| /* Implementation of the RESHAPE intrinsic | 
 |    Copyright (C) 2002-2021 Free Software Foundation, Inc. | 
 |    Contributed by Paul Brook <paul@nowt.org> | 
 |  | 
 | This file is part of the GNU Fortran runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Libgfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_REAL_4) | 
 |  | 
 | typedef GFC_FULL_ARRAY_DESCRIPTOR(1, index_type) shape_type; | 
 |  | 
 |  | 
 | extern void reshape_r4 (gfc_array_r4 * const restrict,  | 
 | 	gfc_array_r4 * const restrict,  | 
 | 	shape_type * const restrict, | 
 | 	gfc_array_r4 * const restrict,  | 
 | 	shape_type * const restrict); | 
 | export_proto(reshape_r4); | 
 |  | 
 | void | 
 | reshape_r4 (gfc_array_r4 * const restrict ret,  | 
 | 	gfc_array_r4 * const restrict source,  | 
 | 	shape_type * const restrict shape, | 
 | 	gfc_array_r4 * const restrict pad,  | 
 | 	shape_type * const restrict order) | 
 | { | 
 |   /* r.* indicates the return array.  */ | 
 |   index_type rcount[GFC_MAX_DIMENSIONS]; | 
 |   index_type rextent[GFC_MAX_DIMENSIONS]; | 
 |   index_type rstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type rstride0; | 
 |   index_type rdim; | 
 |   index_type rsize; | 
 |   index_type rs; | 
 |   index_type rex; | 
 |   GFC_REAL_4 *rptr; | 
 |   /* s.* indicates the source array.  */ | 
 |   index_type scount[GFC_MAX_DIMENSIONS]; | 
 |   index_type sextent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride0; | 
 |   index_type sdim; | 
 |   index_type ssize; | 
 |   const GFC_REAL_4 *sptr; | 
 |   /* p.* indicates the pad array.  */ | 
 |   index_type pcount[GFC_MAX_DIMENSIONS]; | 
 |   index_type pextent[GFC_MAX_DIMENSIONS]; | 
 |   index_type pstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type pdim; | 
 |   index_type psize; | 
 |   const GFC_REAL_4 *pptr; | 
 |  | 
 |   const GFC_REAL_4 *src; | 
 |   int sempty, pempty, shape_empty; | 
 |   index_type shape_data[GFC_MAX_DIMENSIONS]; | 
 |  | 
 |   rdim = GFC_DESCRIPTOR_EXTENT(shape,0); | 
 |   /* rdim is always > 0; this lets the compiler optimize more and | 
 |    avoids a potential warning.  */ | 
 |   GFC_ASSERT(rdim>0); | 
 |  | 
 |   if (rdim != GFC_DESCRIPTOR_RANK(ret)) | 
 |     runtime_error("rank of return array incorrect in RESHAPE intrinsic"); | 
 |  | 
 |   shape_empty = 0; | 
 |  | 
 |   for (index_type n = 0; n < rdim; n++) | 
 |     { | 
 |       shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)]; | 
 |       if (shape_data[n] <= 0) | 
 |       { | 
 |         shape_data[n] = 0; | 
 | 	shape_empty = 1; | 
 |       } | 
 |     } | 
 |  | 
 |   if (ret->base_addr == NULL) | 
 |     { | 
 |       index_type alloc_size; | 
 |  | 
 |       rs = 1; | 
 |       for (index_type n = 0; n < rdim; n++) | 
 | 	{ | 
 | 	  rex = shape_data[n]; | 
 |  | 
 | 	  GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs); | 
 |  | 
 | 	  rs *= rex; | 
 | 	} | 
 |       ret->offset = 0; | 
 |  | 
 |       if (unlikely (rs < 1)) | 
 |         alloc_size = 0; | 
 |       else | 
 |         alloc_size = rs; | 
 |  | 
 |       ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_4)); | 
 |       ret->dtype.rank = rdim; | 
 |     } | 
 |  | 
 |   if (shape_empty) | 
 |     return; | 
 |  | 
 |   if (pad) | 
 |     { | 
 |       pdim = GFC_DESCRIPTOR_RANK (pad); | 
 |       psize = 1; | 
 |       pempty = 0; | 
 |       for (index_type n = 0; n < pdim; n++) | 
 |         { | 
 |           pcount[n] = 0; | 
 |           pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n); | 
 |           pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n); | 
 |           if (pextent[n] <= 0) | 
