|  | /* Copyright (C) 2002-2021 Free Software Foundation, Inc. | 
|  | Contributed by Andy Vaught | 
|  | Namelist output contributed by Paul Thomas | 
|  | F2003 I/O support contributed by Jerry DeLisle | 
|  |  | 
|  | This file is part of the GNU Fortran runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "io.h" | 
|  | #include "fbuf.h" | 
|  | #include "format.h" | 
|  | #include "unix.h" | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #define star_fill(p, n) memset(p, '*', n) | 
|  |  | 
|  | typedef unsigned char uchar; | 
|  |  | 
|  | /* Helper functions for character(kind=4) internal units.  These are needed | 
|  | by write_float.def.  */ | 
|  |  | 
|  | static void | 
|  | memcpy4 (gfc_char4_t *dest, const char *source, int k) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | const char *p = source; | 
|  | for (j = 0; j < k; j++) | 
|  | *dest++ = (gfc_char4_t) *p++; | 
|  | } | 
|  |  | 
|  | /* This include contains the heart and soul of formatted floating point.  */ | 
|  | #include "write_float.def" | 
|  |  | 
|  | /* Write out default char4.  */ | 
|  |  | 
|  | static void | 
|  | write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source, | 
|  | int src_len, int w_len) | 
|  | { | 
|  | char *p; | 
|  | int j, k = 0; | 
|  | gfc_char4_t c; | 
|  | uchar d; | 
|  |  | 
|  | /* Take care of preceding blanks.  */ | 
|  | if (w_len > src_len) | 
|  | { | 
|  | k = w_len - src_len; | 
|  | p = write_block (dtp, k); | 
|  | if (p == NULL) | 
|  | return; | 
|  | if (is_char4_unit (dtp)) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (p4, ' ', k); | 
|  | } | 
|  | else | 
|  | memset (p, ' ', k); | 
|  | } | 
|  |  | 
|  | /* Get ready to handle delimiters if needed.  */ | 
|  | switch (dtp->u.p.current_unit->delim_status) | 
|  | { | 
|  | case DELIM_APOSTROPHE: | 
|  | d = '\''; | 
|  | break; | 
|  | case DELIM_QUOTE: | 
|  | d = '"'; | 
|  | break; | 
|  | default: | 
|  | d = ' '; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Now process the remaining characters, one at a time.  */ | 
|  | for (j = 0; j < src_len; j++) | 
|  | { | 
|  | c = source[j]; | 
|  | if (is_char4_unit (dtp)) | 
|  | { | 
|  | gfc_char4_t *q; | 
|  | /* Handle delimiters if any.  */ | 
|  | if (c == d && d != ' ') | 
|  | { | 
|  | p = write_block (dtp, 2); | 
|  | if (p == NULL) | 
|  | return; | 
|  | q = (gfc_char4_t *) p; | 
|  | *q++ = c; | 
|  | } | 
|  | else | 
|  | { | 
|  | p = write_block (dtp, 1); | 
|  | if (p == NULL) | 
|  | return; | 
|  | q = (gfc_char4_t *) p; | 
|  | } | 
|  | *q = c; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Handle delimiters if any.  */ | 
|  | if (c == d && d != ' ') | 
|  | { | 
|  | p = write_block (dtp, 2); | 
|  | if (p == NULL) | 
|  | return; | 
|  | *p++ = (uchar) c; | 
|  | } | 
|  | else | 
|  | { | 
|  | p = write_block (dtp, 1); | 
|  | if (p == NULL) | 
|  | return; | 
|  | } | 
|  | *p = c > 255 ? '?' : (uchar) c; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write out UTF-8 converted from char4.  */ | 
|  |  | 
|  | static void | 
|  | write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source, | 
|  | int src_len, int w_len) | 
|  | { | 
|  | char *p; | 
|  | int j, k = 0; | 
|  | gfc_char4_t c; | 
|  | static const uchar masks[6] =  { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; | 
|  | static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; | 
|  | int nbytes; | 
|  | uchar buf[6], d, *q; | 
|  |  | 
|  | /* Take care of preceding blanks.  */ | 
|  | if (w_len > src_len) | 
|  | { | 
|  | k = w_len - src_len; | 
|  | p = write_block (dtp, k); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memset (p, ' ', k); | 
|  | } | 
|  |  | 
|  | /* Get ready to handle delimiters if needed.  */ | 
|  | switch (dtp->u.p.current_unit->delim_status) | 
|  | { | 
|  | case DELIM_APOSTROPHE: | 
|  | d = '\''; | 
|  | break; | 
|  | case DELIM_QUOTE: | 
|  | d = '"'; | 
|  | break; | 
|  | default: | 
|  | d = ' '; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Now process the remaining characters, one at a time.  */ | 
|  | for (j = k; j < src_len; j++) | 
|  | { | 
|  | c = source[j]; | 
|  | if (c < 0x80) | 
|  | { | 
|  | /* Handle the delimiters if any.  */ | 
|  | if (c == d && d != ' ') | 
|  | { | 
|  | p = write_block (dtp, 2); | 
|  | if (p == NULL) | 
|  | return; | 
|  | *p++ = (uchar) c; | 
|  | } | 
|  | else | 
|  | { | 
|  | p = write_block (dtp, 1); | 
|  | if (p == NULL) | 
|  | return; | 
|  | } | 
|  | *p = (uchar) c; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Convert to UTF-8 sequence.  */ | 
|  | nbytes = 1; | 
|  | q = &buf[6]; | 
|  |  | 
|  | do | 
|  | { | 
|  | *--q = ((c & 0x3F) | 0x80); | 
|  | c >>= 6; | 
|  | nbytes++; | 
|  | } | 
|  | while (c >= 0x3F || (c & limits[nbytes-1])); | 
|  |  | 
|  | *--q = (c | masks[nbytes-1]); | 
|  |  | 
|  | p = write_block (dtp, nbytes); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | while (q < &buf[6]) | 
|  | *p++ = *q++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Check the first character in source if we are using CC_FORTRAN | 
|  | and set the cc.type appropriately.   The cc.type is used later by write_cc | 
|  | to determine the output start-of-record, and next_record_cc to determine the | 
|  | output end-of-record. | 
|  | This function is called before the output buffer is allocated, so alloc_len | 
|  | is set to the appropriate size to allocate.  */ | 
|  |  | 
|  | static void | 
|  | write_check_cc (st_parameter_dt *dtp, const char **source, size_t *alloc_len) | 
|  | { | 
|  | /* Only valid for CARRIAGECONTROL=FORTRAN.  */ | 
|  | if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN | 
|  | || alloc_len == NULL || source == NULL) | 
|  | return; | 
|  |  | 
|  | /* Peek at the first character.  */ | 
|  | int c = (*alloc_len > 0) ? (*source)[0] : EOF; | 
|  | if (c != EOF) | 
|  | { | 
|  | /* The start-of-record character which will be printed.  */ | 
|  | dtp->u.p.cc.u.start = '\n'; | 
|  | /* The number of characters to print at the start-of-record. | 
|  | len  > 1 means copy the SOR character multiple times. | 
|  | len == 0 means no SOR will be output.  */ | 
|  | dtp->u.p.cc.len = 1; | 
|  |  | 
|  | switch (c) | 
|  | { | 
|  | case '+': | 
|  | dtp->u.p.cc.type = CCF_OVERPRINT; | 
|  | dtp->u.p.cc.len = 0; | 
|  | break; | 
|  | case '-': | 
|  | dtp->u.p.cc.type = CCF_ONE_LF; | 
|  | dtp->u.p.cc.len = 1; | 
|  | break; | 
|  | case '0': | 
|  | dtp->u.p.cc.type = CCF_TWO_LF; | 
|  | dtp->u.p.cc.len = 2; | 
|  | break; | 
|  | case '1': | 
|  | dtp->u.p.cc.type = CCF_PAGE_FEED; | 
|  | dtp->u.p.cc.len = 1; | 
|  | dtp->u.p.cc.u.start = '\f'; | 
|  | break; | 
|  | case '$': | 
|  | dtp->u.p.cc.type = CCF_PROMPT; | 
|  | dtp->u.p.cc.len = 1; | 
|  | break; | 
|  | case '\0': | 
|  | dtp->u.p.cc.type = CCF_OVERPRINT_NOA; | 
|  | dtp->u.p.cc.len = 0; | 
|  | break; | 
|  | default: | 
|  | /* In the default case we copy ONE_LF.  */ | 
|  | dtp->u.p.cc.type = CCF_DEFAULT; | 
|  | dtp->u.p.cc.len = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We add n-1 to alloc_len so our write buffer is the right size. | 
|  | We are replacing the first character, and possibly prepending some | 
|  | additional characters.  Note for n==0, we actually subtract one from | 
|  | alloc_len, which is correct, since that character is skipped.  */ | 
|  | if (*alloc_len > 0) | 
|  | { | 
|  | *source += 1; | 
|  | *alloc_len += dtp->u.p.cc.len - 1; | 
|  | } | 
|  | /* If we have no input, there is no first character to replace.  Make | 
|  | sure we still allocate enough space for the start-of-record string.  */ | 
|  | else | 
|  | *alloc_len = dtp->u.p.cc.len; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write the start-of-record character(s) for CC_FORTRAN. | 
|  | Also adjusts the 'cc' struct to contain the end-of-record character | 
|  | for next_record_cc. | 
|  | The source_len is set to the remaining length to copy from the source, | 
|  | after the start-of-record string was inserted.  */ | 
