|  | /* Complex hyperbolic tangent for float types. | 
|  | Copyright (C) 1997-2018 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | __complex128 | 
|  | ctanhq (__complex128 x) | 
|  | { | 
|  | __complex128 res; | 
|  |  | 
|  | if (__glibc_unlikely (!finiteq (__real__ x) || !finiteq (__imag__ x))) | 
|  | { | 
|  | if (isinfq (__real__ x)) | 
|  | { | 
|  | __real__ res = copysignq (1, __real__ x); | 
|  | if (finiteq (__imag__ x) && fabsq (__imag__ x) > 1) | 
|  | { | 
|  | __float128 sinix, cosix; | 
|  | sincosq (__imag__ x, &sinix, &cosix); | 
|  | __imag__ res = copysignq (0, sinix * cosix); | 
|  | } | 
|  | else | 
|  | __imag__ res = copysignq (0, __imag__ x); | 
|  | } | 
|  | else if (__imag__ x == 0) | 
|  | { | 
|  | res = x; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (__real__ x == 0) | 
|  | __real__ res = __real__ x; | 
|  | else | 
|  | __real__ res = nanq (""); | 
|  | __imag__ res = nanq (""); | 
|  |  | 
|  | if (isinfq (__imag__ x)) | 
|  | feraiseexcept (FE_INVALID); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | __float128 sinix, cosix; | 
|  | __float128 den; | 
|  | const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2); | 
|  |  | 
|  | /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) | 
|  | = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2).  */ | 
|  |  | 
|  | if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN)) | 
|  | { | 
|  | sincosq (__imag__ x, &sinix, &cosix); | 
|  | } | 
|  | else | 
|  | { | 
|  | sinix = __imag__ x; | 
|  | cosix = 1; | 
|  | } | 
|  |  | 
|  | if (fabsq (__real__ x) > t) | 
|  | { | 
|  | /* Avoid intermediate overflow when the imaginary part of | 
|  | the result may be subnormal.  Ignoring negligible terms, | 
|  | the real part is +/- 1, the imaginary part is | 
|  | sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x).  */ | 
|  | __float128 exp_2t = expq (2 * t); | 
|  |  | 
|  | __real__ res = copysignq (1, __real__ x); | 
|  | __imag__ res = 4 * sinix * cosix; | 
|  | __real__ x = fabsq (__real__ x); | 
|  | __real__ x -= t; | 
|  | __imag__ res /= exp_2t; | 
|  | if (__real__ x > t) | 
|  | { | 
|  | /* Underflow (original real part of x has absolute value | 
|  | > 2t).  */ | 
|  | __imag__ res /= exp_2t; | 
|  | } | 
|  | else | 
|  | __imag__ res /= expq (2 * __real__ x); | 
|  | } | 
|  | else | 
|  | { | 
|  | __float128 sinhrx, coshrx; | 
|  | if (fabsq (__real__ x) > FLT128_MIN) | 
|  | { | 
|  | sinhrx = sinhq (__real__ x); | 
|  | coshrx = coshq (__real__ x); | 
|  | } | 
|  | else | 
|  | { | 
|  | sinhrx = __real__ x; | 
|  | coshrx = 1; | 
|  | } | 
|  |  | 
|  | if (fabsq (sinhrx) > fabsq (cosix) * FLT128_EPSILON) | 
|  | den = sinhrx * sinhrx + cosix * cosix; | 
|  | else | 
|  | den = cosix * cosix; | 
|  | __real__ res = sinhrx * coshrx / den; | 
|  | __imag__ res = sinix * cosix / den; | 
|  | } | 
|  | math_check_force_underflow_complex (res); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } |