| /* Specific implementation of the UNPACK intrinsic | 
 |    Copyright (C) 2008-2021 Free Software Foundation, Inc. | 
 |    Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on | 
 |    unpack_generic.c by Paul Brook <paul@nowt.org>. | 
 |  | 
 | This file is part of the GNU Fortran runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Ligbfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 | #include <string.h> | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_REAL_4) | 
 |  | 
 | void | 
 | unpack0_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector, | 
 | 		 const gfc_array_l1 *mask, const GFC_REAL_4 *fptr) | 
 | { | 
 |   /* r.* indicates the return array.  */ | 
 |   index_type rstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type rstride0; | 
 |   index_type rs; | 
 |   GFC_REAL_4 * restrict rptr; | 
 |   /* v.* indicates the vector array.  */ | 
 |   index_type vstride0; | 
 |   GFC_REAL_4 *vptr; | 
 |   /* Value for field, this is constant.  */ | 
 |   const GFC_REAL_4 fval = *fptr; | 
 |   /* m.* indicates the mask array.  */ | 
 |   index_type mstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type mstride0; | 
 |   const GFC_LOGICAL_1 *mptr; | 
 |  | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type n; | 
 |   index_type dim; | 
 |  | 
 |   int empty; | 
 |   int mask_kind; | 
 |  | 
 |   empty = 0; | 
 |  | 
 |   mptr = mask->base_addr; | 
 |  | 
 |   /* Use the same loop for all logical types, by using GFC_LOGICAL_1 | 
 |      and using shifting to address size and endian issues.  */ | 
 |  | 
 |   mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
 |  | 
 |   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || mask_kind == 16 | 
 | #endif | 
 |       ) | 
 |     { | 
 |       /*  Do not convert a NULL pointer as we use test for NULL below.  */ | 
 |       if (mptr) | 
 | 	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); | 
 |     } | 
 |   else | 
 |     runtime_error ("Funny sized logical array"); | 
 |  | 
 |   /* Initialize to avoid -Wmaybe-uninitialized complaints.  */ | 
 |   rstride[0] = 1; | 
 |   if (ret->base_addr == NULL) | 
 |     { | 
 |       /* The front end has signalled that we need to populate the | 
 | 	 return array descriptor.  */ | 
 |       dim = GFC_DESCRIPTOR_RANK (mask); | 
 |       rs = 1; | 
 |       for (n = 0; n < dim; n++) | 
 | 	{ | 
 | 	  count[n] = 0; | 
 | 	  GFC_DIMENSION_SET(ret->dim[n], 0, | 
 | 			    GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); | 
 | 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); | 
 | 	  empty = empty || extent[n] <= 0; | 
 | 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); | 
 | 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 | 	  rs *= extent[n]; | 
 | 	} | 
 |       ret->offset = 0; | 
 |       ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       dim = GFC_DESCRIPTOR_RANK (ret); | 
 |       for (n = 0; n < dim; n++) | 
 | 	{ | 
 | 	  count[n] = 0; | 
 | 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); | 
 | 	  empty = empty || extent[n] <= 0; | 
 | 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); | 
 | 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 | 	} | 
 |       if (rstride[0] == 0) | 
 | 	rstride[0] = 1; | 
 |     } | 
 |  | 
 |   if (empty) | 
 |     return; | 
 |  | 
 |   if (mstride[0] == 0) | 
 |     mstride[0] = 1; | 
 |  | 
 |   vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); | 
 |   if (vstride0 == 0) | 
 |     vstride0 = 1; | 
 |   rstride0 = rstride[0]; | 
 |   mstride0 = mstride[0]; | 
 |   rptr = ret->base_addr; | 
 |   vptr = vector->base_addr; | 
 |  | 
 |   while (rptr) | 
 |     { | 
 |       if (*mptr) | 
 |         { | 
 | 	  /* From vector.  */ | 
 | 	  *rptr = *vptr; | 
 | 	  vptr += vstride0; | 
 |         } | 
 |       else | 
 |         { | 
 | 	  /* From field.  */ | 
 | 	  *rptr = fval; | 
 |         } | 
 |       /* Advance to the next element.  */ | 
 |       rptr += rstride0; | 
 |       mptr += mstride0; | 
 |       count[0]++; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 |         { | 
 |           /* When we get to the end of a dimension, reset it and increment | 
 |              the next dimension.  */ | 
 |           count[n] = 0; | 
 |           /* We could precalculate these products, but this is a less | 
 |              frequently used path so probably not worth it.  */ | 
 |           rptr -= rstride[n] * extent[n]; | 
 |           mptr -= mstride[n] * extent[n]; | 
 |           n++; | 
 |           if (n >= dim) | 
 |             { | 
 |               /* Break out of the loop.  */ | 
 |               rptr = NULL; | 
 |               break; | 
 |             } | 
 |           else | 
 |             { | 
 |               count[n]++; | 
 |               rptr += rstride[n]; | 
