blob: ecd88daa6b39f31019058ace45aa1ea6a56bf929 [file] [log] [blame]
//! A simple const eval API, for use on arbitrary HIR expressions.
//!
//! This cannot use rustc's const eval, aka miri, as arbitrary HIR expressions cannot be lowered to
//! executable MIR bodies, so we have to do this instead.
#![allow(clippy::float_cmp)]
use crate::source::{SpanRangeExt, walk_span_to_context};
use crate::{clip, is_direct_expn_of, sext, unsext};
use rustc_abi::Size;
use rustc_apfloat::Float;
use rustc_apfloat::ieee::{Half, Quad};
use rustc_ast::ast::{LitFloatType, LitKind};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::{
BinOpKind, Block, ConstBlock, Expr, ExprKind, HirId, Item, ItemKind, Node, PatExpr, PatExprKind, QPath, UnOp,
};
use rustc_lexer::{FrontmatterAllowed, tokenize};
use rustc_lint::LateContext;
use rustc_middle::mir::ConstValue;
use rustc_middle::mir::interpret::{Scalar, alloc_range};
use rustc_middle::ty::{self, FloatTy, IntTy, ScalarInt, Ty, TyCtxt, TypeckResults, UintTy};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::def_id::DefId;
use rustc_span::symbol::Ident;
use rustc_span::{SyntaxContext, sym};
use std::cell::Cell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::iter;
/// A `LitKind`-like enum to fold constant `Expr`s into.
#[derive(Debug, Clone)]
pub enum Constant<'tcx> {
Adt(mir::Const<'tcx>),
/// A `String` (e.g., "abc").
Str(String),
/// A binary string (e.g., `b"abc"`).
Binary(Vec<u8>),
/// A single `char` (e.g., `'a'`).
Char(char),
/// An integer's bit representation.
Int(u128),
/// An `f16` bitcast to a `u16`.
// FIXME(f16_f128): use `f16` once builtins are available on all host tools platforms.
F16(u16),
/// An `f32`.
F32(f32),
/// An `f64`.
F64(f64),
/// An `f128` bitcast to a `u128`.
// FIXME(f16_f128): use `f128` once builtins are available on all host tools platforms.
F128(u128),
/// `true` or `false`.
Bool(bool),
/// An array of constants.
Vec(Vec<Constant<'tcx>>),
/// Also an array, but with only one constant, repeated N times.
Repeat(Box<Constant<'tcx>>, u64),
/// A tuple of constants.
Tuple(Vec<Constant<'tcx>>),
/// A raw pointer.
RawPtr(u128),
/// A reference
Ref(Box<Constant<'tcx>>),
/// A literal with syntax error.
Err,
}
trait IntTypeBounds: Sized {
type Output: PartialOrd;
fn min_max(self) -> Option<(Self::Output, Self::Output)>;
fn bits(self) -> Self::Output;
fn ensure_fits(self, val: Self::Output) -> Option<Self::Output> {
let (min, max) = self.min_max()?;
(min <= val && val <= max).then_some(val)
}
}
impl IntTypeBounds for UintTy {
type Output = u128;
fn min_max(self) -> Option<(Self::Output, Self::Output)> {
Some(match self {
UintTy::U8 => (u8::MIN.into(), u8::MAX.into()),
UintTy::U16 => (u16::MIN.into(), u16::MAX.into()),
UintTy::U32 => (u32::MIN.into(), u32::MAX.into()),
UintTy::U64 => (u64::MIN.into(), u64::MAX.into()),
UintTy::U128 => (u128::MIN, u128::MAX),
UintTy::Usize => (usize::MIN.try_into().ok()?, usize::MAX.try_into().ok()?),
})
}
fn bits(self) -> Self::Output {
match self {
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
UintTy::Usize => usize::BITS.into(),
}
}
}
impl IntTypeBounds for IntTy {
type Output = i128;
fn min_max(self) -> Option<(Self::Output, Self::Output)> {
Some(match self {
IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
IntTy::I128 => (i128::MIN, i128::MAX),
IntTy::Isize => (isize::MIN.try_into().ok()?, isize::MAX.try_into().ok()?),
})
}
fn bits(self) -> Self::Output {
match self {
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
IntTy::Isize => isize::BITS.into(),
}
}
}
impl PartialEq for Constant<'_> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Str(ls), Self::Str(rs)) => ls == rs,
(Self::Binary(l), Self::Binary(r)) => l == r,
(&Self::Char(l), &Self::Char(r)) => l == r,
(&Self::Int(l), &Self::Int(r)) => l == r,
(&Self::F64(l), &Self::F64(r)) => {
// We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have
// `Fw32 == Fw64`, so don’t compare them.
