| /* Software floating-point emulation. | 
 |    Basic one-word fraction declaration and manipulation. | 
 |    Copyright (C) 1997-2019 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Richard Henderson (rth@cygnus.com), | 
 | 		  Jakub Jelinek (jj@ultra.linux.cz), | 
 | 		  David S. Miller (davem@redhat.com) and | 
 | 		  Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    In addition to the permissions in the GNU Lesser General Public | 
 |    License, the Free Software Foundation gives you unlimited | 
 |    permission to link the compiled version of this file into | 
 |    combinations with other programs, and to distribute those | 
 |    combinations without any restriction coming from the use of this | 
 |    file.  (The Lesser General Public License restrictions do apply in | 
 |    other respects; for example, they cover modification of the file, | 
 |    and distribution when not linked into a combine executable.) | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #ifndef SOFT_FP_OP_1_H | 
 | #define SOFT_FP_OP_1_H	1 | 
 |  | 
 | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f _FP_ZERO_INIT | 
 | #define _FP_FRAC_COPY_1(D, S)	(D##_f = S##_f) | 
 | #define _FP_FRAC_SET_1(X, I)	(X##_f = I) | 
 | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
 | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
 | #define _FP_FRAC_WORD_1(X, w)	(X##_f) | 
 |  | 
 | #define _FP_FRAC_ADDI_1(X, I)	(X##_f += I) | 
 | #define _FP_FRAC_SLL_1(X, N)			\ | 
 |   do						\ | 
 |     {						\ | 
 |       if (__builtin_constant_p (N) && (N) == 1)	\ | 
 | 	X##_f += X##_f;				\ | 
 |       else					\ | 
 | 	X##_f <<= (N);				\ | 
 |     }						\ | 
 |   while (0) | 
 | #define _FP_FRAC_SRL_1(X, N)	(X##_f >>= N) | 
 |  | 
 | /* Right shift with sticky-lsb.  */ | 
 | #define _FP_FRAC_SRST_1(X, S, N, sz)	__FP_FRAC_SRST_1 (X##_f, S, (N), (sz)) | 
 | #define _FP_FRAC_SRS_1(X, N, sz)	__FP_FRAC_SRS_1 (X##_f, (N), (sz)) | 
 |  | 
 | #define __FP_FRAC_SRST_1(X, S, N, sz)			\ | 
 |   do							\ | 
 |     {							\ | 
 |       S = (__builtin_constant_p (N) && (N) == 1		\ | 
 | 	   ? X & 1					\ | 
 | 	   : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\ | 
 |       X = X >> (N);					\ | 
 |     }							\ | 
 |   while (0) | 
 |  | 
 | #define __FP_FRAC_SRS_1(X, N, sz)				\ | 
 |   (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1	\ | 
 | 		    ? X & 1					\ | 
 | 		    : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
 |  | 
 | #define _FP_FRAC_ADD_1(R, X, Y)	(R##_f = X##_f + Y##_f) | 
 | #define _FP_FRAC_SUB_1(R, X, Y)	(R##_f = X##_f - Y##_f) | 
 | #define _FP_FRAC_DEC_1(X, Y)	(X##_f -= Y##_f) | 
 | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ ((z), X##_f) | 
 |  | 
 | /* Predicates.  */ | 
 | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE) X##_f < 0) | 
 | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
 | #define _FP_FRAC_OVERP_1(fs, X)	(X##_f & _FP_OVERFLOW_##fs) | 
 | #define _FP_FRAC_CLEAR_OVERP_1(fs, X)	(X##_f &= ~_FP_OVERFLOW_##fs) | 
 | #define _FP_FRAC_HIGHBIT_DW_1(fs, X)	(X##_f & _FP_HIGHBIT_DW_##fs) | 
 | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
 | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
 | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
 |  | 
 | #define _FP_ZEROFRAC_1		0 | 
 | #define _FP_MINFRAC_1		1 | 
 | #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE) 0) | 
 |  | 
 | /* Unpack the raw bits of a native fp value.  Do not classify or | 
 |    normalize the data.  */ | 
 |  | 
 | #define _FP_UNPACK_RAW_1(fs, X, val)			\ | 
 |   do							\ | 
 |     {							\ | 
 |       union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo;	\ | 
 |       _FP_UNPACK_RAW_1_flo.flt = (val);			\ | 
 | 							\ | 
 |       X##_f = _FP_UNPACK_RAW_1_flo.bits.frac;		\ | 
 |       X##_e = _FP_UNPACK_RAW_1_flo.bits.exp;		\ | 
 |       X##_s = _FP_UNPACK_RAW_1_flo.bits.sign;		\ | 
 |     }							\ | 
 |   while (0) | 
 |  | 
 | #define _FP_UNPACK_RAW_1_P(fs, X, val)			\ | 
 |   do							\ | 
 |     {							\ | 
 |       union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo	\ | 
 | 	= (union _FP_UNION_##fs *) (val);		\ | 
 | 							\ | 
 |       X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac;	\ | 
 |       X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp;		\ | 
 |       X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign;	\ | 
 |     }							\ | 
 |   while (0) | 
 |  | 
 | /* Repack the raw bits of a native fp value.  */ | 
 |  | 
 | #define _FP_PACK_RAW_1(fs, val, X)		\ | 
