blob: ffe91fc2cef6dbb4e8bb230d9bd592073c489058 [file] [log] [blame] [edit]
use clippy_utils::consts::{ConstEvalCtxt, Constant};
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::sext;
use rustc_hir::{BinOpKind, Expr, ExprKind, Node};
use rustc_lint::LateContext;
use rustc_middle::ty::{self, Ty};
use std::fmt::Display;
use super::MODULO_ARITHMETIC;
pub(super) fn check<'tcx>(
cx: &LateContext<'tcx>,
e: &'tcx Expr<'_>,
op: BinOpKind,
lhs: &'tcx Expr<'_>,
rhs: &'tcx Expr<'_>,
allow_comparison_to_zero: bool,
) {
if op == BinOpKind::Rem {
if allow_comparison_to_zero && used_in_comparison_with_zero(cx, e) {
return;
}
let lhs_operand = analyze_operand(lhs, cx, e);
let rhs_operand = analyze_operand(rhs, cx, e);
if let Some(lhs_operand) = lhs_operand
&& let Some(rhs_operand) = rhs_operand
{
check_const_operands(cx, e, &lhs_operand, &rhs_operand);
} else {
check_non_const_operands(cx, e, lhs);
}
}
}
fn used_in_comparison_with_zero(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let Node::Expr(parent_expr) = cx.tcx.parent_hir_node(expr.hir_id)
&& let ExprKind::Binary(op, lhs, rhs) = parent_expr.kind
&& let BinOpKind::Eq | BinOpKind::Ne = op.node
{
let ecx = ConstEvalCtxt::new(cx);
let ctxt = expr.span.ctxt();
matches!(ecx.eval_local(lhs, ctxt), Some(Constant::Int(0)))
|| matches!(ecx.eval_local(rhs, ctxt), Some(Constant::Int(0)))
} else {
false
}
}
struct OperandInfo {
string_representation: Option<String>,
is_negative: bool,
is_integral: bool,
}
fn analyze_operand(operand: &Expr<'_>, cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<OperandInfo> {
match ConstEvalCtxt::new(cx).eval(operand)? {
Constant::Int(v) => match *cx.typeck_results().expr_ty(expr).kind() {
ty::Int(ity) => {
let value: i128 = sext(cx.tcx, v, ity);
Some(OperandInfo {
string_representation: Some(value.to_string()),
is_negative: value < 0,
is_integral: true,
})
},
ty::Uint(_) => Some(OperandInfo {
string_representation: None,
is_negative: false,
is_integral: true,
}),
_ => None,
},
// FIXME(f16_f128): add when casting is available on all platforms
Constant::F32(f) => Some(floating_point_operand_info(&f)),
Constant::F64(f) => Some(floating_point_operand_info(&f)),
_ => None,
}
}
fn floating_point_operand_info<T: Display + PartialOrd + From<f32>>(f: &T) -> OperandInfo {
OperandInfo {
string_representation: Some(format!("{:.3}", *f)),
is_negative: *f < 0.0.into(),
is_integral: false,
}
}
fn might_have_negative_value(t: Ty<'_>) -> bool {
t.is_signed() || t.is_floating_point()
}
fn check_const_operands<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'_>,
lhs_operand: &OperandInfo,
rhs_operand: &OperandInfo,
) {
if lhs_operand.is_negative ^ rhs_operand.is_negative {
span_lint_and_then(
cx,
MODULO_ARITHMETIC,
expr.span,
format!(
"you are using modulo operator on constants with different signs: `{} % {}`",
lhs_operand.string_representation.as_ref().unwrap(),
rhs_operand.string_representation.as_ref().unwrap()
),
|diag| {
diag.note("double check for expected result especially when interoperating with different languages");
if lhs_operand.is_integral {
diag.note("or consider using `rem_euclid` or similar function");
}
},
);
}
}
fn check_non_const_operands<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, operand: &Expr<'_>) {
let operand_type = cx.typeck_results().expr_ty(operand);
if might_have_negative_value(operand_type) {
span_lint_and_then(
cx,
MODULO_ARITHMETIC,
expr.span,
"you are using modulo operator on types that might have different signs",
|diag| {
diag.note("double check for expected result especially when interoperating with different languages");
if operand_type.is_integral() {
diag.note("or consider using `rem_euclid` or similar function");
}
},
);
}
}