|  |  | 
|  | static char * | 
|  | write_cc (st_parameter_dt *dtp, char *p, size_t *source_len) | 
|  | { | 
|  | /* Only valid for CARRIAGECONTROL=FORTRAN.  */ | 
|  | if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN || source_len == NULL) | 
|  | return p; | 
|  |  | 
|  | /* Write the start-of-record string to the output buffer.  Note that len is | 
|  | never more than 2.  */ | 
|  | if (dtp->u.p.cc.len > 0) | 
|  | { | 
|  | *(p++) = dtp->u.p.cc.u.start; | 
|  | if (dtp->u.p.cc.len > 1) | 
|  | *(p++) = dtp->u.p.cc.u.start; | 
|  |  | 
|  | /* source_len comes from write_check_cc where it is set to the full | 
|  | allocated length of the output buffer. Therefore we subtract off the | 
|  | length of the SOR string to obtain the remaining source length.  */ | 
|  | *source_len -= dtp->u.p.cc.len; | 
|  | } | 
|  |  | 
|  | /* Common case.  */ | 
|  | dtp->u.p.cc.len = 1; | 
|  | dtp->u.p.cc.u.end = '\r'; | 
|  |  | 
|  | /* Update end-of-record character for next_record_w.  */ | 
|  | switch (dtp->u.p.cc.type) | 
|  | { | 
|  | case CCF_PROMPT: | 
|  | case CCF_OVERPRINT_NOA: | 
|  | /* No end-of-record.  */ | 
|  | dtp->u.p.cc.len = 0; | 
|  | dtp->u.p.cc.u.end = '\0'; | 
|  | break; | 
|  | case CCF_OVERPRINT: | 
|  | case CCF_ONE_LF: | 
|  | case CCF_TWO_LF: | 
|  | case CCF_PAGE_FEED: | 
|  | case CCF_DEFAULT: | 
|  | default: | 
|  | /* Carriage return.  */ | 
|  | dtp->u.p.cc.len = 1; | 
|  | dtp->u.p.cc.u.end = '\r'; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | void | 
|  |  | 
|  | write_a (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len) | 
|  | { | 
|  | size_t wlen; | 
|  | char *p; | 
|  |  | 
|  | wlen = f->u.string.length < 0 | 
|  | || (f->format == FMT_G && f->u.string.length == 0) | 
|  | ? len : (size_t) f->u.string.length; | 
|  |  | 
|  | #ifdef HAVE_CRLF | 
|  | /* If this is formatted STREAM IO convert any embedded line feed characters | 
|  | to CR_LF on systems that use that sequence for newlines.  See F2003 | 
|  | Standard sections 10.6.3 and 9.9 for further information.  */ | 
|  | if (is_stream_io (dtp)) | 
|  | { | 
|  | const char crlf[] = "\r\n"; | 
|  | size_t q, bytes; | 
|  | q = bytes = 0; | 
|  |  | 
|  | /* Write out any padding if needed.  */ | 
|  | if (len < wlen) | 
|  | { | 
|  | p = write_block (dtp, wlen - len); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memset (p, ' ', wlen - len); | 
|  | } | 
|  |  | 
|  | /* Scan the source string looking for '\n' and convert it if found.  */ | 
|  | for (size_t i = 0; i < wlen; i++) | 
|  | { | 
|  | if (source[i] == '\n') | 
|  | { | 
|  | /* Write out the previously scanned characters in the string.  */ | 
|  | if (bytes > 0) | 
|  | { | 
|  | p = write_block (dtp, bytes); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memcpy (p, &source[q], bytes); | 
|  | q += bytes; | 
|  | bytes = 0; | 
|  | } | 
|  |  | 
|  | /* Write out the CR_LF sequence.  */ | 
|  | q++; | 
|  | p = write_block (dtp, 2); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memcpy (p, crlf, 2); | 
|  | } | 
|  | else | 
|  | bytes++; | 
|  | } | 
|  |  | 
|  | /*  Write out any remaining bytes if no LF was found.  */ | 
|  | if (bytes > 0) | 
|  | { | 
|  | p = write_block (dtp, bytes); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memcpy (p, &source[q], bytes); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | #endif | 
|  | if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN) | 
|  | write_check_cc (dtp, &source, &wlen); | 
|  |  | 
|  | p = write_block (dtp, wlen); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN) | 
|  | p = write_cc (dtp, p, &wlen); | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | if (wlen < len) | 
|  | memcpy4 (p4, source, wlen); | 
|  | else | 
|  | { | 
|  | memset4 (p4, ' ', wlen - len); | 
|  | memcpy4 (p4 + wlen - len, source, len); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (wlen < len) | 
|  | memcpy (p, source, wlen); | 
|  | else | 
|  | { | 
|  | memset (p, ' ', wlen - len); | 
|  | memcpy (p + wlen - len, source, len); | 
|  | } | 
|  | #ifdef HAVE_CRLF | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The primary difference between write_a_char4 and write_a is that we have to | 
|  | deal with writing from the first byte of the 4-byte character and pay | 
|  | attention to the most significant bytes.  For ENCODING="default" write the | 
|  | lowest significant byte. If the 3 most significant bytes contain | 
|  | non-zero values, emit a '?'.  For ENCODING="utf-8", convert the UCS-32 value | 
|  | to the UTF-8 encoded string before writing out.  */ | 
|  |  | 
|  | void | 
|  | write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len) | 
|  | { | 
|  | size_t wlen; | 
|  | gfc_char4_t *q; | 
|  |  | 
|  | wlen = f->u.string.length < 0 | 
|  | || (f->format == FMT_G && f->u.string.length == 0) | 
|  | ? len : (size_t) f->u.string.length; | 
|  |  | 
|  | q = (gfc_char4_t *) source; | 
|  | #ifdef HAVE_CRLF | 
|  | /* If this is formatted STREAM IO convert any embedded line feed characters | 
|  | to CR_LF on systems that use that sequence for newlines.  See F2003 | 
|  | Standard sections 10.6.3 and 9.9 for further information.  */ | 
|  | if (is_stream_io (dtp)) | 
|  | { | 
|  | const gfc_char4_t crlf[] = {0x000d,0x000a}; | 
|  | size_t bytes; | 
|  | gfc_char4_t *qq; | 
|  | bytes = 0; | 
|  |  | 
|  | /* Write out any padding if needed.  */ | 
|  | if (len < wlen) | 
|  | { | 
|  | char *p; | 
|  | p = write_block (dtp, wlen - len); | 
|  | if (p == NULL) | 
|  | return; | 
|  | memset (p, ' ', wlen - len); | 
|  | } | 
|  |  | 
|  | /* Scan the source string looking for '\n' and convert it if found.  */ | 
|  | qq = (gfc_char4_t *) source; | 
|  | for (size_t i = 0; i < wlen; i++) | 
|  | { | 
|  | if (qq[i] == '\n') | 
|  | { | 
|  | /* Write out the previously scanned characters in the string.  */ | 
|  | if (bytes > 0) | 
|  | { | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_utf8_char4 (dtp, q, bytes, 0); | 
|  | else | 
|  | write_default_char4 (dtp, q, bytes, 0); | 
|  | bytes = 0; | 
|  | } | 
|  |  | 
|  | /* Write out the CR_LF sequence.  */ | 
|  | write_default_char4 (dtp, crlf, 2, 0); | 
|  | } | 
|  | else | 
|  | bytes++; | 
|  | } | 
|  |  | 
|  | /*  Write out any remaining bytes if no LF was found.  */ | 
|  | if (bytes > 0) | 
|  | { | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_utf8_char4 (dtp, q, bytes, 0); | 
|  | else | 
|  | write_default_char4 (dtp, q, bytes, 0); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | #endif | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_utf8_char4 (dtp, q, len, wlen); | 
|  | else | 
|  | write_default_char4 (dtp, q, len, wlen); | 
|  | #ifdef HAVE_CRLF | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | static GFC_INTEGER_LARGEST | 
|  | extract_int (const void *p, int len) | 
|  | { | 
|  | GFC_INTEGER_LARGEST i = 0; | 
|  |  | 
|  | if (p == NULL) | 
|  | return i; | 
|  |  | 
|  | switch (len) | 
|  | { | 
|  | case 1: | 
|  | { | 
|  | GFC_INTEGER_1 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = tmp; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | { | 
|  | GFC_INTEGER_2 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = tmp; | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | { | 
|  | GFC_INTEGER_4 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = tmp; | 
|  | } | 
|  | break; | 
|  | case 8: | 
|  | { | 
|  | GFC_INTEGER_8 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = tmp; | 
|  | } | 
|  | break; | 
|  | #ifdef HAVE_GFC_INTEGER_16 | 
|  | case 16: | 
|  | { | 
|  | GFC_INTEGER_16 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = tmp; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | internal_error (NULL, "bad integer kind"); | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static GFC_UINTEGER_LARGEST | 
|  | extract_uint (const void *p, int len) | 
|  | { | 
|  | GFC_UINTEGER_LARGEST i = 0; | 
|  |  | 
|  | if (p == NULL) | 
|  | return i; | 
|  |  | 