 | 	    { | 
 | 	      pempty = 1; | 
 | 	      pextent[n] = 0; | 
 | 	    } | 
 |  | 
 |           if (psize == pstride[n]) | 
 |             psize *= pextent[n]; | 
 |           else | 
 |             psize = 0; | 
 |         } | 
 |       pptr = pad->base_addr; | 
 |     } | 
 |   else | 
 |     { | 
 |       pdim = 0; | 
 |       psize = 1; | 
 |       pempty = 1; | 
 |       pptr = NULL; | 
 |     } | 
 |  | 
 |   if (unlikely (compile_options.bounds_check)) | 
 |     { | 
 |       index_type ret_extent, source_extent; | 
 |  | 
 |       rs = 1; | 
 |       for (index_type n = 0; n < rdim; n++) | 
 | 	{ | 
 | 	  rs *= shape_data[n]; | 
 | 	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n); | 
 | 	  if (ret_extent != shape_data[n]) | 
 | 	    runtime_error("Incorrect extent in return value of RESHAPE" | 
 | 			  " intrinsic in dimension %ld: is %ld," | 
 | 			  " should be %ld", (long int) n+1, | 
 | 			  (long int) ret_extent, (long int) shape_data[n]); | 
 | 	} | 
 |  | 
 |       source_extent = 1; | 
 |       sdim = GFC_DESCRIPTOR_RANK (source); | 
 |       for (index_type n = 0; n < sdim; n++) | 
 | 	{ | 
 | 	  index_type se; | 
 | 	  se = GFC_DESCRIPTOR_EXTENT(source,n); | 
 | 	  source_extent *= se > 0 ? se : 0; | 
 | 	} | 
 |  | 
 |       if (rs > source_extent && (!pad || pempty)) | 
 | 	runtime_error("Incorrect size in SOURCE argument to RESHAPE" | 
 | 		      " intrinsic: is %ld, should be %ld", | 
 | 		      (long int) source_extent, (long int) rs); | 
 |  | 
 |       if (order) | 
 | 	{ | 
 | 	  int seen[GFC_MAX_DIMENSIONS]; | 
 | 	  index_type v; | 
 |  | 
 | 	  for (index_type n = 0; n < rdim; n++) | 
 | 	    seen[n] = 0; | 
 |  | 
 | 	  for (index_type n = 0; n < rdim; n++) | 
 | 	    { | 
 | 	      v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; | 
 |  | 
 | 	      if (v < 0 || v >= rdim) | 
 | 		runtime_error("Value %ld out of range in ORDER argument" | 
 | 			      " to RESHAPE intrinsic", (long int) v + 1); | 
 |  | 
 | 	      if (seen[v] != 0) | 
 | 		runtime_error("Duplicate value %ld in ORDER argument to" | 
 | 			      " RESHAPE intrinsic", (long int) v + 1); | 
 | 		 | 
 | 	      seen[v] = 1; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   rsize = 1; | 
 |   for (index_type n = 0; n < rdim; n++) | 
 |     { | 
 |       index_type dim; | 
 |       if (order) | 
 |         dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; | 
 |       else | 
 |         dim = n; | 
 |  | 
 |       rcount[n] = 0; | 
 |       rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim); | 
 |       rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim); | 
 |       if (rextent[n] < 0) | 
 |         rextent[n] = 0; | 
 |  | 
 |       if (rextent[n] != shape_data[dim]) | 
 |         runtime_error ("shape and target do not conform"); | 
 |  | 
 |       if (rsize == rstride[n]) | 
 |         rsize *= rextent[n]; | 
 |       else | 
 |         rsize = 0; | 
 |       if (rextent[n] <= 0) | 
 |         return; | 
 |     } | 
 |  | 
 |   sdim = GFC_DESCRIPTOR_RANK (source); | 
 |  | 
 |   /* sdim is always > 0; this lets the compiler optimize more and | 
 |    avoids a warning.  */ | 
 |   GFC_ASSERT(sdim>0); | 
 |  | 
 |   ssize = 1; | 
 |   sempty = 0; | 
 |   for (index_type n = 0; n < sdim; n++) | 
 |     { | 
 |       scount[n] = 0; | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n); | 
 |       sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n); | 
 |       if (sextent[n] <= 0) | 
 | 	{ | 
 | 	  sempty = 1; | 
 | 	  sextent[n] = 0; | 
 | 	} | 
 |  | 
 |       if (ssize == sstride[n]) | 
 |         ssize *= sextent[n]; | 
