| use reexport::*; |
| use rustc::hir::*; |
| use rustc::hir::intravisit::FnKind; |
| use rustc::lint::*; |
| use rustc::ty; |
| use syntax::codemap::{ExpnFormat, Span}; |
| use utils::{get_item_name, get_parent_expr, implements_trait, in_constant, in_macro, is_integer_literal, |
| iter_input_pats, last_path_segment, match_qpath, match_trait_method, paths, snippet, span_lint, |
| span_lint_and_then, walk_ptrs_ty}; |
| use utils::sugg::Sugg; |
| use syntax::ast::{LitKind, CRATE_NODE_ID}; |
| use consts::{constant, Constant}; |
| |
| /// **What it does:** Checks for function arguments and let bindings denoted as |
| /// `ref`. |
| /// |
| /// **Why is this bad?** The `ref` declaration makes the function take an owned |
| /// value, but turns the argument into a reference (which means that the value |
| /// is destroyed when exiting the function). This adds not much value: either |
| /// take a reference type, or take an owned value and create references in the |
| /// body. |
| /// |
| /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The |
| /// type of `x` is more obvious with the former. |
| /// |
| /// **Known problems:** If the argument is dereferenced within the function, |
| /// removing the `ref` will lead to errors. This can be fixed by removing the |
| /// dereferences, e.g. changing `*x` to `x` within the function. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// fn foo(ref x: u8) -> bool { .. } |
| /// ``` |
| declare_clippy_lint! { |
| pub TOPLEVEL_REF_ARG, |
| style, |
| "an entire binding declared as `ref`, in a function argument or a `let` statement" |
| } |
| |
| /// **What it does:** Checks for comparisons to NaN. |
| /// |
| /// **Why is this bad?** NaN does not compare meaningfully to anything – not |
| /// even itself – so those comparisons are simply wrong. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x == NAN |
| /// ``` |
| declare_clippy_lint! { |
| pub CMP_NAN, |
| correctness, |
| "comparisons to NAN, which will always return false, probably not intended" |
| } |
| |
| /// **What it does:** Checks for (in-)equality comparisons on floating-point |
| /// values (apart from zero), except in functions called `*eq*` (which probably |
| /// implement equality for a type involving floats). |
| /// |
| /// **Why is this bad?** Floating point calculations are usually imprecise, so |
| /// asking if two values are *exactly* equal is asking for trouble. For a good |
| /// guide on what to do, see [the floating point |
| /// guide](http://www.floating-point-gui.de/errors/comparison). |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// y == 1.23f64 |
| /// y != x // where both are floats |
| /// ``` |
| declare_clippy_lint! { |
| pub FLOAT_CMP, |
| correctness, |
| "using `==` or `!=` on float values instead of comparing difference with an epsilon" |
| } |
| |
| /// **What it does:** Checks for conversions to owned values just for the sake |
| /// of a comparison. |
| /// |
| /// **Why is this bad?** The comparison can operate on a reference, so creating |
| /// an owned value effectively throws it away directly afterwards, which is |
| /// needlessly consuming code and heap space. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.to_owned() == y |
| /// ``` |
| declare_clippy_lint! { |
| pub CMP_OWNED, |
| perf, |
| "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`" |
| } |
| |
| /// **What it does:** Checks for getting the remainder of a division by one. |
| /// |
| /// **Why is this bad?** The result can only ever be zero. No one will write |
