| /* Implementation of the MAXLOC intrinsic | 
 |    Copyright (C) 2017-2021 Free Software Foundation, Inc. | 
 |    Contributed by Thomas Koenig | 
 |  | 
 | This file is part of the GNU Fortran runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Libgfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_UINTEGER_1) && defined (HAVE_GFC_UINTEGER_1) | 
 |  | 
 | static inline int | 
 | compare_fcn (const GFC_UINTEGER_1 *a, const GFC_UINTEGER_1 *b, gfc_charlen_type n) | 
 | { | 
 |   if (sizeof (GFC_UINTEGER_1) == 1) | 
 |     return memcmp (a, b, n); | 
 |   else | 
 |     return memcmp_char4 (a, b, n); | 
 |  | 
 | } | 
 |  | 
 | #define INITVAL 255 | 
 |  | 
 | extern void minval0_s1 (GFC_UINTEGER_1 * restrict, | 
 |         gfc_charlen_type, | 
 | 	gfc_array_s1 * const restrict array, gfc_charlen_type); | 
 | export_proto(minval0_s1); | 
 |  | 
 | void | 
 | minval0_s1 (GFC_UINTEGER_1 * restrict ret, | 
 |         gfc_charlen_type xlen, | 
 | 	gfc_array_s1 * const restrict array, gfc_charlen_type len) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   const GFC_UINTEGER_1 *base; | 
 |   index_type rank; | 
 |   index_type n; | 
 |  | 
 |   rank = GFC_DESCRIPTOR_RANK (array); | 
 |   if (rank <= 0) | 
 |     runtime_error ("Rank of array needs to be > 0"); | 
 |  | 
 |   assert (xlen == len); | 
 |  | 
 |   /* Initialize return value.  */ | 
 |   memset (ret, INITVAL, sizeof(*ret) * len); | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |       count[n] = 0; | 
 |       if (extent[n] <= 0) | 
 |         return; | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |  | 
 |   { | 
 |  | 
 |   const GFC_UINTEGER_1 *retval; | 
 |    retval = ret; | 
 |  | 
 |   while (base) | 
 |     { | 
 |       do | 
 | 	{ | 
 | 	  /* Implementation start.  */ | 
 |  | 
 |   if (compare_fcn (base, retval, len) < 0) | 
 |     { | 
 |       retval = base; | 
 |     } | 
 | 	  /* Implementation end.  */ | 
 | 	  /* Advance to the next element.  */ | 
 | 	  base += sstride[0]; | 
 | 	} | 
 |       while (++count[0] != extent[0]); | 
 |       n = 0; | 
 |       do | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      base = NULL; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	    } | 
 | 	} | 
 |       while (count[n] == extent[n]); | 
 |     } | 
 |    memcpy (ret, retval, len * sizeof (*ret)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | extern void mminval0_s1 (GFC_UINTEGER_1 * restrict, | 
 |        gfc_charlen_type, gfc_array_s1 * const restrict array, | 
 |        gfc_array_l1 * const restrict mask, gfc_charlen_type len); | 
 | export_proto(mminval0_s1); | 
 |  | 
 | void | 
 | mminval0_s1 (GFC_UINTEGER_1 * const restrict ret, | 
 | 	gfc_charlen_type xlen, gfc_array_s1 * const restrict array, | 
 | 	gfc_array_l1 * const restrict mask, gfc_charlen_type len) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type mstride[GFC_MAX_DIMENSIONS]; | 
 |   const GFC_UINTEGER_1 *base; | 
 |   GFC_LOGICAL_1 *mbase; | 
 |   int rank; | 
 |   index_type n; | 
 |   int mask_kind; | 
 |  | 
 |   if (mask == NULL) | 
 |     { | 
 |       minval0_s1 (ret, xlen, array, len); | 
 |       return; | 
 |     } | 
 |  | 
 |   rank = GFC_DESCRIPTOR_RANK (array); | 
 |   if (rank <= 0) | 
 |     runtime_error ("Rank of array needs to be > 0"); | 
 |  | 
 |   assert (xlen == len); | 
 |  | 
 | /* Initialize return value.  */ | 
 |   memset (ret, INITVAL, sizeof(*ret) * len); | 
 |  | 
 |   mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
 |  | 
 |   mbase = mask->base_addr; | 
 |  | 
 |   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || mask_kind == 16 | 
 | #endif | 
 |       ) | 
 |     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
 |   else | 
 |     runtime_error ("Funny sized logical array"); | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; | 
 |       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |       count[n] = 0; | 
 |       if (extent[n] <= 0) | 
 | 	return; | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |   { | 
 |  | 
 |   const GFC_UINTEGER_1 *retval; | 
 |  | 
 |   retval = ret; | 
 |  | 
 |   while (base) | 
 |     { | 
 |       do | 
 | 	{ | 
 | 	  /* Implementation start.  */ | 
 |  | 
 |   if (*mbase && compare_fcn (base, retval, len) < 0) | 
 |     { | 
 |       retval = base; | 
 |     } | 
 | 	  /* Implementation end.  */ | 
 | 	  /* Advance to the next element.  */ | 
 | 	  base += sstride[0]; | 
 | 	  mbase += mstride[0]; | 
 | 	} | 
 |       while (++count[0] != extent[0]); | 
 |       n = 0; | 
 |       do | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  mbase -= mstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      base = NULL; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	      mbase += mstride[n]; | 
 | 	    } | 
 | 	} | 
 |       while (count[n] == extent[n]); | 
 |     } | 
 |     memcpy (ret, retval, len * sizeof (*ret)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | extern void sminval0_s1 (GFC_UINTEGER_1 * restrict, | 
 |         gfc_charlen_type, | 
 | 	gfc_array_s1 * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type); | 
 | export_proto(sminval0_s1); | 
 |  | 
 | void | 
 | sminval0_s1 (GFC_UINTEGER_1 * restrict ret, | 
 |         gfc_charlen_type xlen, gfc_array_s1 * const restrict array, | 
 | 	GFC_LOGICAL_4 *mask, gfc_charlen_type len) | 
 | 	 | 
 | { | 
 |   if (mask == NULL || *mask) | 
 |     { | 
 |       minval0_s1 (ret, xlen, array, len); | 
 |       return; | 
 |     } | 
 |   memset (ret, INITVAL, sizeof (*ret) * len); | 
 | } | 
 |  | 
 | #endif |