 |       else | 
 |         ssize = 0; | 
 |     } | 
 |  | 
 |   if (rsize != 0 && ssize != 0 && psize != 0) | 
 |     { | 
 |       rsize *= sizeof (GFC_REAL_4); | 
 |       ssize *= sizeof (GFC_REAL_4); | 
 |       psize *= sizeof (GFC_REAL_4); | 
 |       reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr, | 
 | 		      ssize, pad ? (char *)pad->base_addr : NULL, psize); | 
 |       return; | 
 |     } | 
 |   rptr = ret->base_addr; | 
 |   src = sptr = source->base_addr; | 
 |   rstride0 = rstride[0]; | 
 |   sstride0 = sstride[0]; | 
 |  | 
 |   if (sempty && pempty) | 
 |     abort (); | 
 |  | 
 |   if (sempty) | 
 |     { | 
 |       /* Pretend we are using the pad array the first time around, too.  */ | 
 |       src = pptr; | 
 |       sptr = pptr; | 
 |       sdim = pdim; | 
 |       for (index_type dim = 0; dim < pdim; dim++) | 
 | 	{ | 
 | 	  scount[dim] = pcount[dim]; | 
 | 	  sextent[dim] = pextent[dim]; | 
 | 	  sstride[dim] = pstride[dim]; | 
 | 	  sstride0 = pstride[0]; | 
 | 	} | 
 |     } | 
 |  | 
 |   while (rptr) | 
 |     { | 
 |       /* Select between the source and pad arrays.  */ | 
 |       *rptr = *src; | 
 |       /* Advance to the next element.  */ | 
 |       rptr += rstride0; | 
 |       src += sstride0; | 
 |       rcount[0]++; | 
 |       scount[0]++; | 
 |  | 
 |       /* Advance to the next destination element.  */ | 
 |       index_type n = 0; | 
 |       while (rcount[n] == rextent[n]) | 
 |         { | 
 |           /* When we get to the end of a dimension, reset it and increment | 
 |              the next dimension.  */ | 
 |           rcount[n] = 0; | 
 |           /* We could precalculate these products, but this is a less | 
 |              frequently used path so probably not worth it.  */ | 
 |           rptr -= rstride[n] * rextent[n]; | 
 |           n++; | 
 |           if (n == rdim) | 
 |             { | 
 |               /* Break out of the loop.  */ | 
 |               rptr = NULL; | 
 |               break; | 
 |             } | 
 |           else | 
 |             { | 
 |               rcount[n]++; | 
 |               rptr += rstride[n]; | 
 |             } | 
 |         } | 
 |       /* Advance to the next source element.  */ | 
 |       n = 0; | 
 |       while (scount[n] == sextent[n]) | 
 |         { | 
 |           /* When we get to the end of a dimension, reset it and increment | 
 |              the next dimension.  */ | 
 |           scount[n] = 0; | 
 |           /* We could precalculate these products, but this is a less | 
 |              frequently used path so probably not worth it.  */ | 
 |           src -= sstride[n] * sextent[n]; | 
 |           n++; | 
 |           if (n == sdim) | 
 |             { | 
 |               if (sptr && pad) | 
 |                 { | 
 |                   /* Switch to the pad array.  */ | 
 |                   sptr = NULL; | 
 |                   sdim = pdim; | 
 |                   for (index_type dim = 0; dim < pdim; dim++) | 
 |                     { | 
 |                       scount[dim] = pcount[dim]; | 
 |                       sextent[dim] = pextent[dim]; | 
 |                       sstride[dim] = pstride[dim]; | 
 |                       sstride0 = sstride[0]; | 
 |                     } | 
 |                 } | 
 |               /* We now start again from the beginning of the pad array.  */ | 
 |               src = pptr; | 
 |               break; | 
 |             } | 
 |           else | 
 |             { | 
 |               scount[n]++; | 
 |               src += sstride[n]; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #endif |