 |   do						\ | 
 |     {						\ | 
 |       union _FP_UNION_##fs _FP_PACK_RAW_1_flo;	\ | 
 | 						\ | 
 |       _FP_PACK_RAW_1_flo.bits.frac = X##_f;	\ | 
 |       _FP_PACK_RAW_1_flo.bits.exp  = X##_e;	\ | 
 |       _FP_PACK_RAW_1_flo.bits.sign = X##_s;	\ | 
 | 						\ | 
 |       (val) = _FP_PACK_RAW_1_flo.flt;		\ | 
 |     }						\ | 
 |   while (0) | 
 |  | 
 | #define _FP_PACK_RAW_1_P(fs, val, X)			\ | 
 |   do							\ | 
 |     {							\ | 
 |       union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo	\ | 
 | 	= (union _FP_UNION_##fs *) (val);		\ | 
 | 							\ | 
 |       _FP_PACK_RAW_1_P_flo->bits.frac = X##_f;		\ | 
 |       _FP_PACK_RAW_1_P_flo->bits.exp  = X##_e;		\ | 
 |       _FP_PACK_RAW_1_P_flo->bits.sign = X##_s;		\ | 
 |     }							\ | 
 |   while (0) | 
 |  | 
 |  | 
 | /* Multiplication algorithms: */ | 
 |  | 
 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
 |    multiplication immediately.  */ | 
 |  | 
 | #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y)	\ | 
 |   do							\ | 
 |     {							\ | 
 |       R##_f = X##_f * Y##_f;				\ | 
 |     }							\ | 
 |   while (0) | 
 |  | 
 | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y);			\ | 
 |       /* Normalize since we know where the msb of the multiplicands	\ | 
 | 	 were (bit B), we know that the msb of the of the product is	\ | 
 | 	 at either 2B or 2B-1.  */					\ | 
 |       _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits));			\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
 |  | 
 | #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit)	\ | 
 |   do								\ | 
 |     {								\ | 
 |       doit (R##_f1, R##_f0, X##_f, Y##_f);			\ | 
 |     }								\ | 
 |   while (0) | 
 |  | 
 | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z);				\ | 
 |       _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z,	\ | 
 | 			      X, Y, doit);				\ | 
 |       /* Normalize since we know where the msb of the multiplicands	\ | 
 | 	 were (bit B), we know that the msb of the of the product is	\ | 
 | 	 at either 2B or 2B-1.  */					\ | 
 |       _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1,		\ | 
 | 		      2*(wfracbits));					\ | 
 |       R##_f = _FP_MUL_MEAT_1_wide_Z_f0;					\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
 |  | 
 | #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y)			\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl;	\ | 
 |       _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
 |       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a);			\ | 
 | 									\ | 
 |       /* Split the words in half.  */					\ | 
 |       _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2);		\ | 
 |       _FP_MUL_MEAT_DW_1_hard_xl						\ | 
 | 	= X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\ | 
 |       _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2);		\ | 
 |       _FP_MUL_MEAT_DW_1_hard_yl						\ | 
 | 	= Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\ | 
 | 									\ | 
 |       /* Multiply the pieces.  */					\ | 
 |       R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
 |       _FP_MUL_MEAT_DW_1_hard_a_f0					\ | 
 | 	= _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
 |       _FP_MUL_MEAT_DW_1_hard_a_f1					\ | 
 | 	= _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh;	\ | 
 |       R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh;	\ | 
 | 									\ | 
 |       /* Reassemble into two full words.  */				\ | 
 |       if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1)	\ | 
 | 	  < _FP_MUL_MEAT_DW_1_hard_a_f1)				\ | 
 | 	R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2);		\ | 
 |       _FP_MUL_MEAT_DW_1_hard_a_f1					\ | 
 | 	= _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2);		\ | 
 |       _FP_MUL_MEAT_DW_1_hard_a_f0					\ | 
 | 	= _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2);		\ | 
 |       _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a);			\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)			\ | 
 |   do								\ | 
 |     {								\ | 
 |       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z);			\ | 
 |       _FP_MUL_MEAT_DW_1_hard ((wfracbits),			\ | 
 | 			      _FP_MUL_MEAT_1_hard_z, X, Y);	\ | 
 | 								\ | 
 |       /* Normalize.  */						\ | 
 |       _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z,			\ | 
 | 		      (wfracbits) - 1, 2*(wfracbits));		\ | 
 |       R##_f = _FP_MUL_MEAT_1_hard_z_f0;				\ | 
 |     }								\ | 