|  | switch (len) | 
|  | { | 
|  | case 1: | 
|  | { | 
|  | GFC_INTEGER_1 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = (GFC_UINTEGER_1) tmp; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | { | 
|  | GFC_INTEGER_2 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = (GFC_UINTEGER_2) tmp; | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | { | 
|  | GFC_INTEGER_4 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = (GFC_UINTEGER_4) tmp; | 
|  | } | 
|  | break; | 
|  | case 8: | 
|  | { | 
|  | GFC_INTEGER_8 tmp; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = (GFC_UINTEGER_8) tmp; | 
|  | } | 
|  | break; | 
|  | #ifdef HAVE_GFC_INTEGER_16 | 
|  | case 10: | 
|  | case 16: | 
|  | { | 
|  | GFC_INTEGER_16 tmp = 0; | 
|  | memcpy ((void *) &tmp, p, len); | 
|  | i = (GFC_UINTEGER_16) tmp; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | internal_error (NULL, "bad integer kind"); | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len) | 
|  | { | 
|  | char *p; | 
|  | int wlen; | 
|  | GFC_INTEGER_LARGEST n; | 
|  |  | 
|  | wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w; | 
|  |  | 
|  | p = write_block (dtp, wlen); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | n = extract_int (source, len); | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (p4, ' ', wlen -1); | 
|  | p4[wlen - 1] = (n) ? 'T' : 'F'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset (p, ' ', wlen -1); | 
|  | p[wlen - 1] = (n) ? 'T' : 'F'; | 
|  | } | 
|  |  | 
|  | static void | 
|  | write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n, int len) | 
|  | { | 
|  | int w, m, digits, nzero, nblank; | 
|  | char *p; | 
|  |  | 
|  | w = f->u.integer.w; | 
|  | m = f->u.integer.m; | 
|  |  | 
|  | /* Special case:  */ | 
|  |  | 
|  | if (m == 0 && n == 0) | 
|  | { | 
|  | if (w == 0) | 
|  | w = 1; | 
|  |  | 
|  | p = write_block (dtp, w); | 
|  | if (p == NULL) | 
|  | return; | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (p4, ' ', w); | 
|  | } | 
|  | else | 
|  | memset (p, ' ', w); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | digits = strlen (q); | 
|  |  | 
|  | /* Select a width if none was specified.  The idea here is to always | 
|  | print something.  */ | 
|  |  | 
|  | if (w == DEFAULT_WIDTH) | 
|  | w = default_width_for_integer (len); | 
|  |  | 
|  | if (w == 0) | 
|  | w = ((digits < m) ? m : digits); | 
|  |  | 
|  | p = write_block (dtp, w); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | nzero = 0; | 
|  | if (digits < m) | 
|  | nzero = m - digits; | 
|  |  | 
|  | /* See if things will work.  */ | 
|  |  | 
|  | nblank = w - (nzero + digits); | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | if (nblank < 0) | 
|  | { | 
|  | memset4 (p4, '*', w); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!dtp->u.p.no_leading_blank) | 
|  | { | 
|  | memset4 (p4, ' ', nblank); | 
|  | q += nblank; | 
|  | memset4 (p4, '0', nzero); | 
|  | q += nzero; | 
|  | memcpy4 (p4, q, digits); | 
|  | } | 
|  | else | 
|  | { | 
|  | memset4 (p4, '0', nzero); | 
|  | q += nzero; | 
|  | memcpy4 (p4, q, digits); | 
|  | q += digits; | 
|  | memset4 (p4, ' ', nblank); | 
|  | dtp->u.p.no_leading_blank = 0; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (nblank < 0) | 
|  | { | 
|  | star_fill (p, w); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!dtp->u.p.no_leading_blank) | 
|  | { | 
|  | memset (p, ' ', nblank); | 
|  | p += nblank; | 
|  | memset (p, '0', nzero); | 
|  | p += nzero; | 
|  | memcpy (p, q, digits); | 
|  | } | 
|  | else | 
|  | { | 
|  | memset (p, '0', nzero); | 
|  | p += nzero; | 
|  | memcpy (p, q, digits); | 
|  | p += digits; | 
|  | memset (p, ' ', nblank); | 
|  | dtp->u.p.no_leading_blank = 0; | 
|  | } | 
|  |  | 
|  | done: | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void | 
|  | write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source, | 
|  | int len) | 
|  | { | 
|  | GFC_INTEGER_LARGEST n = 0; | 
|  | GFC_UINTEGER_LARGEST absn; | 
|  | int w, m, digits, nsign, nzero, nblank; | 
|  | char *p; | 
|  | const char *q; | 
|  | sign_t sign; | 
|  | char itoa_buf[GFC_BTOA_BUF_SIZE]; | 
|  |  | 
|  | w = f->u.integer.w; | 
|  | m = f->format == FMT_G ? -1 : f->u.integer.m; | 
|  |  | 
|  | n = extract_int (source, len); | 
|  |  | 
|  | /* Special case:  */ | 
|  | if (m == 0 && n == 0) | 
|  | { | 
|  | if (w == 0) | 
|  | w = 1; | 
|  |  | 
|  | p = write_block (dtp, w); | 
|  | if (p == NULL) | 
|  | return; | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (p4, ' ', w); | 
|  | } | 
|  | else | 
|  | memset (p, ' ', w); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | sign = calculate_sign (dtp, n < 0); | 
|  | if (n < 0) | 
|  | /* Use unsigned to protect from overflow. */ | 
|  | absn = -(GFC_UINTEGER_LARGEST) n; | 
|  | else | 
|  | absn = n; | 
|  | nsign = sign == S_NONE ? 0 : 1; | 
|  |  | 
|  | /* gfc_itoa() converts the nonnegative value to decimal representation.  */ | 
|  | q = gfc_itoa (absn, itoa_buf, sizeof (itoa_buf)); | 
|  | digits = strlen (q); | 
|  |  | 
|  | /* Select a width if none was specified.  The idea here is to always | 
|  | print something.  */ | 
|  | if (w == DEFAULT_WIDTH) | 
|  | w = default_width_for_integer (len); | 
|  |  | 
|  | if (w == 0) | 
|  | w = ((digits < m) ? m : digits) + nsign; | 
|  |  | 
|  | p = write_block (dtp, w); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | nzero = 0; | 
|  | if (digits < m) | 
|  | nzero = m - digits; | 
|  |  | 
|  | /* See if things will work.  */ | 
|  |  | 
|  | nblank = w - (nsign + nzero + digits); | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *)p; | 
|  | if (nblank < 0) | 
|  | { | 
|  | memset4 (p4, '*', w); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!dtp->u.p.namelist_mode) | 
|  | { | 
|  | memset4 (p4, ' ', nblank); | 
|  | p4 += nblank; | 
|  | } | 
|  |  | 
|  | switch (sign) | 
|  | { | 
|  | case S_PLUS: | 
|  | *p4++ = '+'; | 
|  | break; | 
|  | case S_MINUS: | 
|  | *p4++ = '-'; | 
|  | break; | 
|  | case S_NONE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | memset4 (p4, '0', nzero); | 
|  | p4 += nzero; | 
|  |  | 
|  | memcpy4 (p4, q, digits); | 
|  | return; | 
|  |  | 
|  | if (dtp->u.p.namelist_mode) | 
|  | { | 
|  | p4 += digits; | 
|  | memset4 (p4, ' ', nblank); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nblank < 0) | 
|  | { | 
|  | star_fill (p, w); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!dtp->u.p.namelist_mode) | 
|  | { | 
|  | memset (p, ' ', nblank); | 
|  | p += nblank; | 
|  | } | 
|  |  | 
|  | switch (sign) | 
|  | { | 
|  | case S_PLUS: | 
|  | *p++ = '+'; | 
|  | break; | 
|  | case S_MINUS: | 
|  | *p++ = '-'; | 
|  | break; | 
|  | case S_NONE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | memset (p, '0', nzero); | 
|  | p += nzero; | 
|  |  | 
|  | memcpy (p, q, digits); | 
|  |  | 
|  | if (dtp->u.p.namelist_mode) | 
|  | { | 
|  | p += digits; | 
|  | memset (p, ' ', nblank); | 
|  | } | 
|  |  | 
|  | done: | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert hexadecimal to ASCII.  */ | 
|  |  | 
|  | static const char * | 
|  | xtoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len) | 
|  | { | 
|  | int digit; | 
|  | char *p; | 
|  |  | 
|  | assert (len >= GFC_XTOA_BUF_SIZE); | 
|  |  | 
|  | if (n == 0) | 
|  | return "0"; | 
|  |  | 
|  | p = buffer + GFC_XTOA_BUF_SIZE - 1; | 
|  | *p = '\0'; | 
|  |  | 
|  | while (n != 0) | 
|  | { | 
|  | digit = n & 0xF; | 
|  | if (digit > 9) | 
|  | digit += 'A' - '0' - 10; | 
|  |  | 
|  | *--p = '0' + digit; | 
|  | n >>= 4; | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert unsigned octal to ASCII.  */ | 
|  |  | 
|  | static const char * | 
|  | otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | assert (len >= GFC_OTOA_BUF_SIZE); | 
|  |  | 
|  | if (n == 0) | 
|  | return "0"; | 
|  |  | 
|  | p = buffer + GFC_OTOA_BUF_SIZE - 1; | 
|  | *p = '\0'; | 
|  |  | 
|  | while (n != 0) | 
|  | { | 
