blob: 09ee6f7037c64aa7a484579206cc05f1dc93af7e [file] [log] [blame]
use clippy_utils::diagnostics::{span_lint_and_then, span_lint_hir, span_lint_hir_and_then};
use clippy_utils::source::{snippet, snippet_with_context};
use clippy_utils::sugg::Sugg;
use clippy_utils::{
SpanlessEq, fulfill_or_allowed, get_parent_expr, in_automatically_derived, is_lint_allowed, iter_input_pats,
last_path_segment,
};
use rustc_errors::Applicability;
use rustc_hir::def::Res;
use rustc_hir::intravisit::FnKind;
use rustc_hir::{
BinOpKind, BindingMode, Body, ByRef, Expr, ExprKind, FnDecl, Mutability, PatKind, QPath, Stmt, StmtKind,
};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_session::declare_lint_pass;
use rustc_span::Span;
use rustc_span::def_id::LocalDefId;
use crate::ref_patterns::REF_PATTERNS;
declare_clippy_lint! {
/// ### What it does
/// Checks for function arguments and let bindings denoted as
/// `ref`.
///
/// ### Why is this bad?
/// The `ref` declaration makes the function take an owned
/// value, but turns the argument into a reference (which means that the value
/// is destroyed when exiting the function). This adds not much value: either
/// take a reference type, or take an owned value and create references in the
/// body.
///
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
/// type of `x` is more obvious with the former.
///
/// ### Known problems
/// If the argument is dereferenced within the function,
/// removing the `ref` will lead to errors. This can be fixed by removing the
/// dereferences, e.g., changing `*x` to `x` within the function.
///
/// ### Example
/// ```no_run
/// fn foo(ref _x: u8) {}
/// ```
///
/// Use instead:
/// ```no_run
/// fn foo(_x: &u8) {}
/// ```
#[clippy::version = "pre 1.29.0"]
pub TOPLEVEL_REF_ARG,
style,
"an entire binding declared as `ref`, in a function argument or a `let` statement"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for the use of bindings with a single leading
/// underscore.
///
/// ### Why is this bad?
/// A single leading underscore is usually used to indicate
/// that a binding will not be used. Using such a binding breaks this
/// expectation.
///
/// ### Known problems
/// The lint does not work properly with desugaring and
/// macro, it has been allowed in the meantime.
///
/// ### Example
/// ```no_run
/// let _x = 0;
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading
/// // underscore. We should rename `_x` to `x`
/// ```
#[clippy::version = "pre 1.29.0"]
pub USED_UNDERSCORE_BINDING,
pedantic,
"using a binding which is prefixed with an underscore"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for the use of item with a single leading
/// underscore.
///
/// ### Why is this bad?
/// A single leading underscore is usually used to indicate
/// that a item will not be used. Using such a item breaks this
/// expectation.
///
/// ### Example
/// ```no_run
/// fn _foo() {}
///
/// struct _FooStruct {}
///
/// fn main() {
/// _foo();
/// let _ = _FooStruct{};
/// }
/// ```
///
/// Use instead:
/// ```no_run
/// fn foo() {}
///
/// struct FooStruct {}
///
/// fn main() {
/// foo();
/// let _ = FooStruct{};
/// }
/// ```
#[clippy::version = "1.83.0"]
pub USED_UNDERSCORE_ITEMS,
pedantic,
"using a item which is prefixed with an underscore"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for the use of short circuit boolean conditions as
/// a
/// statement.
///
/// ### Why is this bad?
/// Using a short circuit boolean condition as a statement
/// may hide the fact that the second part is executed or not depending on the
/// outcome of the first part.
///
/// ### Example
/// ```rust,ignore
/// f() && g(); // We should write `if f() { g(); }`.
/// ```
#[clippy::version = "pre 1.29.0"]
pub SHORT_CIRCUIT_STATEMENT,
complexity,
"using a short circuit boolean condition as a statement"
}
declare_lint_pass!(LintPass => [
TOPLEVEL_REF_ARG,
USED_UNDERSCORE_BINDING,
USED_UNDERSCORE_ITEMS,
SHORT_CIRCUIT_STATEMENT,
]);
impl<'tcx> LateLintPass<'tcx> for LintPass {
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
k: FnKind<'tcx>,
decl: &'tcx FnDecl<'_>,
body: &'tcx Body<'_>,
_: Span,
_: LocalDefId,
) {
if !matches!(k, FnKind::Closure) {
for arg in iter_input_pats(decl, body) {
if let PatKind::Binding(BindingMode(ByRef::Yes(_), _), ..) = arg.pat.kind
&& is_lint_allowed(cx, REF_PATTERNS, arg.pat.hir_id)
&& !arg.span.in_external_macro(cx.tcx.sess.source_map())
{
span_lint_hir(
cx,
TOPLEVEL_REF_ARG,
arg.hir_id,
arg.pat.span,
"`ref` directly on a function parameter does not prevent taking ownership of the passed argument. \
Consider using a reference type instead",
);
}
}
}
}
fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
if let StmtKind::Let(local) = stmt.kind
&& let PatKind::Binding(BindingMode(ByRef::Yes(mutabl), _), .., name, None) = local.pat.kind
&& let Some(init) = local.init
// Do not emit if clippy::ref_patterns is not allowed to avoid having two lints for the same issue.
&& is_lint_allowed(cx, REF_PATTERNS, local.pat.hir_id)
&& !stmt.span.in_external_macro(cx.tcx.sess.source_map())
{
let ctxt = local.span.ctxt();
let mut app = Applicability::MachineApplicable;
let sugg_init = Sugg::hir_with_context(cx, init, ctxt, "..", &mut app);
let (mutopt, initref) = if mutabl == Mutability::Mut {
("mut ", sugg_init.mut_addr())
} else {
("", sugg_init.addr())
};
let tyopt = if let Some(ty) = local.ty {
let ty_snip = snippet_with_context(cx, ty.span, ctxt, "_", &mut app).0;
format!(": &{mutopt}{ty_snip}")
} else {
String::new()
};
span_lint_hir_and_then(
cx,
TOPLEVEL_REF_ARG,
init.hir_id,
local.pat.span,
"`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
|diag| {
diag.span_suggestion(
stmt.span,
"try",
format!("let {name}{tyopt} = {initref};", name = snippet(cx, name.span, ".."),),
app,
);
},
);
}
if let StmtKind::Semi(expr) = stmt.kind
&& let ExprKind::Binary(binop, a, b) = &expr.kind
&& matches!(binop.node, BinOpKind::And | BinOpKind::Or)
&& !stmt.span.from_expansion()
&& expr.span.eq_ctxt(stmt.span)
{
span_lint_hir_and_then(
cx,
SHORT_CIRCUIT_STATEMENT,
expr.hir_id,
stmt.span,
"boolean short circuit operator in statement may be clearer using an explicit test",
|diag| {
let mut app = Applicability::MachineApplicable;
let test = Sugg::hir_with_context(cx, a, expr.span.ctxt(), "_", &mut app);
let test = if binop.node == BinOpKind::Or { !test } else { test };
let then = Sugg::hir_with_context(cx, b, expr.span.ctxt(), "_", &mut app);
diag.span_suggestion(stmt.span, "replace it with", format!("if {test} {{ {then}; }}"), app);
},
);
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if expr.span.in_external_macro(cx.sess().source_map())
|| expr.span.desugaring_kind().is_some()
|| in_automatically_derived(cx.tcx, expr.hir_id)
{
return;
}
used_underscore_binding(cx, expr);
used_underscore_items(cx, expr);
}
}
fn used_underscore_items<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
let (def_id, ident) = match expr.kind {
ExprKind::Call(func, ..) => {
if let ExprKind::Path(QPath::Resolved(.., path)) = func.kind
&& let Some(last_segment) = path.segments.last()
&& let Res::Def(_, def_id) = last_segment.res
{
(def_id, last_segment.ident)
} else {
return;
}
},
ExprKind::MethodCall(path, ..) => {
if let Some(def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) {
(def_id, path.ident)
} else {
return;
}
},
ExprKind::Struct(QPath::Resolved(_, path), ..) => {
if let Some(last_segment) = path.segments.last()
&& let Res::Def(_, def_id) = last_segment.res
{
(def_id, last_segment.ident)
} else {
return;
}
},
_ => return,
};
let name = ident.name.as_str();
let definition_span = cx.tcx.def_span(def_id);
if name.starts_with('_')
&& !name.starts_with("__")
&& !definition_span.from_expansion()
&& def_id.is_local()
&& !cx.tcx.is_foreign_item(def_id)
{
span_lint_and_then(
cx,
USED_UNDERSCORE_ITEMS,
expr.span,
"used underscore-prefixed item".to_string(),
|diag| {
diag.span_note(definition_span, "item is defined here".to_string());
},
);
}
}
fn used_underscore_binding<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
let (definition_hir_id, ident) = match expr.kind {
ExprKind::Path(ref qpath) => {
if let QPath::Resolved(None, path) = qpath
&& let Res::Local(id) = path.res
&& is_used(cx, expr)
{
(id, last_path_segment(qpath).ident)
} else {
return;
}
},
ExprKind::Field(recv, ident) => {
if let Some(adt_def) = cx.typeck_results().expr_ty_adjusted(recv).ty_adt_def()
&& let Some(field) = adt_def.all_fields().find(|field| field.name == ident.name)
&& let Some(local_did) = field.did.as_local()
&& !cx.tcx.type_of(field.did).skip_binder().is_phantom_data()
{
(cx.tcx.local_def_id_to_hir_id(local_did), ident)
} else {
return;
}
},
_ => return,
};
let name = ident.name.as_str();
if name.starts_with('_')
&& !name.starts_with("__")
&& let definition_span = cx.tcx.hir_span(definition_hir_id)
&& !definition_span.from_expansion()
&& !fulfill_or_allowed(cx, USED_UNDERSCORE_BINDING, [expr.hir_id, definition_hir_id])
{
span_lint_and_then(
cx,
USED_UNDERSCORE_BINDING,
expr.span,
"used underscore-prefixed binding".to_string(),
|diag| {
diag.span_note(definition_span, "binding is defined here".to_string());
},
);
}
}
/// Heuristic to see if an expression is used. Should be compatible with
/// `unused_variables`'s idea
/// of what it means for an expression to be "used".
fn is_used(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
get_parent_expr(cx, expr).is_none_or(|parent| match parent.kind {
ExprKind::Assign(_, rhs, _) | ExprKind::AssignOp(_, _, rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr),
_ => is_used(cx, parent),
})
}