 |   while (0) | 
 |  | 
 |  | 
 | /* Division algorithms: */ | 
 |  | 
 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
 |    division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
 |    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
 |    choose will depend on what the compiler does with divrem4.  */ | 
 |  | 
 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)				\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r;		\ | 
 |       X##_f <<= (X##_f < Y##_f						\ | 
 | 		 ? R##_e--, _FP_WFRACBITS_##fs				\ | 
 | 		 : _FP_WFRACBITS_##fs - 1);				\ | 
 |       doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f);	\ | 
 |       R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0);	\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
 |    that may be useful in this situation.  This first is for a primitive | 
 |    that requires normalization, the second for one that does not.  Look | 
 |    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
 |  | 
 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh;				\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl;				\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q;				\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r;				\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y;				\ | 
 | 									\ | 
 |       /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
 |       _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs;	\ | 
 | 									\ | 
 |       /* Shift X op correspondingly high, that is, up one full word.  */ \ | 
 |       if (X##_f < Y##_f)						\ | 
 | 	{								\ | 
 | 	  R##_e--;							\ | 
 | 	  _FP_DIV_MEAT_1_udiv_norm_nl = 0;				\ | 
 | 	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f;				\ | 
 | 	}								\ | 
 |       else								\ | 
 | 	{								\ | 
 | 	  _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1);	\ | 
 | 	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1;			\ | 
 | 	}								\ | 
 | 									\ | 
 |       udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q,				\ | 
 | 		  _FP_DIV_MEAT_1_udiv_norm_r,				\ | 
 | 		  _FP_DIV_MEAT_1_udiv_norm_nh,				\ | 
 | 		  _FP_DIV_MEAT_1_udiv_norm_nl,				\ | 
 | 		  _FP_DIV_MEAT_1_udiv_norm_y);				\ | 
 |       R##_f = (_FP_DIV_MEAT_1_udiv_norm_q				\ | 
 | 	       | (_FP_DIV_MEAT_1_udiv_norm_r != 0));			\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)				\ | 
 |   do									\ | 
 |     {									\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl;	\ | 
 |       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r;		\ | 
 |       if (X##_f < Y##_f)						\ | 
 | 	{								\ | 
 | 	  R##_e--;							\ | 
 | 	  _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
 | 	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs;	\ | 
 | 	}								\ | 
 |       else								\ | 
 | 	{								\ | 
 | 	  _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
 | 	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
 | 	}								\ | 
 |       udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r,		\ | 
 | 		  _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl,	\ | 
 | 		  Y##_f);						\ | 
 |       R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0);	\ | 
 |     }									\ | 
 |   while (0) | 
 |  | 
 |  | 
 | /* Square root algorithms: | 
 |    We have just one right now, maybe Newton approximation | 
 |    should be added for those machines where division is fast.  */ | 
 |  | 
 | #define _FP_SQRT_MEAT_1(R, S, T, X, q)		\ | 
 |   do						\ | 
 |     {						\ | 
 |       while ((q) != _FP_WORK_ROUND)		\ | 
 | 	{					\ | 
 | 	  T##_f = S##_f + (q);			\ | 
 | 	  if (T##_f <= X##_f)			\ | 
 | 	    {					\ | 
 | 	      S##_f = T##_f + (q);		\ | 
 | 	      X##_f -= T##_f;			\ | 
 | 	      R##_f += (q);			\ | 
 | 	    }					\ | 
 | 	  _FP_FRAC_SLL_1 (X, 1);		\ | 
 | 	  (q) >>= 1;				\ | 
 | 	}					\ | 
 |       if (X##_f)				\ | 
 | 	{					\ | 
 | 	  if (S##_f < X##_f)			\ | 
 | 	    R##_f |= _FP_WORK_ROUND;		\ | 
 | 	  R##_f |= _FP_WORK_STICKY;		\ | 
 | 	}					\ | 
 |     }						\ | 
 |   while (0) | 
 |  | 
 | /* Assembly/disassembly for converting to/from integral types. | 
 |    No shifting or overflow handled here.  */ | 
 |  | 
 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	((r) = X##_f) | 
 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = (r)) | 
 |  | 
 |  | 
 | /* Convert FP values between word sizes.  */ | 
 |  | 
 | #define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f) | 
 |  | 
 | #endif /* !SOFT_FP_OP_1_H */ |