|  | *--p = '0' + (n & 7); | 
|  | n >>= 3; | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert unsigned binary to ASCII.  */ | 
|  |  | 
|  | static const char * | 
|  | btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | assert (len >= GFC_BTOA_BUF_SIZE); | 
|  |  | 
|  | if (n == 0) | 
|  | return "0"; | 
|  |  | 
|  | p = buffer + GFC_BTOA_BUF_SIZE - 1; | 
|  | *p = '\0'; | 
|  |  | 
|  | while (n != 0) | 
|  | { | 
|  | *--p = '0' + (n & 1); | 
|  | n >>= 1; | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* The following three functions, btoa_big, otoa_big, and xtoa_big, are needed | 
|  | to convert large reals with kind sizes that exceed the largest integer type | 
|  | available on certain platforms.  In these cases, byte by byte conversion is | 
|  | performed. Endianess is taken into account.  */ | 
|  |  | 
|  | /* Conversion to binary.  */ | 
|  |  | 
|  | static const char * | 
|  | btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) | 
|  | { | 
|  | char *q; | 
|  | int i, j; | 
|  |  | 
|  | q = buffer; | 
|  | if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) | 
|  | { | 
|  | const char *p = s; | 
|  | for (i = 0; i < len; i++) | 
|  | { | 
|  | char c = *p; | 
|  |  | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | for (j = 0; j < 8; j++) | 
|  | { | 
|  | *q++ = (c & 128) ? '1' : '0'; | 
|  | c <<= 1; | 
|  | } | 
|  | p++; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *p = s + len - 1; | 
|  | for (i = 0; i < len; i++) | 
|  | { | 
|  | char c = *p; | 
|  |  | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | for (j = 0; j < 8; j++) | 
|  | { | 
|  | *q++ = (c & 128) ? '1' : '0'; | 
|  | c <<= 1; | 
|  | } | 
|  | p--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*n == 0) | 
|  | return "0"; | 
|  |  | 
|  | /* Move past any leading zeros.  */ | 
|  | while (*buffer == '0') | 
|  | buffer++; | 
|  |  | 
|  | return buffer; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Conversion to octal.  */ | 
|  |  | 
|  | static const char * | 
|  | otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) | 
|  | { | 
|  | char *q; | 
|  | int i, j, k; | 
|  | uint8_t octet; | 
|  |  | 
|  | q = buffer + GFC_OTOA_BUF_SIZE - 1; | 
|  | *q = '\0'; | 
|  | i = k = octet = 0; | 
|  |  | 
|  | if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) | 
|  | { | 
|  | const char *p = s + len - 1; | 
|  | char c = *p; | 
|  | while (i < len) | 
|  | { | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | for (j = 0; j < 3 && i < len; j++) | 
|  | { | 
|  | octet |= (c & 1) << j; | 
|  | c >>= 1; | 
|  | if (++k > 7) | 
|  | { | 
|  | i++; | 
|  | k = 0; | 
|  | c = *--p; | 
|  | } | 
|  | } | 
|  | *--q = '0' + octet; | 
|  | octet = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *p = s; | 
|  | char c = *p; | 
|  | while (i < len) | 
|  | { | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | for (j = 0; j < 3 && i < len; j++) | 
|  | { | 
|  | octet |= (c & 1) << j; | 
|  | c >>= 1; | 
|  | if (++k > 7) | 
|  | { | 
|  | i++; | 
|  | k = 0; | 
|  | c = *++p; | 
|  | } | 
|  | } | 
|  | *--q = '0' + octet; | 
|  | octet = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*n == 0) | 
|  | return "0"; | 
|  |  | 
|  | /* Move past any leading zeros.  */ | 
|  | while (*q == '0') | 
|  | q++; | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | /* Conversion to hexadecimal.  */ | 
|  |  | 
|  | static const char * | 
|  | xtoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) | 
|  | { | 
|  | static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7', | 
|  | '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; | 
|  |  | 
|  | char *q; | 
|  | uint8_t h, l; | 
|  | int i; | 
|  |  | 
|  | q = buffer; | 
|  |  | 
|  | if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) | 
|  | { | 
|  | const char *p = s; | 
|  | for (i = 0; i < len; i++) | 
|  | { | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | h = (*p >> 4) & 0x0F; | 
|  | l = *p++ & 0x0F; | 
|  | *q++ = a[h]; | 
|  | *q++ = a[l]; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *p = s + len - 1; | 
|  | for (i = 0; i < len; i++) | 
|  | { | 
|  | /* Test for zero. Needed by write_boz later.  */ | 
|  | if (*p != 0) | 
|  | *n = 1; | 
|  |  | 
|  | h = (*p >> 4) & 0x0F; | 
|  | l = *p-- & 0x0F; | 
|  | *q++ = a[h]; | 
|  | *q++ = a[l]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write_z, which calls xtoa_big, is called from transfer.c, | 
|  | formatted_transfer_scalar_write.  There it is passed the kind as | 
|  | argument, which means a maximum of 16.  The buffer is large | 
|  | enough, but the compiler does not know that, so shut up the | 
|  | warning here.  */ | 
|  | #pragma GCC diagnostic push | 
|  | #pragma GCC diagnostic ignored "-Wstringop-overflow" | 
|  | *q = '\0'; | 
|  | #pragma GCC diagnostic pop | 
|  |  | 
|  | if (*n == 0) | 
|  | return "0"; | 
|  |  | 
|  | /* Move past any leading zeros.  */ | 
|  | while (*buffer == '0') | 
|  | buffer++; | 
|  |  | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_decimal (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len) | 
|  | { | 
|  | const char *p; | 
|  | char itoa_buf[GFC_BTOA_BUF_SIZE]; | 
|  | GFC_UINTEGER_LARGEST n = 0; | 
|  |  | 
|  | /* Ensure we end up with a null terminated string.  */ | 
|  | memset(itoa_buf, '\0', GFC_BTOA_BUF_SIZE); | 
|  |  | 
|  | if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) | 
|  | { | 
|  | p = btoa_big (source, itoa_buf, len, &n); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | else | 
|  | { | 
|  | n = extract_uint (source, len); | 
|  | p = btoa (n, itoa_buf, sizeof (itoa_buf)); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len) | 
|  | { | 
|  | const char *p; | 
|  | char itoa_buf[GFC_OTOA_BUF_SIZE]; | 
|  | GFC_UINTEGER_LARGEST n = 0; | 
|  |  | 
|  | if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) | 
|  | { | 
|  | p = otoa_big (source, itoa_buf, len, &n); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | else | 
|  | { | 
|  | n = extract_uint (source, len); | 
|  | p = otoa (n, itoa_buf, sizeof (itoa_buf)); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len) | 
|  | { | 
|  | const char *p; | 
|  | char itoa_buf[GFC_XTOA_BUF_SIZE]; | 
|  | GFC_UINTEGER_LARGEST n = 0; | 
|  |  | 
|  | if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) | 
|  | { | 
|  | p = xtoa_big (source, itoa_buf, len, &n); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | else | 
|  | { | 
|  | n = extract_uint (source, len); | 
|  | p = xtoa (n, itoa_buf, sizeof (itoa_buf)); | 
|  | write_boz (dtp, f, p, n, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Take care of the X/TR descriptor.  */ | 
|  |  | 
|  | void | 
|  | write_x (st_parameter_dt *dtp, int len, int nspaces) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | p = write_block (dtp, len); | 
|  | if (p == NULL) | 
|  | return; | 
|  | if (nspaces > 0 && len - nspaces >= 0) | 
|  | { | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (&p4[len - nspaces], ' ', nspaces); | 
|  | } | 
|  | else | 
|  | memset (&p[len - nspaces], ' ', nspaces); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* List-directed writing.  */ | 
|  |  | 
|  |  | 
|  | /* Write a single character to the output.  Returns nonzero if | 
|  | something goes wrong.  */ | 
|  |  | 
|  | static int | 
|  | write_char (st_parameter_dt *dtp, int c) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | p = write_block (dtp, 1); | 
|  | if (p == NULL) | 
|  | return 1; | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | *p4 = c; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *p = (uchar) c; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write a list-directed logical value.  */ | 
|  |  | 
|  | static void | 
|  | write_logical (st_parameter_dt *dtp, const char *source, int length) | 
|  | { | 
|  | write_char (dtp, extract_int (source, length) ? 'T' : 'F'); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write a list-directed integer value.  */ | 
|  |  | 