// `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs.
l.to_bits() == r.to_bits()
},
(&Self::F32(l), &Self::F32(r)) => {
// We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have
// `Fw32 == Fw64`, so don’t compare them.
// `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs.
f64::from(l).to_bits() == f64::from(r).to_bits()
},
(&Self::Bool(l), &Self::Bool(r)) => l == r,
(&Self::Vec(ref l), &Self::Vec(ref r)) | (&Self::Tuple(ref l), &Self::Tuple(ref r)) => l == r,
(Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => ls == rs && lv == rv,
(Self::Ref(lb), Self::Ref(rb)) => *lb == *rb,
// TODO: are there inter-type equalities?
_ => false,
}
}
}
impl Hash for Constant<'_> {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
std::mem::discriminant(self).hash(state);
match *self {
Self::Adt(ref elem) => {
elem.hash(state);
},
Self::Str(ref s) => {
s.hash(state);
},
Self::Binary(ref b) => {
b.hash(state);
},
Self::Char(c) => {
c.hash(state);
},
Self::Int(i) => {
i.hash(state);
},
Self::F16(f) => {
// FIXME(f16_f128): once conversions to/from `f128` are available on all platforms,
f.hash(state);
},
Self::F32(f) => {
f64::from(f).to_bits().hash(state);
},
Self::F64(f) => {
f.to_bits().hash(state);
},
Self::F128(f) => {
f.hash(state);
},
Self::Bool(b) => {
b.hash(state);
},
Self::Vec(ref v) | Self::Tuple(ref v) => {
v.hash(state);
},
Self::Repeat(ref c, l) => {
c.hash(state);
l.hash(state);
},
Self::RawPtr(u) => {
u.hash(state);
},
Self::Ref(ref r) => {
r.hash(state);
},
Self::Err => {},
}
}
}
impl Constant<'_> {
pub fn partial_cmp(tcx: TyCtxt<'_>, cmp_type: Ty<'_>, left: &Self, right: &Self) -> Option<Ordering> {
match (left, right) {
(Self::Str(ls), Self::Str(rs)) => Some(ls.cmp(rs)),
(Self::Char(l), Self::Char(r)) => Some(l.cmp(r)),
(&Self::Int(l), &Self::Int(r)) => match *cmp_type.kind() {
ty::Int(int_ty) => Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty))),
ty::Uint(_) => Some(l.cmp(&r)),
_ => bug!("Not an int type"),
},
(&Self::F64(l), &Self::F64(r)) => l.partial_cmp(&r),
(&Self::F32(l), &Self::F32(r)) => l.partial_cmp(&r),
(Self::Bool(l), Self::Bool(r)) => Some(l.cmp(r)),
(Self::Tuple(l), Self::Tuple(r)) if l.len() == r.len() => match *cmp_type.kind() {
ty::Tuple(tys) if tys.len() == l.len() => l
.iter()
.zip(r)
.zip(tys)
.map(|((li, ri), cmp_type)| Self::partial_cmp(tcx, cmp_type, li, ri))
.find(|r| r.is_none_or(|o| o != Ordering::Equal))
.unwrap_or_else(|| Some(l.len().cmp(&r.len()))),
_ => None,
},
(Self::Vec(l), Self::Vec(r)) => {
let cmp_type = cmp_type.builtin_index()?;
iter::zip(l, r)
.map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri))
.find(|r| r.is_none_or(|o| o != Ordering::Equal))
.unwrap_or_else(|| Some(l.len().cmp(&r.len())))
},
(Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => {
match Self::partial_cmp(
tcx,
match *cmp_type.kind() {
ty::Array(ty, _) => ty,
_ => return None,
},
lv,
rv,
) {
Some(Ordering::Equal) => Some(ls.cmp(rs)),
x => x,
}
},
(Self::Ref(lb), Self::Ref(rb)) => Self::partial_cmp(
tcx,
match *cmp_type.kind() {
ty::Ref(_, ty, _) => ty,
_ => return None,
},
lb,
rb,
),
// TODO: are there any useful inter-type orderings?
_ => None,
}
}
/// Returns the integer value or `None` if `self` or `val_type` is not integer type.
pub fn int_value(&self, tcx: TyCtxt<'_>, val_type: Ty<'_>) -> Option<FullInt> {
if let Constant::Int(const_int) = *self {
match *val_type.kind() {
ty::Int(ity) => Some(FullInt::S(sext(tcx, const_int, ity))),
ty::Uint(_) => Some(FullInt::U(const_int)),
_ => None,
}
} else {
None
}
}
#[must_use]
pub fn peel_refs(mut self) -> Self {
while let Constant::Ref(r) = self {
self = *r;
}
self
}
fn parse_f16(s: &str) -> Self {
let f: Half = s.parse().unwrap();
Self::F16(f.to_bits().try_into().unwrap())
}
fn parse_f128(s: &str) -> Self {
let f: Quad = s.parse().unwrap();
Self::F128(f.to_bits())
}
}
/// Parses a `LitKind` to a `Constant`.
pub fn lit_to_mir_constant<'tcx>(lit: &LitKind, ty: Option<Ty<'tcx>>) -> Constant<'tcx> {
match *lit {
LitKind::Str(ref is, _) => Constant::Str(is.to_string()),
LitKind::Byte(b) => Constant::Int(u128::from(b)),
LitKind::ByteStr(ref s, _) | LitKind::CStr(ref s, _) => Constant::Binary(s.as_byte_str().to_vec()),
LitKind::Char(c) => Constant::Char(c),
LitKind::Int(n, _) => Constant::Int(n.get()),
LitKind::Float(ref is, LitFloatType::Suffixed(fty)) => match fty {
// FIXME(f16_f128): just use `parse()` directly when available for `f16`/`f128`
FloatTy::F16 => Constant::parse_f16(is.as_str()),
FloatTy::F32 => Constant::F32(is.as_str().parse().unwrap()),
FloatTy::F64 => Constant::F64(is.as_str().parse().unwrap()),
FloatTy::F128 => Constant::parse_f128(is.as_str()),
},
LitKind::Float(ref is, LitFloatType::Unsuffixed) => match ty.expect("type of float is known").kind() {
ty::Float(FloatTy::F16) => Constant::parse_f16(is.as_str()),
ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()),
ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()),
ty::Float(FloatTy::F128) => Constant::parse_f128(is.as_str()),
_ => bug!(),
},
LitKind::Bool(b) => Constant::Bool(b),
LitKind::Err(_) => Constant::Err,
}
}
/// The source of a constant value.
#[derive(Clone, Copy)]
pub enum ConstantSource {
/// The value is determined solely from the expression.
Local,
/// The value is dependent on a defined constant.
Constant,
/// The value is dependent on a constant defined in `core` crate.
CoreConstant,
}
impl ConstantSource {
pub fn is_local(self) -> bool {
matches!(self, Self::Local)
}
}
#[derive(Copy, Clone, Debug, Eq)]
pub enum FullInt {
S(i128),
U(u128),
}
impl PartialEq for FullInt {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl PartialOrd for FullInt {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for FullInt {
fn cmp(&self, other: &Self) -> Ordering {
use FullInt::{S, U};
fn cmp_s_u(s: i128, u: u128) -> Ordering {
u128::try_from(s).map_or(Ordering::Less, |x| x.cmp(&u))
}
match (*self, *other) {
(S(s), S(o)) => s.cmp(&o),
(U(s), U(o)) => s.cmp(&o),
(S(s), U(o)) => cmp_s_u(s, o),
(U(s), S(o)) => cmp_s_u(o, s).reverse(),
}
}
}
/// The context required to evaluate a constant expression.
///
/// This is currently limited to constant folding and reading the value of named constants.
///
/// See the module level documentation for some context.
pub struct ConstEvalCtxt<'tcx> {
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
typeck: &'tcx TypeckResults<'tcx>,
source: Cell<ConstantSource>,
}
impl<'tcx> ConstEvalCtxt<'tcx> {
/// Creates the evaluation context from the lint context. This requires the lint context to be
/// in a body (i.e. `cx.enclosing_body.is_some()`).
pub fn new(cx: &LateContext<'tcx>) -> Self {
Self {
tcx: cx.tcx,
typing_env: cx.typing_env(),
typeck: cx.typeck_results(),
source: Cell::new(ConstantSource::Local),
}
}
/// Creates an evaluation context.