| /// such code deliberately, unless trying to win an Underhanded Rust |
| /// Contest. Even for that contest, it's probably a bad idea. Use something more |
| /// underhanded. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x % 1 |
| /// ``` |
| declare_clippy_lint! { |
| pub MODULO_ONE, |
| correctness, |
| "taking a number modulo 1, which always returns 0" |
| } |
| |
| /// **What it does:** Checks for patterns in the form `name @ _`. |
| /// |
| /// **Why is this bad?** It's almost always more readable to just use direct |
| /// bindings. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// match v { |
| /// Some(x) => (), |
| /// y @ _ => (), // easier written as `y`, |
| /// } |
| /// ``` |
| declare_clippy_lint! { |
| pub REDUNDANT_PATTERN, |
| style, |
| "using `name @ _` in a pattern" |
| } |
| |
| /// **What it does:** Checks for the use of bindings with a single leading |
| /// underscore. |
| /// |
| /// **Why is this bad?** A single leading underscore is usually used to indicate |
| /// that a binding will not be used. Using such a binding breaks this |
| /// expectation. |
| /// |
| /// **Known problems:** The lint does not work properly with desugaring and |
| /// macro, it has been allowed in the mean time. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let _x = 0; |
| /// let y = _x + 1; // Here we are using `_x`, even though it has a leading |
| /// // underscore. We should rename `_x` to `x` |
| /// ``` |
| declare_clippy_lint! { |
| pub USED_UNDERSCORE_BINDING, |
| pedantic, |
| "using a binding which is prefixed with an underscore" |
| } |
| |
| /// **What it does:** Checks for the use of short circuit boolean conditions as |
| /// a |
| /// statement. |
| /// |
| /// **Why is this bad?** Using a short circuit boolean condition as a statement |
| /// may hide the fact that the second part is executed or not depending on the |
| /// outcome of the first part. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// f() && g(); // We should write `if f() { g(); }`. |
| /// ``` |
| declare_clippy_lint! { |
| pub SHORT_CIRCUIT_STATEMENT, |
| complexity, |
| "using a short circuit boolean condition as a statement" |
| } |
| |
| /// **What it does:** Catch casts from `0` to some pointer type |
| /// |
| /// **Why is this bad?** This generally means `null` and is better expressed as |
| /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// |
| /// ```rust |
| /// 0 as *const u32 |
| /// ``` |
| declare_clippy_lint! { |
| pub ZERO_PTR, |
| style, |
| "using 0 as *{const, mut} T" |
| } |
| |
| /// **What it does:** Checks for (in-)equality comparisons on floating-point |
| /// value and constant, except in functions called `*eq*` (which probably |
| /// implement equality for a type involving floats). |
| /// |
| /// **Why is this bad?** Floating point calculations are usually imprecise, so |
| /// asking if two values are *exactly* equal is asking for trouble. For a good |
| /// guide on what to do, see [the floating point |
| /// guide](http://www.floating-point-gui.de/errors/comparison). |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// const ONE == 1.00f64 |
| /// x == ONE // where both are floats |
| /// ``` |
| declare_clippy_lint! { |
| pub FLOAT_CMP_CONST, |
| restriction, |
| "using `==` or `!=` on float constants instead of comparing difference with an epsilon" |
| } |
| |
| #[derive(Copy, Clone)] |
| pub struct Pass; |
| |
| impl LintPass for Pass { |
| fn get_lints(&self) -> LintArray { |
| lint_array!( |
| TOPLEVEL_REF_ARG, |
| CMP_NAN, |
| FLOAT_CMP, |
| CMP_OWNED, |
| MODULO_ONE, |
| REDUNDANT_PATTERN, |
| USED_UNDERSCORE_BINDING, |
| SHORT_CIRCUIT_STATEMENT, |
| ZERO_PTR, |
| FLOAT_CMP_CONST |
| ) |
| } |
| } |
| |
| impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { |
| fn check_fn( |
| &mut self, |
| cx: &LateContext<'a, 'tcx>, |
| k: FnKind<'tcx>, |
| decl: &'tcx FnDecl, |
| body: &'tcx Body, |
| _: Span, |
| _: NodeId, |
| ) { |
| if let FnKind::Closure(_) = k { |
| // Does not apply to closures |
| return; |
| } |
| for arg in iter_input_pats(decl, body) { |
| match arg.pat.node { |
| PatKind::Binding(BindingAnnotation::Ref, _, _, _) | |
| PatKind::Binding(BindingAnnotation::RefMut, _, _, _) => { |
| span_lint( |
| cx, |
| TOPLEVEL_REF_ARG, |
| arg.pat.span, |
| "`ref` directly on a function argument is ignored. Consider using a reference type \ |
| instead.", |
| ); |
| }, |
| _ => {}, |
| } |
| } |
| } |
| |
| fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, s: &'tcx Stmt) { |
| if_chain! { |
| if let StmtDecl(ref d, _) = s.node; |
| if let DeclLocal(ref l) = d.node; |
| if let PatKind::Binding(an, _, i, None) = l.pat.node; |
| if let Some(ref init) = l.init; |
| then { |
| if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut { |
| let init = Sugg::hir(cx, init, ".."); |
| let (mutopt,initref) = if an == BindingAnnotation::RefMut { |
| ("mut ", init.mut_addr()) |
| } else { |
| ("", init.addr()) |
| }; |
| let tyopt = if let Some(ref ty) = l.ty { |
| format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_")) |
| } else { |
| "".to_owned() |
| }; |
| span_lint_and_then(cx, |
| TOPLEVEL_REF_ARG, |
| l.pat.span, |
| "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |
| |db| { |
| db.span_suggestion(s.span, |
| "try", |
| format!("let {name}{tyopt} = {initref};", |
| name=snippet(cx, i.span, "_"), |
| tyopt=tyopt, |
| initref=initref)); |
| } |
| ); |
| } |
| } |
| }; |
| if_chain! { |
| if let StmtSemi(ref expr, _) = s.node; |
| if let Expr_::ExprBinary(ref binop, ref a, ref b) = expr.node; |
| if binop.node == BiAnd || binop.node == BiOr; |
| if let Some(sugg) = Sugg::hir_opt(cx, a); |
| then { |
| span_lint_and_then(cx, |
| SHORT_CIRCUIT_STATEMENT, |
| s.span, |
| "boolean short circuit operator in statement may be clearer using an explicit test", |
| |db| { |
| let sugg = if binop.node == BiOr { !sugg } else { sugg }; |
| db.span_suggestion(s.span, "replace it with", |
| format!("if {} {{ {}; }}", sugg, &snippet(cx, b.span, ".."))); |
| }); |
| } |
| }; |
| } |
| |
| fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { |
| match expr.node { |
| ExprCast(ref e, ref ty) => { |
| check_cast(cx, expr.span, e, ty); |
| return; |
| }, |
| ExprBinary(ref cmp, ref left, ref right) => { |
| let op = cmp.node; |
| if op.is_comparison() { |
| if let ExprPath(QPath::Resolved(_, ref path)) = left.node { |
| check_nan(cx, path, expr); |
| } |
| if let ExprPath(QPath::Resolved(_, ref path)) = right.node { |
| check_nan(cx, path, expr); |
| } |
| check_to_owned(cx, left, right); |
| check_to_owned(cx, right, left); |
| } |
| if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) { |
| if is_allowed(cx, left) || is_allowed(cx, right) { |
| return; |
| } |
| if let Some(name) = get_item_name(cx, expr) { |
| let name = name.as_str(); |
| if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") |
| || name.ends_with("_eq") |
| { |
| return; |
| } |
| } |
| let (lint, msg) = if is_named_constant(cx, left) || is_named_constant(cx, right) { |
| (FLOAT_CMP_CONST, "strict comparison of f32 or f64 constant") |
| } else { |
| (FLOAT_CMP, "strict comparison of f32 or f64") |
| }; |
| span_lint_and_then(cx, lint, expr.span, msg, |db| { |
| let lhs = Sugg::hir(cx, left, ".."); |
| let rhs = Sugg::hir(cx, right, ".."); |
| |
| db.span_suggestion( |
| expr.span, |
| "consider comparing them within some error", |
| format!("({}).abs() < error", lhs - rhs), |
| ); |
| db.span_note(expr.span, "std::f32::EPSILON and std::f64::EPSILON are available."); |
| }); |
| } else if op == BiRem && is_integer_literal(right, 1) { |
| span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0"); |
| } |
| }, |
| _ => {}, |
| } |
| if in_attributes_expansion(expr) { |
| // Don't lint things expanded by #[derive(...)], etc |
| return; |
| } |
| let binding = match expr.node { |
| ExprPath(ref qpath) => { |
| let binding = last_path_segment(qpath).name.as_str(); |
| if binding.starts_with('_') && |
| !binding.starts_with("__") && |
| binding != "_result" && // FIXME: #944 |
| is_used(cx, expr) && |
| // don't lint if the declaration is in a macro |
| non_macro_local(cx, &cx.tables.qpath_def(qpath, expr.hir_id)) |
| { |
| Some(binding) |
| } else { |
| None |
| } |
| }, |
| ExprField(_, spanned) => { |
| let name = spanned.node.as_str(); |
| if name.starts_with('_') && !name.starts_with("__") { |
| Some(name) |
| } else { |
| None |
| } |
| }, |
| _ => None, |
| }; |
| if let Some(binding) = binding { |
| span_lint( |
| cx, |
| USED_UNDERSCORE_BINDING, |
| expr.span, |
| &format!( |
| "used binding `{}` which is prefixed with an underscore. A leading \ |
| underscore signals that a binding will not be used.", |
| binding |
| ), |
| ); |
| } |
| } |
| |
| fn check_pat(&mut self, cx: &LateContext<'a, 'tcx>, pat: &'tcx Pat) { |
| if let PatKind::Binding(_, _, ref ident, Some(ref right)) = pat.node { |
| if right.node == PatKind::Wild { |
| span_lint( |
| cx, |
| REDUNDANT_PATTERN, |
| pat.span, |
| &format!("the `{} @ _` pattern can be written as just `{}`", ident.node, ident.node), |
| ); |
| } |
| } |
| } |
| } |
| |
| fn check_nan(cx: &LateContext, path: &Path, expr: &Expr) { |
| if !in_constant(cx, expr.id) { |
| if let Some(seg) = path.segments.last() { |
| if seg.name == "NAN" { |
| span_lint( |
| cx, |
| CMP_NAN, |
| expr.span, |
| "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead", |
| ); |
| } |
| } |
| } |
| } |
| |
| fn is_named_constant<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> bool { |
| if let Some((_, res)) = constant(cx, cx.tables, expr) { |
| res |
| } else { |
| false |
| } |
| } |
| |
| fn is_allowed<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> bool { |
| match constant(cx, cx.tables, expr) { |
| Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(), |
| Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(), |
| _ => false, |
| } |
| } |
| |
| fn is_float(cx: &LateContext, expr: &Expr) -> bool { |
| matches!(walk_ptrs_ty(cx.tables.expr_ty(expr)).sty, ty::TyFloat(_)) |
| } |
| |
| fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr) { |
| let (arg_ty, snip) = match expr.node { |
| ExprMethodCall(.., ref args) if args.len() == 1 => { |
| if match_trait_method(cx, expr, &paths::TO_STRING) || match_trait_method(cx, expr, &paths::TO_OWNED) { |
| (cx.tables.expr_ty_adjusted(&args[0]), snippet(cx, args[0].span, "..")) |
| } else { |
| return; |
| } |
| }, |
| ExprCall(ref path, ref v) if v.len() == 1 => if let ExprPath(ref path) = path.node { |
| if match_qpath(path, &["String", "from_str"]) || match_qpath(path, &["String", "from"]) { |
| (cx.tables.expr_ty_adjusted(&v[0]), snippet(cx, v[0].span, "..")) |
| } else { |
| return; |
| } |
| } else { |
| return; |
| }, |
| _ => return, |
| }; |
| |
| let other_ty = cx.tables.expr_ty_adjusted(other); |
| let partial_eq_trait_id = match cx.tcx.lang_items().eq_trait() { |
| Some(id) => id, |
| None => return, |
| }; |
| |
| // *arg impls PartialEq<other> |
| if !arg_ty |
| .builtin_deref(true) |
| .map_or(false, |tam| implements_trait(cx, tam.ty, partial_eq_trait_id, &[other_ty])) |
| // arg impls PartialEq<*other> |
| && !other_ty |
| .builtin_deref(true) |
| .map_or(false, |tam| implements_trait(cx, arg_ty, partial_eq_trait_id, &[tam.ty])) |
| // arg impls PartialEq<other> |
| && !implements_trait(cx, arg_ty, partial_eq_trait_id, &[other_ty]) |
| { |
| return; |
| } |
| |
| span_lint_and_then( |
| cx, |
| CMP_OWNED, |
| expr.span, |
| "this creates an owned instance just for comparison", |
| |db| { |
| // this is as good as our recursion check can get, we can't prove that the |
| // current function is |
| // called by |
| // PartialEq::eq, but we can at least ensure that this code is not part of it |
| let parent_fn = cx.tcx.hir.get_parent(expr.id); |
| let parent_impl = cx.tcx.hir.get_parent(parent_fn); |
| if parent_impl != CRATE_NODE_ID { |
| if let map::NodeItem(item) = cx.tcx.hir.get(parent_impl) { |
| if let ItemImpl(.., Some(ref trait_ref), _, _) = item.node { |
| if trait_ref.path.def.def_id() == partial_eq_trait_id { |
| // we are implementing PartialEq, don't suggest not doing `to_owned`, otherwise |
| // we go into |
| // recursion |
| db.span_label(expr.span, "try calling implementing the comparison without allocating"); |
| return; |
| } |
| } |
| } |
| } |
| db.span_suggestion(expr.span, "try", snip.to_string()); |
| }, |
| ); |
| } |
| |
| /// Heuristic to see if an expression is used. Should be compatible with |
| /// `unused_variables`'s idea |
| /// of what it means for an expression to be "used". |
| fn is_used(cx: &LateContext, expr: &Expr) -> bool { |
| if let Some(parent) = get_parent_expr(cx, expr) { |
| match parent.node { |
| ExprAssign(_, ref rhs) | ExprAssignOp(_, _, ref rhs) => **rhs == *expr, |
| _ => is_used(cx, parent), |
| } |
| } else { |
| true |
| } |
| } |
| |
| /// Test whether an expression is in a macro expansion (e.g. something |
| /// generated by |
| /// `#[derive(...)`] or the like). |
| fn in_attributes_expansion(expr: &Expr) -> bool { |
| expr.span |
| .ctxt() |
| .outer() |
| .expn_info() |
| .map_or(false, |info| matches!(info.callee.format, ExpnFormat::MacroAttribute(_))) |
| } |
| |
| /// Test whether `def` is a variable defined outside a macro. |
| fn non_macro_local(cx: &LateContext, def: &def::Def) -> bool { |
| match *def { |
| def::Def::Local(id) | def::Def::Upvar(id, _, _) => !in_macro(cx.tcx.hir.span(id)), |
| _ => false, |
| } |
| } |
| |
| fn check_cast(cx: &LateContext, span: Span, e: &Expr, ty: &Ty) { |
| if_chain! { |
| if let TyPtr(MutTy { mutbl, .. }) = ty.node; |
| if let ExprLit(ref lit) = e.node; |
| if let LitKind::Int(value, ..) = lit.node; |
| if value == 0; |
| if !in_constant(cx, e.id); |
| then { |
| let msg = match mutbl { |
| Mutability::MutMutable => "`0 as *mut _` detected. Consider using `ptr::null_mut()`", |
| Mutability::MutImmutable => "`0 as *const _` detected. Consider using `ptr::null()`", |
| }; |
| span_lint(cx, ZERO_PTR, span, msg); |
| } |
| } |
| } |