|  | static void | 
|  | write_integer (st_parameter_dt *dtp, const char *source, int kind) | 
|  | { | 
|  | int width; | 
|  | fnode f; | 
|  |  | 
|  | switch (kind) | 
|  | { | 
|  | case 1: | 
|  | width = 4; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | width = 6; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | width = 11; | 
|  | break; | 
|  |  | 
|  | case 8: | 
|  | width = 20; | 
|  | break; | 
|  |  | 
|  | case 16: | 
|  | width = 40; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | width = 0; | 
|  | break; | 
|  | } | 
|  | f.u.integer.w = width; | 
|  | f.u.integer.m = -1; | 
|  | f.format = FMT_NONE; | 
|  | write_decimal (dtp, &f, source, kind); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write a list-directed string.  We have to worry about delimiting | 
|  | the strings if the file has been opened in that mode.  */ | 
|  |  | 
|  | #define DELIM 1 | 
|  | #define NODELIM 0 | 
|  |  | 
|  | static void | 
|  | write_character (st_parameter_dt *dtp, const char *source, int kind, size_t length, int mode) | 
|  | { | 
|  | size_t extra; | 
|  | char *p, d; | 
|  |  | 
|  | if (mode == DELIM) | 
|  | { | 
|  | switch (dtp->u.p.current_unit->delim_status) | 
|  | { | 
|  | case DELIM_APOSTROPHE: | 
|  | d = '\''; | 
|  | break; | 
|  | case DELIM_QUOTE: | 
|  | d = '"'; | 
|  | break; | 
|  | default: | 
|  | d = ' '; | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | d = ' '; | 
|  |  | 
|  | if (kind == 1) | 
|  | { | 
|  | if (d == ' ') | 
|  | extra = 0; | 
|  | else | 
|  | { | 
|  | extra = 2; | 
|  |  | 
|  | for (size_t i = 0; i < length; i++) | 
|  | if (source[i] == d) | 
|  | extra++; | 
|  | } | 
|  |  | 
|  | p = write_block (dtp, length + extra); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t d4 = (gfc_char4_t) d; | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  |  | 
|  | if (d4 == ' ') | 
|  | memcpy4 (p4, source, length); | 
|  | else | 
|  | { | 
|  | *p4++ = d4; | 
|  |  | 
|  | for (size_t i = 0; i < length; i++) | 
|  | { | 
|  | *p4++ = (gfc_char4_t) source[i]; | 
|  | if (source[i] == d) | 
|  | *p4++ = d4; | 
|  | } | 
|  |  | 
|  | *p4 = d4; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (d == ' ') | 
|  | memcpy (p, source, length); | 
|  | else | 
|  | { | 
|  | *p++ = d; | 
|  |  | 
|  | for (size_t i = 0; i < length; i++) | 
|  | { | 
|  | *p++ = source[i]; | 
|  | if (source[i] == d) | 
|  | *p++ = d; | 
|  | } | 
|  |  | 
|  | *p = d; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (d == ' ') | 
|  | { | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0); | 
|  | else | 
|  | write_default_char4 (dtp, (gfc_char4_t *) source, length, 0); | 
|  | } | 
|  | else | 
|  | { | 
|  | p = write_block (dtp, 1); | 
|  | *p = d; | 
|  |  | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0); | 
|  | else | 
|  | write_default_char4 (dtp, (gfc_char4_t *) source, length, 0); | 
|  |  | 
|  | p = write_block (dtp, 1); | 
|  | *p = d; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Floating point helper functions.  */ | 
|  |  | 
|  | #define BUF_STACK_SZ 384 | 
|  |  | 
|  | static int | 
|  | get_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int kind) | 
|  | { | 
|  | if (f->format != FMT_EN) | 
|  | return determine_precision (dtp, f, kind); | 
|  | else | 
|  | return determine_en_precision (dtp, f, source, kind); | 
|  | } | 
|  |  | 
|  | /* 4932 is the maximum exponent of long double and quad precision, 3 | 
|  | extra characters for the sign, the decimal point, and the | 
|  | trailing null.  Extra digits are added by the calling functions for | 
|  | requested precision. Likewise for float and double.  F0 editing produces | 
|  | full precision output.  */ | 
|  | static int | 
|  | size_from_kind (st_parameter_dt *dtp, const fnode *f, int kind) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | if ((f->format == FMT_F && f->u.real.w == 0) || f->u.real.w == DEFAULT_WIDTH) | 
|  | { | 
|  | switch (kind) | 
|  | { | 
|  | case 4: | 
|  | size = 38 + 3; /* These constants shown for clarity.  */ | 
|  | break; | 
|  | case 8: | 
|  | size = 308 + 3; | 
|  | break; | 
|  | case 10: | 
|  | size = 4932 + 3; | 
|  | break; | 
|  | case 16: | 
|  | size = 4932 + 3; | 
|  | break; | 
|  | default: | 
|  | internal_error (&dtp->common, "bad real kind"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | size = f->u.real.w + 1; /* One byte for a NULL character.  */ | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static char * | 
|  | select_buffer (st_parameter_dt *dtp, const fnode *f, int precision, | 
|  | char *buf, size_t *size, int kind) | 
|  | { | 
|  | char *result; | 
|  |  | 
|  | /* The buffer needs at least one more byte to allow room for | 
|  | normalizing and 1 to hold null terminator.  */ | 
|  | *size = size_from_kind (dtp, f, kind) + precision + 1 + 1; | 
|  |  | 
|  | if (*size > BUF_STACK_SZ) | 
|  | result = xmalloc (*size); | 
|  | else | 
|  | result = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static char * | 
|  | select_string (st_parameter_dt *dtp, const fnode *f, char *buf, size_t *size, | 
|  | int kind) | 
|  | { | 
|  | char *result; | 
|  | *size = size_from_kind (dtp, f, kind) + f->u.real.d + 1; | 
|  | if (*size > BUF_STACK_SZ) | 
|  | result = xmalloc (*size); | 
|  | else | 
|  | result = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void | 
|  | write_float_string (st_parameter_dt *dtp, char *fstr, size_t len) | 
|  | { | 
|  | char *p = write_block (dtp, len); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memcpy4 (p4, fstr, len); | 
|  | return; | 
|  | } | 
|  | memcpy (p, fstr, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | write_float_0 (st_parameter_dt *dtp, const fnode *f, const char *source, int kind) | 
|  | { | 
|  | char buf_stack[BUF_STACK_SZ]; | 
|  | char str_buf[BUF_STACK_SZ]; | 
|  | char *buffer, *result; | 
|  | size_t buf_size, res_len, flt_str_len; | 
|  |  | 
|  | /* Precision for snprintf call.  */ | 
|  | int precision = get_precision (dtp, f, source, kind); | 
|  |  | 
|  | /* String buffer to hold final result.  */ | 
|  | result = select_string (dtp, f, str_buf, &res_len, kind); | 
|  |  | 
|  | buffer = select_buffer (dtp, f, precision, buf_stack, &buf_size, kind); | 
|  |  | 
|  | get_float_string (dtp, f, source , kind, 0, buffer, | 
|  | precision, buf_size, result, &flt_str_len); | 
|  | write_float_string (dtp, result, flt_str_len); | 
|  |  | 
|  | if (buf_size > BUF_STACK_SZ) | 
|  | free (buffer); | 
|  | if (res_len > BUF_STACK_SZ) | 
|  | free (result); | 
|  | } | 
|  |  | 
|  | void | 
|  | write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_float_0 (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_float_0 (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_float_0 (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_float_0 (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len) | 
|  | { | 
|  | write_float_0 (dtp, f, p, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set an fnode to default format.  */ | 
|  |  | 
|  | static void | 
|  | set_fnode_default (st_parameter_dt *dtp, fnode *f, int length) | 
|  | { | 
|  | f->format = FMT_G; | 
|  | switch (length) | 
|  | { | 
|  | case 4: | 
|  | f->u.real.w = 16; | 
|  | f->u.real.d = 9; | 
|  | f->u.real.e = 2; | 
|  | break; | 
|  | case 8: | 
|  | f->u.real.w = 25; | 
|  | f->u.real.d = 17; | 
|  | f->u.real.e = 3; | 
|  | break; | 
|  | case 10: | 
|  | f->u.real.w = 30; | 
|  | f->u.real.d = 21; | 
|  | f->u.real.e = 4; | 
|  | break; | 
|  | case 16: | 
|  | /* Adjust decimal precision depending on binary precision, 106 or 113.  */ | 
|  | #if GFC_REAL_16_DIGITS == 113 | 
|  | f->u.real.w = 45; | 
|  | f->u.real.d = 36; | 
|  | f->u.real.e = 4; | 
|  | #else | 
|  | f->u.real.w = 41; | 
|  | f->u.real.d = 32; | 
|  | f->u.real.e = 4; | 
|  | #endif | 
|  | break; | 
|  | default: | 
|  | internal_error (&dtp->common, "bad real kind"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Output a real number with default format. | 
