|  | // Written in the D programming language. | 
|  |  | 
|  | /** | 
|  | * Contains the elementary mathematical functions (powers, roots, | 
|  | * and trigonometric functions), and low-level floating-point operations. | 
|  | * Mathematical special functions are available in $(MREF std, mathspecial). | 
|  | * | 
|  | $(SCRIPT inhibitQuickIndex = 1;) | 
|  |  | 
|  | $(DIVC quickindex, | 
|  | $(BOOKTABLE , | 
|  | $(TR $(TH Category) $(TH Members) ) | 
|  | $(TR $(TDNW $(SUBMODULE Constants, constants)) $(TD | 
|  | $(SUBREF constants, E) | 
|  | $(SUBREF constants, PI) | 
|  | $(SUBREF constants, PI_2) | 
|  | $(SUBREF constants, PI_4) | 
|  | $(SUBREF constants, M_1_PI) | 
|  | $(SUBREF constants, M_2_PI) | 
|  | $(SUBREF constants, M_2_SQRTPI) | 
|  | $(SUBREF constants, LN10) | 
|  | $(SUBREF constants, LN2) | 
|  | $(SUBREF constants, LOG2) | 
|  | $(SUBREF constants, LOG2E) | 
|  | $(SUBREF constants, LOG2T) | 
|  | $(SUBREF constants, LOG10E) | 
|  | $(SUBREF constants, SQRT2) | 
|  | $(SUBREF constants, SQRT1_2) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Algebraic, algebraic)) $(TD | 
|  | $(SUBREF algebraic, abs) | 
|  | $(SUBREF algebraic, fabs) | 
|  | $(SUBREF algebraic, sqrt) | 
|  | $(SUBREF algebraic, cbrt) | 
|  | $(SUBREF algebraic, hypot) | 
|  | $(SUBREF algebraic, poly) | 
|  | $(SUBREF algebraic, nextPow2) | 
|  | $(SUBREF algebraic, truncPow2) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Trigonometry, trigonometry)) $(TD | 
|  | $(SUBREF trigonometry, sin) | 
|  | $(SUBREF trigonometry, cos) | 
|  | $(SUBREF trigonometry, tan) | 
|  | $(SUBREF trigonometry, asin) | 
|  | $(SUBREF trigonometry, acos) | 
|  | $(SUBREF trigonometry, atan) | 
|  | $(SUBREF trigonometry, atan2) | 
|  | $(SUBREF trigonometry, sinh) | 
|  | $(SUBREF trigonometry, cosh) | 
|  | $(SUBREF trigonometry, tanh) | 
|  | $(SUBREF trigonometry, asinh) | 
|  | $(SUBREF trigonometry, acosh) | 
|  | $(SUBREF trigonometry, atanh) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Rounding, rounding)) $(TD | 
|  | $(SUBREF rounding, ceil) | 
|  | $(SUBREF rounding, floor) | 
|  | $(SUBREF rounding, round) | 
|  | $(SUBREF rounding, lround) | 
|  | $(SUBREF rounding, trunc) | 
|  | $(SUBREF rounding, rint) | 
|  | $(SUBREF rounding, lrint) | 
|  | $(SUBREF rounding, nearbyint) | 
|  | $(SUBREF rounding, rndtol) | 
|  | $(SUBREF rounding, quantize) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Exponentiation & Logarithms, exponential)) $(TD | 
|  | $(SUBREF exponential, pow) | 
|  | $(SUBREF exponential, powmod) | 
|  | $(SUBREF exponential, exp) | 
|  | $(SUBREF exponential, exp2) | 
|  | $(SUBREF exponential, expm1) | 
|  | $(SUBREF exponential, ldexp) | 
|  | $(SUBREF exponential, frexp) | 
|  | $(SUBREF exponential, log) | 
|  | $(SUBREF exponential, log2) | 
|  | $(SUBREF exponential, log10) | 
|  | $(SUBREF exponential, logb) | 
|  | $(SUBREF exponential, ilogb) | 
|  | $(SUBREF exponential, log1p) | 
|  | $(SUBREF exponential, scalbn) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Remainder, remainder)) $(TD | 
|  | $(SUBREF remainder, fmod) | 
|  | $(SUBREF remainder, modf) | 
|  | $(SUBREF remainder, remainder) | 
|  | $(SUBREF remainder, remquo) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Floating-point operations, operations)) $(TD | 
|  | $(SUBREF operations, approxEqual) | 
|  | $(SUBREF operations, feqrel) | 
|  | $(SUBREF operations, fdim) | 
|  | $(SUBREF operations, fmax) | 
|  | $(SUBREF operations, fmin) | 
|  | $(SUBREF operations, fma) | 
|  | $(SUBREF operations, isClose) | 
|  | $(SUBREF operations, nextDown) | 
|  | $(SUBREF operations, nextUp) | 
|  | $(SUBREF operations, nextafter) | 
|  | $(SUBREF operations, NaN) | 
|  | $(SUBREF operations, getNaNPayload) | 
|  | $(SUBREF operations, cmp) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Introspection, traits)) $(TD | 
|  | $(SUBREF traits, isFinite) | 
|  | $(SUBREF traits, isIdentical) | 
|  | $(SUBREF traits, isInfinity) | 
|  | $(SUBREF traits, isNaN) | 
|  | $(SUBREF traits, isNormal) | 
|  | $(SUBREF traits, isSubnormal) | 
|  | $(SUBREF traits, signbit) | 
|  | $(SUBREF traits, sgn) | 
|  | $(SUBREF traits, copysign) | 
|  | $(SUBREF traits, isPowerOf2) | 
|  | )) | 
