blob: bee3b19b597c033d6ff6f74ccf0015b5c7b63579 [file] [log] [blame] [edit]
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::source::{SpanRangeExt, position_before_rarrow, snippet_block};
use rustc_errors::Applicability;
use rustc_hir::intravisit::FnKind;
use rustc_hir::{
Block, Body, Closure, ClosureKind, CoroutineDesugaring, CoroutineKind, CoroutineSource, Expr, ExprKind, FnDecl,
FnRetTy, GenericBound, Node, OpaqueTy, TraitRef, Ty, TyKind,
};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
use rustc_middle::ty;
use rustc_session::declare_lint_pass;
use rustc_span::def_id::LocalDefId;
use rustc_span::{Span, sym};
declare_clippy_lint! {
/// ### What it does
/// It checks for manual implementations of `async` functions.
///
/// ### Why is this bad?
/// It's more idiomatic to use the dedicated syntax.
///
/// ### Example
/// ```no_run
/// use std::future::Future;
///
/// fn foo() -> impl Future<Output = i32> { async { 42 } }
/// ```
/// Use instead:
/// ```no_run
/// async fn foo() -> i32 { 42 }
/// ```
#[clippy::version = "1.45.0"]
pub MANUAL_ASYNC_FN,
style,
"manual implementations of `async` functions can be simplified using the dedicated syntax"
}
declare_lint_pass!(ManualAsyncFn => [MANUAL_ASYNC_FN]);
impl<'tcx> LateLintPass<'tcx> for ManualAsyncFn {
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: FnKind<'tcx>,
decl: &'tcx FnDecl<'_>,
body: &'tcx Body<'_>,
span: Span,
fn_def_id: LocalDefId,
) {
if let Some(header) = kind.header()
&& !header.asyncness.is_async()
// Check that this function returns `impl Future`
&& let FnRetTy::Return(ret_ty) = decl.output
&& let TyKind::OpaqueDef(opaque) = ret_ty.kind
&& let Some(trait_ref) = future_trait_ref(cx, opaque)
&& let Some(output) = future_output_ty(trait_ref)
&& captures_all_lifetimes(cx, fn_def_id, opaque.def_id)
// Check that the body of the function consists of one async block
&& let ExprKind::Block(block, _) = body.value.kind
&& block.stmts.is_empty()
&& let Some(closure_body) = desugared_async_block(cx, block)
&& let Some(vis_span_opt) = match cx.tcx.hir_node_by_def_id(fn_def_id) {
Node::Item(item) => Some(Some(item.vis_span)),
Node::ImplItem(impl_item) => Some(impl_item.vis_span()),
_ => None,
}
&& !span.from_expansion()
{
let header_span = span.with_hi(ret_ty.span.hi());
span_lint_and_then(
cx,
MANUAL_ASYNC_FN,
header_span,
"this function can be simplified using the `async fn` syntax",
|diag| {
if let Some(vis_span) = vis_span_opt
&& let Some(vis_snip) = vis_span.get_source_text(cx)
&& let Some(header_snip) = header_span.get_source_text(cx)
&& let Some(ret_pos) = position_before_rarrow(&header_snip)
&& let Some((_, ret_snip)) = suggested_ret(cx, output)
{
let header_snip = if vis_snip.is_empty() {
format!("async {}", &header_snip[..ret_pos])
} else {
format!("{} async {}", vis_snip, &header_snip[vis_snip.len() + 1..ret_pos])
};
let body_snip = snippet_block(cx, closure_body.value.span, "..", Some(block.span));
diag.multipart_suggestion(
"make the function `async` and return the output of the future directly",
vec![
(header_span, format!("{header_snip}{ret_snip}")),
(block.span, body_snip),
],
Applicability::MachineApplicable,
);
}
},
);
}
}
}
fn future_trait_ref<'tcx>(cx: &LateContext<'tcx>, opaque: &'tcx OpaqueTy<'tcx>) -> Option<&'tcx TraitRef<'tcx>> {
if let Some(trait_ref) = opaque.bounds.iter().find_map(|bound| {
if let GenericBound::Trait(poly) = bound {
Some(&poly.trait_ref)
} else {
None
}
}) && trait_ref.trait_def_id() == cx.tcx.lang_items().future_trait()
{
return Some(trait_ref);
}
None
}
fn future_output_ty<'tcx>(trait_ref: &'tcx TraitRef<'tcx>) -> Option<&'tcx Ty<'tcx>> {
if let Some(segment) = trait_ref.path.segments.last()
&& let Some(args) = segment.args
&& let [constraint] = args.constraints
&& constraint.ident.name == sym::Output
&& let Some(output) = constraint.ty()
{
return Some(output);
}
None
}
fn captures_all_lifetimes(cx: &LateContext<'_>, fn_def_id: LocalDefId, opaque_def_id: LocalDefId) -> bool {
let early_input_params = ty::GenericArgs::identity_for_item(cx.tcx, fn_def_id);
let late_input_params = cx.tcx.late_bound_vars(cx.tcx.local_def_id_to_hir_id(fn_def_id));
let num_early_lifetimes = early_input_params
.iter()
.filter(|param| param.as_region().is_some())
.count();
let num_late_lifetimes = late_input_params
.iter()
.filter(|param_kind| matches!(param_kind, ty::BoundVariableKind::Region(_)))
.count();
// There is no lifetime, so they are all captured.
if num_early_lifetimes == 0 && num_late_lifetimes == 0 {
return true;
}
// By construction, each captured lifetime only appears once in `opaque_captured_lifetimes`.
let num_captured_lifetimes = cx
.tcx
.opaque_captured_lifetimes(opaque_def_id)
.iter()
.filter(|&(lifetime, _)| {
matches!(
*lifetime,
ResolvedArg::EarlyBound(_) | ResolvedArg::LateBound(ty::INNERMOST, _, _)
)
})
.count();
num_captured_lifetimes == num_early_lifetimes + num_late_lifetimes
}
fn desugared_async_block<'tcx>(cx: &LateContext<'tcx>, block: &'tcx Block<'tcx>) -> Option<&'tcx Body<'tcx>> {
if let Some(&Expr {
kind: ExprKind::Closure(&Closure { kind, body, .. }),
..
}) = block.expr
&& let ClosureKind::Coroutine(CoroutineKind::Desugared(CoroutineDesugaring::Async, CoroutineSource::Block)) =
kind
{
return Some(cx.tcx.hir_body(body));
}
None
}
fn suggested_ret(cx: &LateContext<'_>, output: &Ty<'_>) -> Option<(&'static str, String)> {
if let TyKind::Tup([]) = output.kind {
let sugg = "remove the return type";
Some((sugg, String::new()))
} else {
let sugg = "return the output of the future directly";
output.span.get_source_text(cx).map(|src| (sugg, format!(" -> {src}")))
}
}