|  | To guarantee that a binary -> decimal -> binary roundtrip conversion | 
|  | recovers the original value, IEEE 754-2008 requires 9, 17, 21 and 36 | 
|  | significant digits for REAL kinds 4, 8, 10, and 16, respectively. | 
|  | Thus, we use 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4 | 
|  | for REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the | 
|  | Fortran standard requires outputting an extra digit when the scale | 
|  | factor is 1 and when the magnitude of the value is such that E | 
|  | editing is used. However, gfortran compensates for this, and thus | 
|  | for list formatted the same number of significant digits is | 
|  | generated both when using F and E editing.  */ | 
|  |  | 
|  | void | 
|  | write_real (st_parameter_dt *dtp, const char *source, int kind) | 
|  | { | 
|  | fnode f ; | 
|  | char buf_stack[BUF_STACK_SZ]; | 
|  | char str_buf[BUF_STACK_SZ]; | 
|  | char *buffer, *result; | 
|  | size_t buf_size, res_len, flt_str_len; | 
|  | int orig_scale = dtp->u.p.scale_factor; | 
|  | dtp->u.p.scale_factor = 1; | 
|  | set_fnode_default (dtp, &f, kind); | 
|  |  | 
|  | /* Precision for snprintf call.  */ | 
|  | int precision = get_precision (dtp, &f, source, kind); | 
|  |  | 
|  | /* String buffer to hold final result.  */ | 
|  | result = select_string (dtp, &f, str_buf, &res_len, kind); | 
|  |  | 
|  | /* Scratch buffer to hold final result.  */ | 
|  | buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind); | 
|  |  | 
|  | get_float_string (dtp, &f, source , kind, 1, buffer, | 
|  | precision, buf_size, result, &flt_str_len); | 
|  | write_float_string (dtp, result, flt_str_len); | 
|  |  | 
|  | dtp->u.p.scale_factor = orig_scale; | 
|  | if (buf_size > BUF_STACK_SZ) | 
|  | free (buffer); | 
|  | if (res_len > BUF_STACK_SZ) | 
|  | free (result); | 
|  | } | 
|  |  | 
|  | /* Similar to list formatted REAL output, for kPG0 where k > 0 we | 
|  | compensate for the extra digit.  */ | 
|  |  | 
|  | void | 
|  | write_real_w0 (st_parameter_dt *dtp, const char *source, int kind, | 
|  | const fnode* f) | 
|  | { | 
|  | fnode ff; | 
|  | char buf_stack[BUF_STACK_SZ]; | 
|  | char str_buf[BUF_STACK_SZ]; | 
|  | char *buffer, *result; | 
|  | size_t buf_size, res_len, flt_str_len; | 
|  | int comp_d = 0; | 
|  |  | 
|  | set_fnode_default (dtp, &ff, kind); | 
|  |  | 
|  | if (f->u.real.d > 0) | 
|  | ff.u.real.d = f->u.real.d; | 
|  | ff.format = f->format; | 
|  |  | 
|  | /* For FMT_G, Compensate for extra digits when using scale factor, d | 
|  | is not specified, and the magnitude is such that E editing | 
|  | is used.  */ | 
|  | if (f->format == FMT_G) | 
|  | { | 
|  | if (dtp->u.p.scale_factor > 0 && f->u.real.d == 0) | 
|  | comp_d = 1; | 
|  | else | 
|  | comp_d = 0; | 
|  | } | 
|  |  | 
|  | if (f->u.real.e >= 0) | 
|  | ff.u.real.e = f->u.real.e; | 
|  |  | 
|  | dtp->u.p.g0_no_blanks = 1; | 
|  |  | 
|  | /* Precision for snprintf call.  */ | 
|  | int precision = get_precision (dtp, &ff, source, kind); | 
|  |  | 
|  | /* String buffer to hold final result.  */ | 
|  | result = select_string (dtp, &ff, str_buf, &res_len, kind); | 
|  |  | 
|  | buffer = select_buffer (dtp, &ff, precision, buf_stack, &buf_size, kind); | 
|  |  | 
|  | get_float_string (dtp, &ff, source , kind, comp_d, buffer, | 
|  | precision, buf_size, result, &flt_str_len); | 
|  | write_float_string (dtp, result, flt_str_len); | 
|  |  | 
|  | dtp->u.p.g0_no_blanks = 0; | 
|  | if (buf_size > BUF_STACK_SZ) | 
|  | free (buffer); | 
|  | if (res_len > BUF_STACK_SZ) | 
|  | free (result); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size) | 
|  | { | 
|  | char semi_comma = | 
|  | dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'; | 
|  |  | 
|  | /* Set for no blanks so we get a string result with no leading | 
|  | blanks.  We will pad left later.  */ | 
|  | dtp->u.p.g0_no_blanks = 1; | 
|  |  | 
|  | fnode f ; | 
|  | char buf_stack[BUF_STACK_SZ]; | 
|  | char str1_buf[BUF_STACK_SZ]; | 
|  | char str2_buf[BUF_STACK_SZ]; | 
|  | char *buffer, *result1, *result2; | 
|  | size_t buf_size, res_len1, res_len2, flt_str_len1, flt_str_len2; | 
|  | int width, lblanks, orig_scale = dtp->u.p.scale_factor; | 
|  |  | 
|  | dtp->u.p.scale_factor = 1; | 
|  | set_fnode_default (dtp, &f, kind); | 
|  |  | 
|  | /* Set width for two values, parenthesis, and comma.  */ | 
|  | width = 2 * f.u.real.w + 3; | 
|  |  | 
|  | /* Set for no blanks so we get a string result with no leading | 
|  | blanks.  We will pad left later.  */ | 
|  | dtp->u.p.g0_no_blanks = 1; | 
|  |  | 
|  | /* Precision for snprintf call.  */ | 
|  | int precision = get_precision (dtp, &f, source, kind); | 
|  |  | 
|  | /* String buffers to hold final result.  */ | 
|  | result1 = select_string (dtp, &f, str1_buf, &res_len1, kind); | 
|  | result2 = select_string (dtp, &f, str2_buf, &res_len2, kind); | 
|  |  | 
|  | buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind); | 
|  |  | 
|  | get_float_string (dtp, &f, source , kind, 0, buffer, | 
|  | precision, buf_size, result1, &flt_str_len1); | 
|  | get_float_string (dtp, &f, source + size / 2 , kind, 0, buffer, | 
|  | precision, buf_size, result2, &flt_str_len2); | 
|  | if (!dtp->u.p.namelist_mode) | 
|  | { | 
|  | lblanks = width - flt_str_len1 - flt_str_len2 - 3; | 
|  | write_x (dtp, lblanks, lblanks); | 
|  | } | 
|  | write_char (dtp, '('); | 
|  | write_float_string (dtp, result1, flt_str_len1); | 
|  | write_char (dtp, semi_comma); | 
|  | write_float_string (dtp, result2, flt_str_len2); | 
|  | write_char (dtp, ')'); | 
|  |  | 
|  | dtp->u.p.scale_factor = orig_scale; | 
|  | dtp->u.p.g0_no_blanks = 0; | 
|  | if (buf_size > BUF_STACK_SZ) | 
|  | free (buffer); | 
|  | if (res_len1 > BUF_STACK_SZ) | 
|  | free (result1); | 
|  | if (res_len2 > BUF_STACK_SZ) | 
|  | free (result2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write the separator between items.  */ | 
|  |  | 
|  | static void | 
|  | write_separator (st_parameter_dt *dtp) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | p = write_block (dtp, options.separator_len); | 
|  | if (p == NULL) | 
|  | return; | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memcpy4 (p4, options.separator, options.separator_len); | 
|  | } | 
|  | else | 
|  | memcpy (p, options.separator, options.separator_len); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write an item with list formatting. | 
|  | TODO: handle skipping to the next record correctly, particularly | 
|  | with strings.  */ | 
|  |  | 
|  | static void | 
|  | list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind, | 
|  | size_t size) | 
|  | { | 
|  | if (dtp->u.p.current_unit == NULL) | 
|  | return; | 
|  |  | 
|  | if (dtp->u.p.first_item) | 
|  | { | 
|  | dtp->u.p.first_item = 0; | 
|  | if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN) | 
|  | write_char (dtp, ' '); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (type != BT_CHARACTER || !dtp->u.p.char_flag || | 
|  | (dtp->u.p.current_unit->delim_status != DELIM_NONE | 
|  | && dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED)) | 
|  | write_separator (dtp); | 
|  | } | 
|  |  | 
|  | switch (type) | 
|  | { | 
|  | case BT_INTEGER: | 
|  | write_integer (dtp, p, kind); | 
|  | break; | 
|  | case BT_LOGICAL: | 
|  | write_logical (dtp, p, kind); | 
|  | break; | 
|  | case BT_CHARACTER: | 
|  | write_character (dtp, p, kind, size, DELIM); | 
|  | break; | 
|  | case BT_REAL: | 
|  | write_real (dtp, p, kind); | 
|  | break; | 
|  | case BT_COMPLEX: | 
|  | write_complex (dtp, p, kind, size); | 
|  | break; | 
|  | case BT_CLASS: | 
|  | { | 
|  | int unit = dtp->u.p.current_unit->unit_number; | 
|  | char iotype[] = "LISTDIRECTED"; | 
|  | gfc_charlen_type iotype_len = 12; | 
|  | char tmp_iomsg[IOMSG_LEN] = ""; | 
|  | char *child_iomsg; | 
|  | gfc_charlen_type child_iomsg_len; | 
|  | int noiostat; | 
|  | int *child_iostat = NULL; | 
|  | gfc_full_array_i4 vlist; | 