 |               mptr += mstride[n]; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | unpack1_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector, | 
 | 		 const gfc_array_l1 *mask, const gfc_array_r4 *field) | 
 | { | 
 |   /* r.* indicates the return array.  */ | 
 |   index_type rstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type rstride0; | 
 |   index_type rs; | 
 |   GFC_REAL_4 * restrict rptr; | 
 |   /* v.* indicates the vector array.  */ | 
 |   index_type vstride0; | 
 |   GFC_REAL_4 *vptr; | 
 |   /* f.* indicates the field array.  */ | 
 |   index_type fstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type fstride0; | 
 |   const GFC_REAL_4 *fptr; | 
 |   /* m.* indicates the mask array.  */ | 
 |   index_type mstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type mstride0; | 
 |   const GFC_LOGICAL_1 *mptr; | 
 |  | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type n; | 
 |   index_type dim; | 
 |  | 
 |   int empty; | 
 |   int mask_kind; | 
 |  | 
 |   empty = 0; | 
 |  | 
 |   mptr = mask->base_addr; | 
 |  | 
 |   /* Use the same loop for all logical types, by using GFC_LOGICAL_1 | 
 |      and using shifting to address size and endian issues.  */ | 
 |  | 
 |   mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
 |  | 
 |   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || mask_kind == 16 | 
 | #endif | 
 |       ) | 
 |     { | 
 |       /*  Do not convert a NULL pointer as we use test for NULL below.  */ | 
 |       if (mptr) | 
 | 	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); | 
 |     } | 
 |   else | 
 |     runtime_error ("Funny sized logical array"); | 
 |  | 
 |   /* Initialize to avoid -Wmaybe-uninitialized complaints.  */ | 
 |   rstride[0] = 1; | 
 |   if (ret->base_addr == NULL) | 
 |     { | 
 |       /* The front end has signalled that we need to populate the | 
 | 	 return array descriptor.  */ | 
 |       dim = GFC_DESCRIPTOR_RANK (mask); | 
 |       rs = 1; | 
 |       for (n = 0; n < dim; n++) | 
 | 	{ | 
 | 	  count[n] = 0; | 
 | 	  GFC_DIMENSION_SET(ret->dim[n], 0, | 
 | 			    GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); | 
 | 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); | 
 | 	  empty = empty || extent[n] <= 0; | 
 | 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); | 
 | 	  fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); | 
 | 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 | 	  rs *= extent[n]; | 
 | 	} | 
 |       ret->offset = 0; | 
 |       ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       dim = GFC_DESCRIPTOR_RANK (ret); | 
 |       for (n = 0; n < dim; n++) | 
 | 	{ | 
 | 	  count[n] = 0; | 
 | 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); | 
 | 	  empty = empty || extent[n] <= 0; | 
 | 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); | 
 | 	  fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); | 
 | 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 | 	} | 
 |       if (rstride[0] == 0) | 
 | 	rstride[0] = 1; | 
 |     } | 
 |  | 
 |   if (empty) | 
 |     return; | 
 |  | 
 |   if (fstride[0] == 0) | 
 |     fstride[0] = 1; | 
 |   if (mstride[0] == 0) | 
 |     mstride[0] = 1; | 
 |  | 
 |   vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); | 
 |   if (vstride0 == 0) | 
 |     vstride0 = 1; | 
 |   rstride0 = rstride[0]; | 
 |   fstride0 = fstride[0]; | 
 |   mstride0 = mstride[0]; | 
 |   rptr = ret->base_addr; | 
 |   fptr = field->base_addr; | 
 |   vptr = vector->base_addr; | 
 |  | 
 |   while (rptr) | 
 |     { | 
 |       if (*mptr) | 
 |         { | 
 |           /* From vector.  */ | 
 | 	  *rptr = *vptr; | 
 |           vptr += vstride0; | 
 |         } | 
 |       else | 
 |         { | 
 |           /* From field.  */ | 
 | 	  *rptr = *fptr; | 
 |         } | 
 |       /* Advance to the next element.  */ | 
 |       rptr += rstride0; | 
 |       fptr += fstride0; | 
 |       mptr += mstride0; | 
 |       count[0]++; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 |         { | 
 |           /* When we get to the end of a dimension, reset it and increment | 
 |              the next dimension.  */ | 
 |           count[n] = 0; | 
 |           /* We could precalculate these products, but this is a less | 
 |              frequently used path so probably not worth it.  */ | 
 |           rptr -= rstride[n] * extent[n]; | 
 |           fptr -= fstride[n] * extent[n]; | 
 |           mptr -= mstride[n] * extent[n]; | 
 |           n++; | 
 |           if (n >= dim) | 
 |             { | 
 |               /* Break out of the loop.  */ | 
 |               rptr = NULL; | 
 |               break; | 
 |             } | 
 |           else | 
 |             { | 
 |               count[n]++; | 
 |               rptr += rstride[n]; | 
 |               fptr += fstride[n]; | 
 |               mptr += mstride[n]; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  |