|  | $(TR $(TDNW $(SUBMODULE Hardware Control, hardware)) $(TD | 
|  | $(SUBREF hardware, IeeeFlags) | 
|  | $(SUBREF hardware, ieeeFlags) | 
|  | $(SUBREF hardware, resetIeeeFlags) | 
|  | $(SUBREF hardware, FloatingPointControl) | 
|  | )) | 
|  | ) | 
|  | ) | 
|  |  | 
|  | * The functionality closely follows the IEEE754-2008 standard for | 
|  | * floating-point arithmetic, including the use of camelCase names rather | 
|  | * than C99-style lower case names. All of these functions behave correctly | 
|  | * when presented with an infinity or NaN. | 
|  | * | 
|  | * The following IEEE 'real' formats are currently supported: | 
|  | * $(UL | 
|  | * $(LI 64 bit Big-endian  'double' (eg PowerPC)) | 
|  | * $(LI 128 bit Big-endian 'quadruple' (eg SPARC)) | 
|  | * $(LI 64 bit Little-endian 'double' (eg x86-SSE2)) | 
|  | * $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium)) | 
|  | * $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!)) | 
|  | * $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support) | 
|  | * ) | 
|  | * Unlike C, there is no global 'errno' variable. Consequently, almost all of | 
|  | * these functions are pure nothrow. | 
|  | * | 
|  | * Macros: | 
|  | *      SUBMODULE = $(MREF_ALTTEXT $1, std, math, $2) | 
|  | *      SUBREF = $(REF_ALTTEXT $(TT $2), $2, std, math, $1)$(NBSP) | 
|  | * | 
|  | * Copyright: Copyright The D Language Foundation 2000 - 2011. | 
|  | *            D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p, | 
|  | *            log2, floor, ceil and lrint functions are based on the CEPHES math library, | 
|  | *            which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT) | 
|  | *            and are incorporated herein by permission of the author.  The author | 
|  | *            reserves the right to distribute this material elsewhere under different | 
|  | *            copying permissions.  These modifications are distributed here under | 
|  | *            the following terms: | 
|  | * License:   $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). | 
|  | * Authors:   $(HTTP digitalmars.com, Walter Bright), Don Clugston, | 
|  | *            Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger | 
|  | * Source: $(PHOBOSSRC std/math/package.d) | 
|  | */ | 
|  | module std.math; | 
|  |  | 
|  | public import std.math.algebraic; | 
|  | public import std.math.constants; | 
|  | public import std.math.exponential; | 
|  | public import std.math.operations; | 
|  | public import std.math.hardware; | 
|  | public import std.math.remainder; | 
|  | public import std.math.rounding; | 
|  | public import std.math.traits; | 
|  | public import std.math.trigonometry; | 
|  |  | 
|  | package(std): // Not public yet | 
|  | /* Return the value that lies halfway between x and y on the IEEE number line. | 
|  | * | 
|  | * Formally, the result is the arithmetic mean of the binary significands of x | 
|  | * and y, multiplied by the geometric mean of the binary exponents of x and y. | 
|  | * x and y must have the same sign, and must not be NaN. | 
|  | * Note: this function is useful for ensuring O(log n) behaviour in algorithms | 
|  | * involving a 'binary chop'. | 
|  | * | 
|  | * Special cases: | 
|  | * If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value | 
|  | * is the arithmetic mean (x + y) / 2. | 
|  | * If x and y are even powers of 2, the return value is the geometric mean, | 
|  | *   ieeeMean(x, y) = sqrt(x * y). | 
|  | * | 
|  | */ | 
|  | T ieeeMean(T)(const T x, const T y)  @trusted pure nothrow @nogc | 
|  | in | 
|  | { | 
|  | // both x and y must have the same sign, and must not be NaN. | 
|  | assert(signbit(x) == signbit(y)); | 
|  | assert(x == x && y == y); | 
|  | } | 
|  | do | 
|  | { | 
|  | // Runtime behaviour for contract violation: | 
|  | // If signs are opposite, or one is a NaN, return 0. | 
|  | if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0; | 
|  |  | 
|  | // The implementation is simple: cast x and y to integers, | 
|  | // average them (avoiding overflow), and cast the result back to a floating-point number. | 
|  |  | 
|  | alias F = floatTraits!(T); | 
|  | T u; | 
|  | static if (F.realFormat == RealFormat.ieeeExtended || | 