|  |  | 
|  | GFC_DESCRIPTOR_DATA(&vlist) = NULL; | 
|  | GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0); | 
|  |  | 
|  | /* Set iostat, intent(out).  */ | 
|  | noiostat = 0; | 
|  | child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ? | 
|  | dtp->common.iostat : &noiostat; | 
|  |  | 
|  | /* Set iomsge, intent(inout).  */ | 
|  | if (dtp->common.flags & IOPARM_HAS_IOMSG) | 
|  | { | 
|  | child_iomsg = dtp->common.iomsg; | 
|  | child_iomsg_len = dtp->common.iomsg_len; | 
|  | } | 
|  | else | 
|  | { | 
|  | child_iomsg = tmp_iomsg; | 
|  | child_iomsg_len = IOMSG_LEN; | 
|  | } | 
|  |  | 
|  | /* Call the user defined formatted WRITE procedure.  */ | 
|  | dtp->u.p.current_unit->child_dtio++; | 
|  | dtp->u.p.fdtio_ptr (p, &unit, iotype, &vlist, | 
|  | child_iostat, child_iomsg, | 
|  | iotype_len, child_iomsg_len); | 
|  | dtp->u.p.current_unit->child_dtio--; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | internal_error (&dtp->common, "list_formatted_write(): Bad type"); | 
|  | } | 
|  |  | 
|  | fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING); | 
|  | dtp->u.p.char_flag = (type == BT_CHARACTER); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind, | 
|  | size_t size, size_t nelems) | 
|  | { | 
|  | size_t elem; | 
|  | char *tmp; | 
|  | size_t stride = type == BT_CHARACTER ? | 
|  | size * GFC_SIZE_OF_CHAR_KIND(kind) : size; | 
|  |  | 
|  | tmp = (char *) p; | 
|  |  | 
|  | /* Big loop over all the elements.  */ | 
|  | for (elem = 0; elem < nelems; elem++) | 
|  | { | 
|  | dtp->u.p.item_count++; | 
|  | list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*			NAMELIST OUTPUT | 
|  |  | 
|  | nml_write_obj writes a namelist object to the output stream.  It is called | 
|  | recursively for derived type components: | 
|  | obj    = is the namelist_info for the current object. | 
|  | offset = the offset relative to the address held by the object for | 
|  | derived type arrays. | 
|  | base   = is the namelist_info of the derived type, when obj is a | 
|  | component. | 
|  | base_name = the full name for a derived type, including qualifiers | 
|  | if any. | 
|  | The returned value is a pointer to the object beyond the last one | 
|  | accessed, including nested derived types.  Notice that the namelist is | 
|  | a linear linked list of objects, including derived types and their | 
|  | components.  A tree, of sorts, is implied by the compound names of | 
|  | the derived type components and this is how this function recurses through | 
|  | the list.  */ | 
|  |  | 
|  | /* A generous estimate of the number of characters needed to print | 
|  | repeat counts and indices, including commas, asterices and brackets.  */ | 
|  |  | 
|  | #define NML_DIGITS 20 | 
|  |  | 
|  | static void | 
|  | namelist_write_newline (st_parameter_dt *dtp) | 
|  | { | 
|  | if (!is_internal_unit (dtp)) | 
|  | { | 
|  | #ifdef HAVE_CRLF | 
|  | write_character (dtp, "\r\n", 1, 2, NODELIM); | 
|  | #else | 
|  | write_character (dtp, "\n", 1, 1, NODELIM); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_array_io (dtp)) | 
|  | { | 
|  | gfc_offset record; | 
|  | int finished; | 
|  | char *p; | 
|  | int length = dtp->u.p.current_unit->bytes_left; | 
|  |  | 
|  | p = write_block (dtp, length); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | if (unlikely (is_char4_unit (dtp))) | 
|  | { | 
|  | gfc_char4_t *p4 = (gfc_char4_t *) p; | 
|  | memset4 (p4, ' ', length); | 
|  | } | 
|  | else | 
|  | memset (p, ' ', length); | 
|  |  | 
|  | /* Now that the current record has been padded out, | 
|  | determine where the next record in the array is. */ | 
|  | record = next_array_record (dtp, dtp->u.p.current_unit->ls, | 
|  | &finished); | 
|  | if (finished) | 
|  | dtp->u.p.current_unit->endfile = AT_ENDFILE; | 
|  | else | 
|  | { | 
|  | /* Now seek to this record */ | 
|  | record = record * dtp->u.p.current_unit->recl; | 
|  |  | 
|  | if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0) | 
|  | { | 
|  | generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl; | 
|  | } | 
|  | } | 
|  | else | 
|  | write_character (dtp, " ", 1, 1, NODELIM); | 
|  | } | 
|  |  | 
|  |  | 
|  | static namelist_info * | 
|  | nml_write_obj (st_parameter_dt *dtp, namelist_info *obj, index_type offset, | 
|  | namelist_info *base, char *base_name) | 
|  | { | 
|  | int rep_ctr; | 
|  | int num; | 
|  | int nml_carry; | 
|  | int len; | 
|  | index_type obj_size; | 
|  | index_type nelem; | 
|  | size_t dim_i; | 
|  | size_t clen; | 
|  | index_type elem_ctr; | 
|  | size_t obj_name_len; | 
|  | void *p; | 
|  | char cup; | 
|  | char *obj_name; | 
|  | char *ext_name; | 
|  | char *q; | 
|  | size_t ext_name_len; | 
|  | char rep_buff[NML_DIGITS]; | 
|  | namelist_info *cmp; | 
|  | namelist_info *retval = obj->next; | 
|  | size_t base_name_len; | 
|  | size_t base_var_name_len; | 
|  | size_t tot_len; | 
|  |  | 
|  | /* Set the character to be used to separate values | 
|  | to a comma or semi-colon.  */ | 
|  |  | 
|  | char semi_comma = | 
|  | dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'; | 
|  |  | 
|  | /* Write namelist variable names in upper case. If a derived type, | 
|  | nothing is output.  If a component, base and base_name are set.  */ | 
|  |  | 
|  | if (obj->type != BT_DERIVED || obj->dtio_sub != NULL) | 
|  | { | 
|  | namelist_write_newline (dtp); | 
|  | write_character (dtp, " ", 1, 1, NODELIM); | 
|  |  | 
|  | len = 0; | 
|  | if (base) | 
|  | { | 
|  | len = strlen (base->var_name); | 
|  | base_name_len = strlen (base_name); | 
|  | for (dim_i = 0; dim_i < base_name_len; dim_i++) | 
|  | { | 
|  | cup = safe_toupper (base_name[dim_i]); | 
|  | write_character (dtp, &cup, 1, 1, NODELIM); | 
|  | } | 
|  | } | 
|  | clen = strlen (obj->var_name); | 
|  | for (dim_i = len; dim_i < clen; dim_i++) | 
|  | { | 
|  | cup = safe_toupper (obj->var_name[dim_i]); | 
|  | if (cup == '+') | 
|  | cup = '%'; | 
|  | write_character (dtp, &cup, 1, 1, NODELIM); | 
|  | } | 
|  | write_character (dtp, "=", 1, 1, NODELIM); | 
|  | } | 
|  |  | 
|  | /* Counts the number of data output on a line, including names.  */ | 
|  |  | 
|  | num = 1; | 
|  |  | 
|  | len = obj->len; | 
|  |  | 
|  | switch (obj->type) | 
|  | { | 
|  |  | 
|  | case BT_REAL: | 
|  | obj_size = size_from_real_kind (len); | 
|  | break; | 
|  |  | 
|  | case BT_COMPLEX: | 
|  | obj_size = size_from_complex_kind (len); | 
|  | break; | 
|  |  | 
|  | case BT_CHARACTER: | 
|  | obj_size = obj->string_length; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | obj_size = len; | 
|  | } | 
|  |  | 
|  | if (obj->var_rank) | 
|  | obj_size = obj->size; | 
|  |  | 
|  | /* Set the index vector and count the number of elements.  */ | 
|  |  | 
|  | nelem = 1; | 
|  | for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++) | 
|  | { | 
|  | obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i); | 
|  | nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i); | 
|  | } | 
|  |  | 
|  | /* Main loop to output the data held in the object.  */ | 
|  |  | 
|  | rep_ctr = 1; | 
|  | for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++) | 
|  | { | 
|  |  | 
|  | /* Build the pointer to the data value.  The offset is passed by | 
|  | recursive calls to this function for arrays of derived types. | 
|  | Is NULL otherwise.  */ | 
|  |  | 
|  | p = (void *)(obj->mem_pos + elem_ctr * obj_size); | 
|  | p += offset; | 
|  |  | 
|  | /* Check for repeat counts of intrinsic types.  */ | 
|  |  | 
|  | if ((elem_ctr < (nelem - 1)) && | 
|  | (obj->type != BT_DERIVED) && | 
|  | !memcmp (p, (void *)(p + obj_size ), obj_size )) | 
|  | { | 
|  | rep_ctr++; | 
|  | } | 
|  |  | 
|  | /* Execute a repeated output.  Note the flag no_leading_blank that | 
|  | is used in the functions used to output the intrinsic types.  */ | 
|  |  | 
|  | else | 
|  | { | 
|  | if (rep_ctr > 1) | 
|  | { | 
|  | snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr); | 