pub fn with_env(tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, typeck: &'tcx TypeckResults<'tcx>) -> Self {
Self {
tcx,
typing_env,
typeck,
source: Cell::new(ConstantSource::Local),
}
}
/// Attempts to evaluate the expression and returns both the value and whether it's dependant on
/// other items.
pub fn eval_with_source(&self, e: &Expr<'_>) -> Option<(Constant<'tcx>, ConstantSource)> {
self.source.set(ConstantSource::Local);
self.expr(e).map(|c| (c, self.source.get()))
}
/// Attempts to evaluate the expression.
pub fn eval(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
self.expr(e)
}
/// Attempts to evaluate the expression without accessing other items.
pub fn eval_simple(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
match self.eval_with_source(e) {
Some((x, ConstantSource::Local)) => Some(x),
_ => None,
}
}
/// Attempts to evaluate the expression as an integer without accessing other items.
pub fn eval_full_int(&self, e: &Expr<'_>) -> Option<FullInt> {
match self.eval_with_source(e) {
Some((x, ConstantSource::Local)) => x.int_value(self.tcx, self.typeck.expr_ty(e)),
_ => None,
}
}
pub fn eval_pat_expr(&self, pat_expr: &PatExpr<'_>) -> Option<Constant<'tcx>> {
match &pat_expr.kind {
PatExprKind::Lit { lit, negated } => {
let ty = self.typeck.node_type_opt(pat_expr.hir_id);
let val = lit_to_mir_constant(&lit.node, ty);
if *negated {
self.constant_negate(&val, ty?)
} else {
Some(val)
}
},
PatExprKind::ConstBlock(ConstBlock { body, .. }) => self.expr(self.tcx.hir_body(*body).value),
PatExprKind::Path(qpath) => self.qpath(qpath, pat_expr.hir_id),
}
}
fn qpath(&self, qpath: &QPath<'_>, hir_id: HirId) -> Option<Constant<'tcx>> {
let is_core_crate = if let Some(def_id) = self.typeck.qpath_res(qpath, hir_id).opt_def_id() {
self.tcx.crate_name(def_id.krate) == sym::core
} else {
false
};
self.fetch_path_and_apply(qpath, hir_id, self.typeck.node_type(hir_id), |self_, result| {
let result = mir_to_const(self_.tcx, result)?;
// If source is already Constant we wouldn't want to override it with CoreConstant
self_.source.set(
if is_core_crate && !matches!(self_.source.get(), ConstantSource::Constant) {
ConstantSource::CoreConstant
} else {
ConstantSource::Constant
},
);
Some(result)
})
}
/// Simple constant folding: Insert an expression, get a constant or none.
fn expr(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
match e.kind {
ExprKind::ConstBlock(ConstBlock { body, .. }) => self.expr(self.tcx.hir_body(body).value),
ExprKind::DropTemps(e) => self.expr(e),
ExprKind::Path(ref qpath) => self.qpath(qpath, e.hir_id),
ExprKind::Block(block, _) => self.block(block),
ExprKind::Lit(lit) => {
if is_direct_expn_of(e.span, sym::cfg).is_some() {
None
} else {
Some(lit_to_mir_constant(&lit.node, self.typeck.expr_ty_opt(e)))
}
},
ExprKind::Array(vec) => self.multi(vec).map(Constant::Vec),
ExprKind::Tup(tup) => self.multi(tup).map(Constant::Tuple),
ExprKind::Repeat(value, _) => {
let n = match self.typeck.expr_ty(e).kind() {
ty::Array(_, n) => n.try_to_target_usize(self.tcx)?,
_ => span_bug!(e.span, "typeck error"),
};
self.expr(value).map(|v| Constant::Repeat(Box::new(v), n))
},
ExprKind::Unary(op, operand) => self.expr(operand).and_then(|o| match op {
UnOp::Not => self.constant_not(&o, self.typeck.expr_ty(e)),
UnOp::Neg => self.constant_negate(&o, self.typeck.expr_ty(e)),
UnOp::Deref => Some(if let Constant::Ref(r) = o { *r } else { o }),
}),
ExprKind::If(cond, then, ref otherwise) => self.ifthenelse(cond, then, *otherwise),
ExprKind::Binary(op, left, right) => self.binop(op.node, left, right),
ExprKind::Call(callee, []) => {
// We only handle a few const functions for now.
if let ExprKind::Path(qpath) = &callee.kind
&& let Some(did) = self.typeck.qpath_res(qpath, callee.hir_id).opt_def_id()
{
match self.tcx.get_diagnostic_name(did) {
Some(sym::i8_legacy_fn_max_value) => Some(Constant::Int(i8::MAX as u128)),
Some(sym::i16_legacy_fn_max_value) => Some(Constant::Int(i16::MAX as u128)),
Some(sym::i32_legacy_fn_max_value) => Some(Constant::Int(i32::MAX as u128)),
Some(sym::i64_legacy_fn_max_value) => Some(Constant::Int(i64::MAX as u128)),
Some(sym::i128_legacy_fn_max_value) => Some(Constant::Int(i128::MAX as u128)),
_ => None,
}
} else {
None
}
},
ExprKind::Index(arr, index, _) => self.index(arr, index),
ExprKind::AddrOf(_, _, inner) => self.expr(inner).map(|r| Constant::Ref(Box::new(r))),
ExprKind::Field(local_expr, ref field) => {
let result = self.expr(local_expr);
if let Some(Constant::Adt(constant)) = &self.expr(local_expr)
&& let ty::Adt(adt_def, _) = constant.ty().kind()
&& adt_def.is_struct()
&& let Some(desired_field) = field_of_struct(*adt_def, self.tcx, *constant, field)
{
mir_to_const(self.tcx, desired_field)
} else {
result
}
},
_ => None,
}
}
/// Simple constant folding to determine if an expression is an empty slice, str, array, …
/// `None` will be returned if the constness cannot be determined, or if the resolution
/// leaves the local crate.
pub fn eval_is_empty(&self, e: &Expr<'_>) -> Option<bool> {
match e.kind {
ExprKind::ConstBlock(ConstBlock { body, .. }) => self.eval_is_empty(self.tcx.hir_body(body).value),
ExprKind::DropTemps(e) => self.eval_is_empty(e),
ExprKind::Path(ref qpath) => {
if !self
.typeck
.qpath_res(qpath, e.hir_id)
.opt_def_id()
.is_some_and(DefId::is_local)
{
return None;
}
self.fetch_path_and_apply(qpath, e.hir_id, self.typeck.expr_ty(e), |self_, result| {
mir_is_empty(self_.tcx, result)
})
},
ExprKind::Lit(lit) => {
if is_direct_expn_of(e.span, sym::cfg).is_some() {
None
} else {
match &lit.node {
LitKind::Str(is, _) => Some(is.is_empty()),
LitKind::ByteStr(s, _) | LitKind::CStr(s, _) => Some(s.as_byte_str().is_empty()),
_ => None,
}
}
},
ExprKind::Array(vec) => self.multi(vec).map(|v| v.is_empty()),
ExprKind::Repeat(..) => {
if let ty::Array(_, n) = self.typeck.expr_ty(e).kind() {
Some(n.try_to_target_usize(self.tcx)? == 0)
} else {
span_bug!(e.span, "typeck error");
}
},
_ => None,
}
}
#[expect(clippy::cast_possible_wrap)]
fn constant_not(&self, o: &Constant<'tcx>, ty: Ty<'_>) -> Option<Constant<'tcx>> {
use self::Constant::{Bool, Int};
match *o {
Bool(b) => Some(Bool(!b)),
Int(value) => {
let value = !value;
match *ty.kind() {
ty::Int(ity) => Some(Int(unsext(self.tcx, value as i128, ity))),
ty::Uint(ity) => Some(Int(clip(self.tcx, value, ity))),
_ => None,
}
},
_ => None,
}
}
fn constant_negate(&self, o: &Constant<'tcx>, ty: Ty<'_>) -> Option<Constant<'tcx>> {
use self::Constant::{F32, F64, Int};
match *o {
Int(value) => {
let ty::Int(ity) = *ty.kind() else { return None };
let (min, _) = ity.min_max()?;
// sign extend
let value = sext(self.tcx, value, ity);
// Applying unary - to the most negative value of any signed integer type panics.
if value == min {
return None;
}
let value = value.checked_neg()?;
// clear unused bits
Some(Int(unsext(self.tcx, value, ity)))
},
F32(f) => Some(F32(-f)),
F64(f) => Some(F64(-f)),
_ => None,
}
}
/// Create `Some(Vec![..])` of all constants, unless there is any
/// non-constant part.
fn multi(&self, vec: &[Expr<'_>]) -> Option<Vec<Constant<'tcx>>> {
vec.iter().map(|elem| self.expr(elem)).collect::<Option<_>>()
}
/// Lookup a possibly constant expression from an `ExprKind::Path` and apply a function on it.
fn fetch_path_and_apply<T, F>(&self, qpath: &QPath<'_>, id: HirId, ty: Ty<'tcx>, f: F) -> Option<T>
where
F: FnOnce(&Self, mir::Const<'tcx>) -> Option<T>,
{
let res = self.typeck.qpath_res(qpath, id);
match res {
Res::Def(DefKind::Const | DefKind::AssocConst, def_id) => {
// Check if this constant is based on `cfg!(..)`,
// which is NOT constant for our purposes.
if let Some(node) = self.tcx.hir_get_if_local(def_id)
&& let Node::Item(Item {
kind: ItemKind::Const(.., body_id),
..
}) = node
&& let Node::Expr(Expr {
kind: ExprKind::Lit(_),
span,
..
}) = self.tcx.hir_node(body_id.hir_id)
&& is_direct_expn_of(*span, sym::cfg).is_some()
{
return None;
}
let args = self.typeck.node_args(id);
let result = self
.tcx
.const_eval_resolve(self.typing_env, mir::UnevaluatedConst::new(def_id, args), qpath.span())
.ok()
.map(|val| mir::Const::from_value(val, ty))?;
f(self, result)
},
_ => None,
}
}
fn index(&self, lhs: &'_ Expr<'_>, index: &'_ Expr<'_>) -> Option<Constant<'tcx>> {
let lhs = self.expr(lhs);
let index = self.expr(index);
match (lhs, index) {
(Some(Constant::Vec(vec)), Some(Constant::Int(index))) => match vec.get(index as usize) {
Some(Constant::F16(x)) => Some(Constant::F16(*x)),
Some(Constant::F32(x)) => Some(Constant::F32(*x)),
Some(Constant::F64(x)) => Some(Constant::F64(*x)),
Some(Constant::F128(x)) => Some(Constant::F128(*x)),
_ => None,
},
(Some(Constant::Vec(vec)), _) => {
if !vec.is_empty() && vec.iter().all(|x| *x == vec[0]) {
match vec.first() {
Some(Constant::F16(x)) => Some(Constant::F16(*x)),
Some(Constant::F32(x)) => Some(Constant::F32(*x)),
Some(Constant::F64(x)) => Some(Constant::F64(*x)),
Some(Constant::F128(x)) => Some(Constant::F128(*x)),
_ => None,
}
} else {
None
}
},
_ => None,
}
}
/// A block can only yield a constant if it has exactly one constant expression.
fn block(&self, block: &Block<'_>) -> Option<Constant<'tcx>> {
if block.stmts.is_empty()
&& let Some(expr) = block.expr
{
// Try to detect any `cfg`ed statements or empty macro expansions.
let span = block.span.data();
if span.ctxt == SyntaxContext::root() {
if let Some(expr_span) = walk_span_to_context(expr.span, span.ctxt)
&& let expr_lo = expr_span.lo()
&& expr_lo >= span.lo
&& let Some(src) = (span.lo..expr_lo).get_source_range(&self.tcx)
&& let Some(src) = src.as_str()
{
use rustc_lexer::TokenKind::{BlockComment, LineComment, OpenBrace, Semi, Whitespace};
if !tokenize(src, FrontmatterAllowed::No)
.map(|t| t.kind)
.filter(|t| !matches!(t, Whitespace | LineComment { .. } | BlockComment { .. } | Semi))
.eq([OpenBrace])
{
self.source.set(ConstantSource::Constant);
}
} else {
// Unable to access the source. Assume a non-local dependency.
