| /* Implementation of the ANY intrinsic | 
 |    Copyright (C) 2002-2021 Free Software Foundation, Inc. | 
 |    Contributed by Paul Brook <paul@nowt.org> | 
 |  | 
 | This file is part of the GNU Fortran runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Libgfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_LOGICAL_2) | 
 |  | 
 |  | 
 | extern void any_l2 (gfc_array_l2 * const restrict,  | 
 | 	gfc_array_l1 * const restrict, const index_type * const restrict); | 
 | export_proto(any_l2); | 
 |  | 
 | void | 
 | any_l2 (gfc_array_l2 * const restrict retarray,  | 
 | 	gfc_array_l1 * const restrict array,  | 
 | 	const index_type * const restrict pdim) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride[GFC_MAX_DIMENSIONS]; | 
 |   const GFC_LOGICAL_1 * restrict base; | 
 |   GFC_LOGICAL_2 * restrict dest; | 
 |   index_type rank; | 
 |   index_type n; | 
 |   index_type len; | 
 |   index_type delta; | 
 |   index_type dim; | 
 |   int src_kind; | 
 |   int continue_loop; | 
 |  | 
 |   /* Make dim zero based to avoid confusion.  */ | 
 |   dim = (*pdim) - 1; | 
 |   rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
 |  | 
 |   src_kind = GFC_DESCRIPTOR_SIZE (array); | 
 |  | 
 |   len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
 |   if (len < 0) | 
 |     len = 0; | 
 |  | 
 |   delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); | 
 |  | 
 |   for (n = 0; n < dim; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |   for (n = dim; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1); | 
 |  | 
 |       if (extent[n] < 0) | 
 | 	extent[n] = 0; | 
 |     } | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       size_t alloc_size, str; | 
 |  | 
 |       for (n = 0; n < rank; n++) | 
 |         { | 
 |           if (n == 0) | 
 |             str = 1; | 
 |           else | 
 |             str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
 |  | 
 | 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
 |  | 
 |         } | 
 |  | 
 |       retarray->offset = 0; | 
 |       retarray->dtype.rank = rank; | 
 |  | 
 |       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
 |  | 
 |       if (alloc_size == 0) | 
 | 	{ | 
 | 	  /* Make sure we have a zero-sized array.  */ | 
 | 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | 
 | 	  return; | 
 | 	} | 
 |       else | 
 | 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_LOGICAL_2)); | 
 |     } | 
 |   else | 
 |     { | 
 |       if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
 | 	runtime_error ("rank of return array incorrect in" | 
 | 		       " ANY intrinsic: is %ld, should be %ld", | 
 | 		       (long int) GFC_DESCRIPTOR_RANK (retarray), | 
 | 		       (long int) rank); | 
 |  | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	{ | 
 | 	  for (n=0; n < rank; n++) | 
 | 	    { | 
 | 	      index_type ret_extent; | 
 |  | 
 | 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); | 
 | 	      if (extent[n] != ret_extent) | 
 | 		runtime_error ("Incorrect extent in return value of" | 
 | 			       " ANY intrinsic in dimension %d:" | 
 | 			       " is %ld, should be %ld", (int) n + 1, | 
 | 			       (long int) ret_extent, (long int) extent[n]); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       count[n] = 0; | 
 |       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
 |       if (extent[n] <= 0) | 
 | 	return; | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |  | 
 |   if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || src_kind == 16 | 
 | #endif | 
 |     ) | 
 |     { | 
 |       if (base) | 
 | 	base = GFOR_POINTER_TO_L1 (base, src_kind); | 
 |     } | 
 |   else | 
 |     internal_error (NULL, "Funny sized logical array in ANY intrinsic"); | 
 |  | 
 |   dest = retarray->base_addr; | 
 |  | 
 |   continue_loop = 1; | 
 |   while (continue_loop) | 
 |     { | 
 |       const GFC_LOGICAL_1 * restrict src; | 
 |       GFC_LOGICAL_2 result; | 
 |       src = base; | 
 |       { | 
 |  | 
 |   result = 0; | 
 |         if (len <= 0) | 
 | 	  *dest = 0; | 
 | 	else | 
 | 	  { | 
 | 	    for (n = 0; n < len; n++, src += delta) | 
 | 	      { | 
 |  | 
 |   /* Return true if any of the elements are set.  */ | 
 |   if (*src) | 
 |     { | 
 |       result = 1; | 
 |       break; | 
 |     } | 
 |           } | 
 | 	    *dest = result; | 
 | 	  } | 
 |       } | 
 |       /* Advance to the next element.  */ | 
 |       count[0]++; | 
 |       base += sstride[0]; | 
 |       dest += dstride[0]; | 
 |       n = 0; | 
 |       while (count[n] == extent[n]) | 
 |         { | 
 |           /* When we get to the end of a dimension, reset it and increment | 
 |              the next dimension.  */ | 
 |           count[n] = 0; | 
 |           /* We could precalculate these products, but this is a less | 
 |              frequently used path so probably not worth it.  */ | 
 |           base -= sstride[n] * extent[n]; | 
 |           dest -= dstride[n] * extent[n]; | 
 |           n++; | 
 |           if (n >= rank) | 
 |             { | 
 |               /* Break out of the loop.  */ | 
 |               continue_loop = 0; | 
 |               break; | 
 |             } | 
 |           else | 
 |             { | 
 |               count[n]++; | 
 |               base += sstride[n]; | 
 |               dest += dstride[n]; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #endif |