|  | F.realFormat == RealFormat.ieeeExtended53) | 
|  | { | 
|  | // There's slight additional complexity because they are actually | 
|  | // 79-bit reals... | 
|  | ushort *ue = cast(ushort *)&u; | 
|  | ulong *ul = cast(ulong *)&u; | 
|  | ushort *xe = cast(ushort *)&x; | 
|  | ulong *xl = cast(ulong *)&x; | 
|  | ushort *ye = cast(ushort *)&y; | 
|  | ulong *yl = cast(ulong *)&y; | 
|  |  | 
|  | // Ignore the useless implicit bit. (Bonus: this prevents overflows) | 
|  | ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); | 
|  |  | 
|  | // @@@ BUG? @@@ | 
|  | // Cast shouldn't be here | 
|  | ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK) | 
|  | + (ye[F.EXPPOS_SHORT] & F.EXPMASK)); | 
|  | if (m & 0x8000_0000_0000_0000L) | 
|  | { | 
|  | ++e; | 
|  | m &= 0x7FFF_FFFF_FFFF_FFFFL; | 
|  | } | 
|  | // Now do a multi-byte right shift | 
|  | const uint c = e & 1; // carry | 
|  | e >>= 1; | 
|  | m >>>= 1; | 
|  | if (c) | 
|  | m |= 0x4000_0000_0000_0000L; // shift carry into significand | 
|  | if (e) | 
|  | *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... | 
|  | else | 
|  | *ul = m; // ... unless exponent is 0 (subnormal or zero). | 
|  |  | 
|  | ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit | 
|  | } | 
|  | else static if (F.realFormat == RealFormat.ieeeQuadruple) | 
|  | { | 
|  | // This would be trivial if 'ucent' were implemented... | 
|  | ulong *ul = cast(ulong *)&u; | 
|  | ulong *xl = cast(ulong *)&x; | 
|  | ulong *yl = cast(ulong *)&y; | 
|  |  | 
|  | // Multi-byte add, then multi-byte right shift. | 
|  | import core.checkedint : addu; | 
|  | bool carry; | 
|  | ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry); | 
|  |  | 
|  | ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) + | 
|  | (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL); | 
|  |  | 
|  | ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); | 
|  | ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63; | 
|  | } | 
|  | else static if (F.realFormat == RealFormat.ieeeDouble) | 
|  | { | 
|  | ulong *ul = cast(ulong *)&u; | 
|  | ulong *xl = cast(ulong *)&x; | 
|  | ulong *yl = cast(ulong *)&y; | 
|  | ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) | 
|  | + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; | 
|  | m |= ((*xl) & 0x8000_0000_0000_0000L); | 
|  | *ul = m; | 
|  | } | 
|  | else static if (F.realFormat == RealFormat.ieeeSingle) | 
|  | { | 
|  | uint *ul = cast(uint *)&u; | 
|  | uint *xl = cast(uint *)&x; | 
|  | uint *yl = cast(uint *)&y; | 
|  | uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; | 
|  | m |= ((*xl) & 0x8000_0000); | 
|  | *ul = m; | 
|  | } | 
|  | else | 
|  | { | 
|  | assert(0, "Not implemented"); | 
|  | } | 
|  | return u; | 
|  | } | 
|  |  | 
|  | @safe pure nothrow @nogc unittest | 
|  | { | 
|  | assert(ieeeMean(-0.0,-1e-20)<0); | 
|  | assert(ieeeMean(0.0,1e-20)>0); | 
|  |  | 
|  | assert(ieeeMean(1.0L,4.0L)==2L); | 
|  | assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); | 
|  | assert(ieeeMean(-1.0L,-4.0L)==-2L); | 
|  | assert(ieeeMean(-1.0,-4.0)==-2); | 
|  | assert(ieeeMean(-1.0f,-4.0f)==-2f); | 
|  | assert(ieeeMean(-1.0,-2.0)==-1.5); | 
|  | assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) | 
|  | ==-1.5*(1+5*real.epsilon)); | 
|  | assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); | 
|  |  | 
|  | static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) | 
|  | { | 
|  | assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); | 
|  | assert(ieeeMean(0.0L,real.infinity)==1.5); | 
|  | } | 
|  | assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal) | 
|  | == 0.5*real.min_normal*(1-2*real.epsilon)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // The following IEEE 'real' formats are currently supported. | 
|  | version (LittleEndian) | 
|  | { | 
|  | static assert(real.mant_dig == 53 || real.mant_dig == 64 | 
|  | || real.mant_dig == 113, | 
|  | "Only 64-bit, 80-bit, and 128-bit reals"~ | 
|  | " are supported for LittleEndian CPUs"); | 
|  | } | 
|  | else | 
|  | { | 
|  | static assert(real.mant_dig == 53 || real.mant_dig == 113, | 
|  | "Only 64-bit and 128-bit reals are supported for BigEndian CPUs."); | 
|  | } |