self.source.set(ConstantSource::Constant);
}
}
self.expr(expr)
} else {
None
}
}
fn ifthenelse(&self, cond: &Expr<'_>, then: &Expr<'_>, otherwise: Option<&Expr<'_>>) -> Option<Constant<'tcx>> {
if let Some(Constant::Bool(b)) = self.expr(cond) {
if b {
self.expr(then)
} else {
otherwise.as_ref().and_then(|expr| self.expr(expr))
}
} else {
None
}
}
fn binop(&self, op: BinOpKind, left: &Expr<'_>, right: &Expr<'_>) -> Option<Constant<'tcx>> {
let l = self.expr(left)?;
let r = self.expr(right);
match (l, r) {
(Constant::Int(l), Some(Constant::Int(r))) => match *self.typeck.expr_ty_opt(left)?.kind() {
ty::Int(ity) => {
let (ty_min_value, _) = ity.min_max()?;
let bits = ity.bits();
let l = sext(self.tcx, l, ity);
let r = sext(self.tcx, r, ity);
// Using / or %, where the left-hand argument is the smallest integer of a signed integer type and
// the right-hand argument is -1 always panics, even with overflow-checks disabled
if let BinOpKind::Div | BinOpKind::Rem = op
&& l == ty_min_value
&& r == -1
{
return None;
}
let zext = |n: i128| Constant::Int(unsext(self.tcx, n, ity));
match op {
// When +, * or binary - create a value greater than the maximum value, or less than
// the minimum value that can be stored, it panics.
BinOpKind::Add => l.checked_add(r).and_then(|n| ity.ensure_fits(n)).map(zext),
BinOpKind::Sub => l.checked_sub(r).and_then(|n| ity.ensure_fits(n)).map(zext),
BinOpKind::Mul => l.checked_mul(r).and_then(|n| ity.ensure_fits(n)).map(zext),
BinOpKind::Div if r != 0 => l.checked_div(r).map(zext),
BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext),
// Using << or >> where the right-hand argument is greater than or equal to the number of bits
// in the type of the left-hand argument, or is negative panics.
BinOpKind::Shr if r < bits && !r.is_negative() => l.checked_shr(r.try_into().ok()?).map(zext),
BinOpKind::Shl if r < bits && !r.is_negative() => l.checked_shl(r.try_into().ok()?).map(zext),
BinOpKind::BitXor => Some(zext(l ^ r)),
BinOpKind::BitOr => Some(zext(l | r)),
BinOpKind::BitAnd => Some(zext(l & r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
}
},
ty::Uint(ity) => {
let bits = ity.bits();
match op {
BinOpKind::Add => l.checked_add(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
BinOpKind::Sub => l.checked_sub(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
BinOpKind::Mul => l.checked_mul(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
BinOpKind::Div => l.checked_div(r).map(Constant::Int),
BinOpKind::Rem => l.checked_rem(r).map(Constant::Int),
BinOpKind::Shr if r < bits => l.checked_shr(r.try_into().ok()?).map(Constant::Int),
BinOpKind::Shl if r < bits => l.checked_shl(r.try_into().ok()?).map(Constant::Int),
BinOpKind::BitXor => Some(Constant::Int(l ^ r)),
BinOpKind::BitOr => Some(Constant::Int(l | r)),
BinOpKind::BitAnd => Some(Constant::Int(l & r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
}
},
_ => None,
},
// FIXME(f16_f128): add these types when binary operations are available on all platforms
(Constant::F32(l), Some(Constant::F32(r))) => match op {
BinOpKind::Add => Some(Constant::F32(l + r)),
BinOpKind::Sub => Some(Constant::F32(l - r)),
BinOpKind::Mul => Some(Constant::F32(l * r)),
BinOpKind::Div => Some(Constant::F32(l / r)),
BinOpKind::Rem => Some(Constant::F32(l % r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
},
(Constant::F64(l), Some(Constant::F64(r))) => match op {
BinOpKind::Add => Some(Constant::F64(l + r)),
BinOpKind::Sub => Some(Constant::F64(l - r)),
BinOpKind::Mul => Some(Constant::F64(l * r)),
BinOpKind::Div => Some(Constant::F64(l / r)),
BinOpKind::Rem => Some(Constant::F64(l % r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
},
(l, r) => match (op, l, r) {
(BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)),
(BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)),
(BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => {
Some(r)
},
(BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)),
(BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)),
(BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)),
_ => None,
},
}
}
}
pub fn mir_to_const<'tcx>(tcx: TyCtxt<'tcx>, result: mir::Const<'tcx>) -> Option<Constant<'tcx>> {
let mir::Const::Val(val, _) = result else {
// We only work on evaluated consts.
return None;
};
match (val, result.ty().kind()) {
(ConstValue::Scalar(Scalar::Int(int)), _) => match result.ty().kind() {
ty::Adt(adt_def, _) if adt_def.is_struct() => Some(Constant::Adt(result)),
ty::Bool => Some(Constant::Bool(int == ScalarInt::TRUE)),
ty::Uint(_) | ty::Int(_) => Some(Constant::Int(int.to_bits(int.size()))),
ty::Float(FloatTy::F16) => Some(Constant::F16(int.into())),
ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits(int.into()))),
ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits(int.into()))),
ty::Float(FloatTy::F128) => Some(Constant::F128(int.into())),
ty::RawPtr(_, _) => Some(Constant::RawPtr(int.to_bits(int.size()))),
_ => None,
},
(_, ty::Ref(_, inner_ty, _)) if matches!(inner_ty.kind(), ty::Str) => {
let data = val.try_get_slice_bytes_for_diagnostics(tcx)?;
String::from_utf8(data.to_owned()).ok().map(Constant::Str)
},
(_, ty::Adt(adt_def, _)) if adt_def.is_struct() => Some(Constant::Adt(result)),
(ConstValue::Indirect { alloc_id, offset }, ty::Array(sub_type, len)) => {
let alloc = tcx.global_alloc(alloc_id).unwrap_memory().inner();
let len = len.try_to_target_usize(tcx)?;
let ty::Float(flt) = sub_type.kind() else {
return None;
};
let size = Size::from_bits(flt.bit_width());
let mut res = Vec::new();
for idx in 0..len {
let range = alloc_range(offset + size * idx, size);
let val = alloc.read_scalar(&tcx, range, /* read_provenance */ false).ok()?;
res.push(match flt {
FloatTy::F16 => Constant::F16(val.to_u16().discard_err()?),
FloatTy::F32 => Constant::F32(f32::from_bits(val.to_u32().discard_err()?)),
FloatTy::F64 => Constant::F64(f64::from_bits(val.to_u64().discard_err()?)),
FloatTy::F128 => Constant::F128(val.to_u128().discard_err()?),
});
}
Some(Constant::Vec(res))
},
_ => None,
}
}
fn mir_is_empty<'tcx>(tcx: TyCtxt<'tcx>, result: mir::Const<'tcx>) -> Option<bool> {
let mir::Const::Val(val, _) = result else {
// We only work on evaluated consts.
return None;
};
match (val, result.ty().kind()) {
(_, ty::Ref(_, inner_ty, _)) => match inner_ty.kind() {
ty::Str | ty::Slice(_) => {
if let ConstValue::Indirect { alloc_id, offset } = val {
// Get the length from the slice, using the same formula as
// [`ConstValue::try_get_slice_bytes_for_diagnostics`].
let a = tcx.global_alloc(alloc_id).unwrap_memory().inner();
let ptr_size = tcx.data_layout.pointer_size();
if a.size() < offset + 2 * ptr_size {
// (partially) dangling reference
return None;
}
let len = a
.read_scalar(&tcx, alloc_range(offset + ptr_size, ptr_size), false)
.ok()?
.to_target_usize(&tcx)
.discard_err()?;
Some(len == 0)
} else {
None
}
},
ty::Array(_, len) => Some(len.try_to_target_usize(tcx)? == 0),
_ => None,
},
(ConstValue::Indirect { .. }, ty::Array(_, len)) => Some(len.try_to_target_usize(tcx)? == 0),
(ConstValue::ZeroSized, _) => Some(true),
_ => None,
}
}
fn field_of_struct<'tcx>(
adt_def: ty::AdtDef<'tcx>,
tcx: TyCtxt<'tcx>,
result: mir::Const<'tcx>,
field: &Ident,
) -> Option<mir::Const<'tcx>> {
if let mir::Const::Val(result, ty) = result
&& let Some(dc) = tcx.try_destructure_mir_constant_for_user_output(result, ty)
&& let Some(dc_variant) = dc.variant
&& let Some(variant) = adt_def.variants().get(dc_variant)
&& let Some(field_idx) = variant.fields.iter().position(|el| el.name == field.name)
&& let Some(&(val, ty)) = dc.fields.get(field_idx)
{
Some(mir::Const::Val(val, ty))
} else {
None
}
}
/// If `expr` evaluates to an integer constant, return its value.
pub fn integer_const(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<u128> {
if let Some(Constant::Int(value)) = ConstEvalCtxt::new(cx).eval_simple(expr) {
Some(value)
} else {
None
}
}
/// Check if `expr` evaluates to an integer constant of 0.
#[inline]
pub fn is_zero_integer_const(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
integer_const(cx, expr) == Some(0)
}