|  | write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM); | 
|  | dtp->u.p.no_leading_blank = 1; | 
|  | } | 
|  | num++; | 
|  |  | 
|  | /* Output the data, if an intrinsic type, or recurse into this | 
|  | routine to treat derived types.  */ | 
|  |  | 
|  | switch (obj->type) | 
|  | { | 
|  |  | 
|  | case BT_INTEGER: | 
|  | write_integer (dtp, p, len); | 
|  | break; | 
|  |  | 
|  | case BT_LOGICAL: | 
|  | write_logical (dtp, p, len); | 
|  | break; | 
|  |  | 
|  | case BT_CHARACTER: | 
|  | if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) | 
|  | write_character (dtp, p, 4, obj->string_length, DELIM); | 
|  | else | 
|  | write_character (dtp, p, 1, obj->string_length, DELIM); | 
|  | break; | 
|  |  | 
|  | case BT_REAL: | 
|  | write_real (dtp, p, len); | 
|  | break; | 
|  |  | 
|  | case BT_COMPLEX: | 
|  | dtp->u.p.no_leading_blank = 0; | 
|  | num++; | 
|  | write_complex (dtp, p, len, obj_size); | 
|  | break; | 
|  |  | 
|  | case BT_DERIVED: | 
|  | case BT_CLASS: | 
|  | /* To treat a derived type, we need to build two strings: | 
|  | ext_name = the name, including qualifiers that prepends | 
|  | component names in the output - passed to | 
|  | nml_write_obj. | 
|  | obj_name = the derived type name with no qualifiers but % | 
|  | appended.  This is used to identify the | 
|  | components.  */ | 
|  |  | 
|  | /* First ext_name => get length of all possible components  */ | 
|  | if (obj->dtio_sub != NULL) | 
|  | { | 
|  | int unit = dtp->u.p.current_unit->unit_number; | 
|  | char iotype[] = "NAMELIST"; | 
|  | gfc_charlen_type iotype_len = 8; | 
|  | char tmp_iomsg[IOMSG_LEN] = ""; | 
|  | char *child_iomsg; | 
|  | gfc_charlen_type child_iomsg_len; | 
|  | int noiostat; | 
|  | int *child_iostat = NULL; | 
|  | gfc_full_array_i4 vlist; | 
|  | formatted_dtio dtio_ptr = (formatted_dtio)obj->dtio_sub; | 
|  |  | 
|  | GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0); | 
|  |  | 
|  | /* Set iostat, intent(out).  */ | 
|  | noiostat = 0; | 
|  | child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ? | 
|  | dtp->common.iostat : &noiostat; | 
|  |  | 
|  | /* Set iomsg, intent(inout).  */ | 
|  | if (dtp->common.flags & IOPARM_HAS_IOMSG) | 
|  | { | 
|  | child_iomsg = dtp->common.iomsg; | 
|  | child_iomsg_len = dtp->common.iomsg_len; | 
|  | } | 
|  | else | 
|  | { | 
|  | child_iomsg = tmp_iomsg; | 
|  | child_iomsg_len = IOMSG_LEN; | 
|  | } | 
|  |  | 
|  | /* Call the user defined formatted WRITE procedure.  */ | 
|  | dtp->u.p.current_unit->child_dtio++; | 
|  | if (obj->type == BT_DERIVED) | 
|  | { | 
|  | /* Build a class container.  */ | 
|  | gfc_class list_obj; | 
|  | list_obj.data = p; | 
|  | list_obj.vptr = obj->vtable; | 
|  | list_obj.len = 0; | 
|  | dtio_ptr ((void *)&list_obj, &unit, iotype, &vlist, | 
|  | child_iostat, child_iomsg, | 
|  | iotype_len, child_iomsg_len); | 
|  | } | 
|  | else | 
|  | { | 
|  | dtio_ptr (p, &unit, iotype, &vlist, | 
|  | child_iostat, child_iomsg, | 
|  | iotype_len, child_iomsg_len); | 
|  | } | 
|  | dtp->u.p.current_unit->child_dtio--; | 
|  |  | 
|  | goto obj_loop; | 
|  | } | 
|  |  | 
|  | base_name_len = base_name ? strlen (base_name) : 0; | 
|  | base_var_name_len = base ? strlen (base->var_name) : 0; | 
|  | ext_name_len = base_name_len + base_var_name_len | 
|  | + strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1; | 
|  | ext_name = xmalloc (ext_name_len); | 
|  |  | 
|  | if (base_name) | 
|  | memcpy (ext_name, base_name, base_name_len); | 
|  | clen = strlen (obj->var_name + base_var_name_len); | 
|  | memcpy (ext_name + base_name_len, | 
|  | obj->var_name + base_var_name_len, clen); | 
|  |  | 
|  | /* Append the qualifier.  */ | 
|  |  | 
|  | tot_len = base_name_len + clen; | 
|  | for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++) | 
|  | { | 
|  | if (!dim_i) | 
|  | { | 
|  | ext_name[tot_len] = '('; | 
|  | tot_len++; | 
|  | } | 
|  | snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d", | 
|  | (int) obj->ls[dim_i].idx); | 
|  | tot_len += strlen (ext_name + tot_len); | 
|  | ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ','; | 
|  | tot_len++; | 
|  | } | 
|  |  | 
|  | ext_name[tot_len] = '\0'; | 
|  | for (q = ext_name; *q; q++) | 
|  | if (*q == '+') | 
|  | *q = '%'; | 
|  |  | 
|  | /* Now obj_name.  */ | 
|  |  | 
|  | obj_name_len = strlen (obj->var_name) + 1; | 
|  | obj_name = xmalloc (obj_name_len + 1); | 
|  | memcpy (obj_name, obj->var_name, obj_name_len-1); | 
|  | memcpy (obj_name + obj_name_len-1, "%", 2); | 
|  |  | 
|  | /* Now loop over the components. Update the component pointer | 
|  | with the return value from nml_write_obj => this loop jumps | 
|  | past nested derived types.  */ | 
|  |  | 
|  | for (cmp = obj->next; | 
|  | cmp && !strncmp (cmp->var_name, obj_name, obj_name_len); | 
|  | cmp = retval) | 
|  | { | 
|  | retval = nml_write_obj (dtp, cmp, | 
|  | (index_type)(p - obj->mem_pos), | 
|  | obj, ext_name); | 
|  | } | 
|  |  | 
|  | free (obj_name); | 
|  | free (ext_name); | 
|  | goto obj_loop; | 
|  |  | 
|  | default: | 
|  | internal_error (&dtp->common, "Bad type for namelist write"); | 
|  | } | 
|  |  | 
|  | /* Reset the leading blank suppression, write a comma (or semi-colon) | 
|  | and, if 5 values have been output, write a newline and advance | 
|  | to column 2. Reset the repeat counter.  */ | 
|  |  | 
|  | dtp->u.p.no_leading_blank = 0; | 
|  | if (obj->type == BT_CHARACTER) | 
|  | { | 
|  | if (dtp->u.p.nml_delim != '\0') | 
|  | write_character (dtp, &semi_comma, 1, 1, NODELIM); | 
|  | } | 
|  | else | 
|  | write_character (dtp, &semi_comma, 1, 1, NODELIM); | 
|  | if (num > 5) | 
|  | { | 
|  | num = 0; | 
|  | if (dtp->u.p.nml_delim == '\0') | 
|  | write_character (dtp, &semi_comma, 1, 1, NODELIM); | 
|  | namelist_write_newline (dtp); | 
|  | write_character (dtp, " ", 1, 1, NODELIM); | 
|  | } | 
|  | rep_ctr = 1; | 
|  | } | 
|  |  | 
|  | /* Cycle through and increment the index vector.  */ | 
|  |  | 
|  | obj_loop: | 
|  |  | 
|  | nml_carry = 1; | 
|  | for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++) | 
|  | { | 
|  | obj->ls[dim_i].idx += nml_carry ; | 
|  | nml_carry = 0; | 
|  | if (obj->ls[dim_i].idx  > GFC_DESCRIPTOR_UBOUND(obj,dim_i)) | 
|  | { | 
|  | obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i); | 
|  | nml_carry = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return a pointer beyond the furthest object accessed.  */ | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This is the entry function for namelist writes.  It outputs the name | 
|  | of the namelist and iterates through the namelist by calls to | 
|  | nml_write_obj.  The call below has dummys in the arguments used in | 
|  | the treatment of derived types.  */ | 
|  |  | 
|  | void | 
|  | namelist_write (st_parameter_dt *dtp) | 
|  | { | 
|  | namelist_info *t1, *t2, *dummy = NULL; | 
|  | index_type dummy_offset = 0; | 
|  | char c; | 
|  | char *dummy_name = NULL; | 
|  |  | 
|  | /* Set the delimiter for namelist output.  */ | 
|  | switch (dtp->u.p.current_unit->delim_status) | 
|  | { | 
|  | case DELIM_APOSTROPHE: | 
|  | dtp->u.p.nml_delim = '\''; | 
|  | break; | 
|  | case DELIM_QUOTE: | 
|  | case DELIM_UNSPECIFIED: | 
|  | dtp->u.p.nml_delim = '"'; | 
|  | break; | 
|  | default: | 
|  | dtp->u.p.nml_delim = '\0'; | 
|  | } | 
|  |  | 
|  | write_character (dtp, "&", 1, 1, NODELIM); | 
|  |  | 
|  | /* Write namelist name in upper case - f95 std.  */ | 
|  | for (gfc_charlen_type i = 0; i < dtp->namelist_name_len; i++ ) | 
|  | { | 
|  | c = safe_toupper (dtp->namelist_name[i]); | 
|  | write_character (dtp, &c, 1 ,1, NODELIM); | 
|  | } | 
|  |  | 
|  | if (dtp->u.p.ionml != NULL) | 
|  | { | 
|  | t1 = dtp->u.p.ionml; | 
|  | while (t1 != NULL) | 
|  | { | 
|  | t2 = t1; | 
|  | t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | namelist_write_newline (dtp); | 
|  | write_character (dtp, " /", 1, 2, NODELIM); | 
|  | } | 
|  |  | 
|  | #undef NML_DIGITS |