 
|  | cosix *= exp_t; | 
|  | } | 
|  | if (rx > t) | 
|  | { | 
|  | /* Overflow (original real part of x > 3t).  */ | 
|  | __real__ retval = FLT128_MAX * cosix; | 
|  | __imag__ retval = FLT128_MAX * sinix; | 
|  | } | 
|  | else | 
|  | { | 
|  | __float128 exp_val = expq (rx); | 
|  | __real__ retval = exp_val * cosix; | 
|  | __imag__ retval = exp_val * sinix; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | __real__ retval = coshq (__real__ x) * cosix; | 
|  | __imag__ retval = sinhq (__real__ x) * sinix; | 
|  | } | 
|  |  | 
|  | math_check_force_underflow_complex (retval); | 
|  | } | 
|  | else | 
|  | { | 
|  | __imag__ retval = __real__ x == 0 ? 0 : nanq (""); | 
|  | __real__ retval = __imag__ x - __imag__ x; | 
|  | } | 
|  | } | 
|  | else if (rcls == QUADFP_INFINITE) | 
|  | { | 
|  | /* Real part is infinite.  */ | 
|  | if (__glibc_likely (icls > QUADFP_ZERO)) | 
|  | { | 
|  | /* Imaginary part is finite.  */ | 
|  | __float128 sinix, cosix; | 
|  |  | 
|  | if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN)) | 
|  | { | 
|  | sincosq (__imag__ x, &sinix, &cosix); | 
|  | } | 
|  | else | 
|  | { | 
|  | sinix = __imag__ x; | 
|  | cosix = 1; | 
|  | } | 
|  |  | 
|  | __real__ retval = copysignq (HUGE_VALQ, cosix); | 
|  | __imag__ retval = (copysignq (HUGE_VALQ, sinix) | 
|  | * copysignq (1, __real__ x)); | 
|  | } | 
|  | else if (icls == QUADFP_ZERO) | 
|  | { | 
|  | /* Imaginary part is 0.0.  */ | 
|  | __real__ retval = HUGE_VALQ; | 
|  | __imag__ retval = __imag__ x * copysignq (1, __real__ x); | 
|  | } | 
|  | else | 
|  | { | 
|  | __real__ retval = HUGE_VALQ; | 
|  | __imag__ retval = __imag__ x - __imag__ x; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | __real__ retval = nanq (""); | 
|  | __imag__ retval = __imag__ x == 0 ? __imag__ x : nanq (""); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } |