| use clippy_config::Conf; |
| use clippy_utils::diagnostics::span_lint_and_sugg; |
| use clippy_utils::msrvs::{self, Msrv}; |
| use clippy_utils::source::snippet_with_applicability; |
| use clippy_utils::{SpanlessEq, is_in_const_context, is_integer_literal, sym}; |
| use rustc_errors::Applicability; |
| use rustc_hir::{BinOpKind, Expr, ExprKind, QPath, TyKind}; |
| use rustc_lint::{LateContext, LateLintPass, LintContext}; |
| use rustc_session::impl_lint_pass; |
| use rustc_span::Symbol; |
| |
| declare_clippy_lint! { |
| /// ### What it does |
| /// Checks for explicit bounds checking when casting. |
| /// |
| /// ### Why is this bad? |
| /// Reduces the readability of statements & is error prone. |
| /// |
| /// ### Example |
| /// ```no_run |
| /// # let foo: u32 = 5; |
| /// foo <= i32::MAX as u32; |
| /// ``` |
| /// |
| /// Use instead: |
| /// ```no_run |
| /// # let foo = 1; |
| /// # #[allow(unused)] |
| /// i32::try_from(foo).is_ok(); |
| /// ``` |
| #[clippy::version = "1.37.0"] |
| pub CHECKED_CONVERSIONS, |
| pedantic, |
| "`try_from` could replace manual bounds checking when casting" |
| } |
| |
| pub struct CheckedConversions { |
| msrv: Msrv, |
| } |
| |
| impl CheckedConversions { |
| pub fn new(conf: &'static Conf) -> Self { |
| Self { msrv: conf.msrv } |
| } |
| } |
| |
| impl_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]); |
| |
| impl LateLintPass<'_> for CheckedConversions { |
| fn check_expr(&mut self, cx: &LateContext<'_>, item: &Expr<'_>) { |
| if let ExprKind::Binary(op, lhs, rhs) = item.kind |
| && let (lt1, gt1, op2) = match op.node { |
| BinOpKind::Le => (lhs, rhs, None), |
| BinOpKind::Ge => (rhs, lhs, None), |
| BinOpKind::And |
| if let ExprKind::Binary(op1, lhs1, rhs1) = lhs.kind |
| && let ExprKind::Binary(op2, lhs2, rhs2) = rhs.kind |
| && let Some((lt1, gt1)) = read_le_ge(op1.node, lhs1, rhs1) |
| && let Some((lt2, gt2)) = read_le_ge(op2.node, lhs2, rhs2) => |
| { |
| (lt1, gt1, Some((lt2, gt2))) |
| }, |
| _ => return, |
| } |
| && !item.span.in_external_macro(cx.sess().source_map()) |
| && !is_in_const_context(cx) |
| && let Some(cv) = match op2 { |
| // todo: check for case signed -> larger unsigned == only x >= 0 |
| None => check_upper_bound(lt1, gt1).filter(|cv| cv.cvt == ConversionType::FromUnsigned), |
| Some((lt2, gt2)) => { |
| let upper_lower = |lt1, gt1, lt2, gt2| { |
| check_upper_bound(lt1, gt1) |
| .zip(check_lower_bound(lt2, gt2)) |
| .and_then(|(l, r)| l.combine(r, cx)) |
| }; |
| upper_lower(lt1, gt1, lt2, gt2).or_else(|| upper_lower(lt2, gt2, lt1, gt1)) |
| }, |
| } |
| && let Some(to_type) = cv.to_type |
| && self.msrv.meets(cx, msrvs::TRY_FROM) |
| { |
| let mut applicability = Applicability::MachineApplicable; |
| let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut applicability); |
| span_lint_and_sugg( |
| cx, |
| CHECKED_CONVERSIONS, |
| item.span, |
| "checked cast can be simplified", |
| "try", |
| format!("{to_type}::try_from({snippet}).is_ok()"), |
| applicability, |
| ); |
| } |
| } |
| } |
| |
| /// Contains the result of a tried conversion check |
| #[derive(Clone, Debug)] |
| struct Conversion<'a> { |
| cvt: ConversionType, |
| expr_to_cast: &'a Expr<'a>, |
| to_type: Option<Symbol>, |
| } |
| |
| /// The kind of conversion that is checked |
| #[derive(Copy, Clone, Debug, PartialEq, Eq)] |
| enum ConversionType { |
| SignedToUnsigned, |
| SignedToSigned, |
| FromUnsigned, |
| } |
| |
| /// Attempts to read either `<=` or `>=` with a normalized operand order. |
| fn read_le_ge<'tcx>( |
| op: BinOpKind, |
| lhs: &'tcx Expr<'tcx>, |
| rhs: &'tcx Expr<'tcx>, |
| ) -> Option<(&'tcx Expr<'tcx>, &'tcx Expr<'tcx>)> { |
| match op { |
| BinOpKind::Le => Some((lhs, rhs)), |
| BinOpKind::Ge => Some((rhs, lhs)), |
| _ => None, |
| } |
| } |
| |
| impl<'a> Conversion<'a> { |
| /// Combine multiple conversions if the are compatible |
| pub fn combine(self, other: Self, cx: &LateContext<'_>) -> Option<Conversion<'a>> { |
| if self.is_compatible(&other, cx) { |
| // Prefer a Conversion that contains a type-constraint |
| Some(if self.to_type.is_some() { self } else { other }) |
| } else { |
| None |
| } |
| } |
| |
| /// Checks if two conversions are compatible |
| /// same type of conversion, same 'castee' and same 'to type' |
| pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_>) -> bool { |
| (self.cvt == other.cvt) |
| && (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast)) |
| && (self.has_compatible_to_type(other)) |
| } |
| |
| /// Checks if the to-type is the same (if there is a type constraint) |
| fn has_compatible_to_type(&self, other: &Self) -> bool { |
| match (self.to_type, other.to_type) { |
| (Some(l), Some(r)) => l == r, |
| _ => true, |
| } |
| } |
| |
| /// Try to construct a new conversion if the conversion type is valid |
| fn try_new(expr_to_cast: &'a Expr<'_>, from_type: Symbol, to_type: Symbol) -> Option<Conversion<'a>> { |
| ConversionType::try_new(from_type, to_type).map(|cvt| Conversion { |
| cvt, |
| expr_to_cast, |
| to_type: Some(to_type), |
| }) |
| } |
| |
| /// Construct a new conversion without type constraint |
| fn new_any(expr_to_cast: &'a Expr<'_>) -> Conversion<'a> { |
| Conversion { |
| cvt: ConversionType::SignedToUnsigned, |
| expr_to_cast, |
| to_type: None, |
| } |
| } |
| } |
| |
| impl ConversionType { |
| /// Creates a conversion type if the type is allowed & conversion is valid |
| #[must_use] |
| fn try_new(from: Symbol, to: Symbol) -> Option<Self> { |
| if UINTS.contains(&from) { |
| Some(Self::FromUnsigned) |
| } else if SINTS.contains(&from) { |
| if UINTS.contains(&to) { |
| Some(Self::SignedToUnsigned) |
| } else if SINTS.contains(&to) { |
| Some(Self::SignedToSigned) |
| } else { |
| None |
| } |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Check for `expr <= (to_type::MAX as from_type)` |
| fn check_upper_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> { |
| if let Some((from, to)) = get_types_from_cast(gt, INTS, sym::max_value, sym::MAX) { |
| Conversion::try_new(lt, from, to) |
| } else { |
| None |
| } |
| } |
| |
| /// Check for `expr >= 0|(to_type::MIN as from_type)` |
| fn check_lower_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> { |
| check_lower_bound_zero(gt, lt).or_else(|| check_lower_bound_min(gt, lt)) |
| } |
| |
| /// Check for `expr >= 0` |
| fn check_lower_bound_zero<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> { |
| is_integer_literal(check, 0).then(|| Conversion::new_any(candidate)) |
| } |
| |
| /// Check for `expr >= (to_type::MIN as from_type)` |
| fn check_lower_bound_min<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> { |
| if let Some((from, to)) = get_types_from_cast(check, SINTS, sym::min_value, sym::MIN) { |
| Conversion::try_new(candidate, from, to) |
| } else { |
| None |
| } |
| } |
| |
| /// Tries to extract the from- and to-type from a cast expression |
| fn get_types_from_cast( |
| expr: &Expr<'_>, |
| types: &[Symbol], |
| func: Symbol, |
| assoc_const: Symbol, |
| ) -> Option<(Symbol, Symbol)> { |
| // `to_type::max_value() as from_type` |
| // or `to_type::MAX as from_type` |
| let call_from_cast: Option<(&Expr<'_>, Symbol)> = if let ExprKind::Cast(limit, from_type) = &expr.kind |
| // to_type::max_value(), from_type |
| && let TyKind::Path(from_type_path) = &from_type.kind |
| && let Some(from_sym) = int_ty_to_sym(from_type_path) |
| { |
| Some((limit, from_sym)) |
| } else { |
| None |
| }; |
| |
| // `from_type::from(to_type::max_value())` |
| let limit_from: Option<(&Expr<'_>, Symbol)> = call_from_cast.or_else(|| { |
| if let ExprKind::Call(from_func, [limit]) = &expr.kind |
| // `from_type::from, to_type::max_value()` |
| // `from_type::from` |
| && let ExprKind::Path(path) = &from_func.kind |
| && let Some(from_sym) = get_implementing_type(path, INTS, sym::from) |
| { |
| Some((limit, from_sym)) |
| } else { |
| None |
| } |
| }); |
| |
| if let Some((limit, from_type)) = limit_from { |
| match limit.kind { |
| // `from_type::from(_)` |
| ExprKind::Call(path, _) => { |
| if let ExprKind::Path(ref path) = path.kind |
| // `to_type` |
| && let Some(to_type) = get_implementing_type(path, types, func) |
| { |
| return Some((from_type, to_type)); |
| } |
| }, |
| // `to_type::MAX` |
| ExprKind::Path(ref path) => { |
| if let Some(to_type) = get_implementing_type(path, types, assoc_const) { |
| return Some((from_type, to_type)); |
| } |
| }, |
| _ => {}, |
| } |
| } |
| None |
| } |
| |
| /// Gets the type which implements the called function |
| fn get_implementing_type(path: &QPath<'_>, candidates: &[Symbol], function: Symbol) -> Option<Symbol> { |
| if let QPath::TypeRelative(ty, path) = &path |
| && path.ident.name == function |
| && let TyKind::Path(QPath::Resolved(None, tp)) = &ty.kind |
| && let [int] = tp.segments |
| { |
| candidates.iter().find(|c| int.ident.name == **c).copied() |
| } else { |
| None |
| } |
| } |
| |
| /// Gets the type as a string, if it is a supported integer |
| fn int_ty_to_sym(path: &QPath<'_>) -> Option<Symbol> { |
| if let QPath::Resolved(_, path) = *path |
| && let [ty] = path.segments |
| { |
| INTS.iter().find(|c| ty.ident.name == **c).copied() |
| } else { |
| None |
| } |
| } |
| |
| // Constants |
| const UINTS: &[Symbol] = &[sym::u8, sym::u16, sym::u32, sym::u64, sym::usize]; |
| const SINTS: &[Symbol] = &[sym::i8, sym::i16, sym::i32, sym::i64, sym::isize]; |
| const INTS: &[Symbol] = &[ |
| sym::u8, |
| sym::u16, |
| sym::u32, |
| sym::u64, |
| sym::usize, |
| sym::i8, |
| sym::i16, |
| sym::i32, |
| sym::i64, |
| sym::isize, |
| ]; |