| use reexport::*; |
| use rustc::lint::*; |
| use rustc::hir::def::Def; |
| use rustc::hir::*; |
| use rustc::hir::intravisit::{Visitor, walk_ty, walk_ty_param_bound, walk_fn_decl, walk_generics}; |
| use std::collections::{HashSet, HashMap}; |
| use syntax::codemap::Span; |
| use utils::{in_external_macro, span_lint}; |
| |
| /// **What it does:** This lint checks for lifetime annotations which can be removed by relying on lifetime elision. |
| /// |
| /// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code. |
| /// |
| /// **Known problems:** Potential false negatives: we bail out if the function has a `where` clause where lifetimes are mentioned. |
| /// |
| /// **Example:** `fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { x }` |
| declare_lint! { |
| pub NEEDLESS_LIFETIMES, |
| Warn, |
| "using explicit lifetimes for references in function arguments when elision rules \ |
| would allow omitting them" |
| } |
| |
| /// **What it does:** This lint checks for lifetimes in generics that are never used anywhere else. |
| /// |
| /// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code. |
| /// |
| /// **Known problems:** None |
| /// |
| /// **Example:** `fn unused_lifetime<'a>(x: u8) { .. }` |
| declare_lint! { |
| pub UNUSED_LIFETIMES, |
| Warn, |
| "unused lifetimes in function definitions" |
| } |
| |
| #[derive(Copy,Clone)] |
| pub struct LifetimePass; |
| |
| impl LintPass for LifetimePass { |
| fn get_lints(&self) -> LintArray { |
| lint_array!(NEEDLESS_LIFETIMES, UNUSED_LIFETIMES) |
| } |
| } |
| |
| impl LateLintPass for LifetimePass { |
| fn check_item(&mut self, cx: &LateContext, item: &Item) { |
| if let ItemFn(ref decl, _, _, _, ref generics, _) = item.node { |
| check_fn_inner(cx, decl, None, &generics, item.span); |
| } |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) { |
| if let ImplItemKind::Method(ref sig, _) = item.node { |
| check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span); |
| } |
| } |
| |
| fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) { |
| if let MethodTraitItem(ref sig, _) = item.node { |
| check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span); |
| } |
| } |
| } |
| |
| /// The lifetime of a &-reference. |
| #[derive(PartialEq, Eq, Hash, Debug)] |
| enum RefLt { |
| Unnamed, |
| Static, |
| Named(Name), |
| } |
| |
| fn bound_lifetimes(bound: &TyParamBound) -> Option<HirVec<&Lifetime>> { |
| if let TraitTyParamBound(ref trait_ref, _) = *bound { |
| let lt = trait_ref.trait_ref |
| .path |
| .segments |
| .last() |
| .expect("a path must have at least one segment") |
| .parameters |
| .lifetimes(); |
| |
| Some(lt) |
| } else { |
| None |
| } |
| } |
| |
| fn check_fn_inner(cx: &LateContext, decl: &FnDecl, slf: Option<&ExplicitSelf>, generics: &Generics, span: Span) { |
| if in_external_macro(cx, span) || has_where_lifetimes(cx, &generics.where_clause) { |
| return; |
| } |
| |
| let bounds_lts = generics.ty_params |
| .iter() |
| .flat_map(|ref typ| typ.bounds.iter().filter_map(bound_lifetimes).flat_map(|lts| lts)); |
| |
| if could_use_elision(cx, decl, slf, &generics.lifetimes, bounds_lts) { |
| span_lint(cx, |
| NEEDLESS_LIFETIMES, |
| span, |
| "explicit lifetimes given in parameter types where they could be elided"); |
| } |
| report_extra_lifetimes(cx, decl, &generics, slf); |
| } |
| |
| fn could_use_elision<'a, T: Iterator<Item = &'a Lifetime>>(cx: &LateContext, func: &FnDecl, slf: Option<&ExplicitSelf>, |
| named_lts: &[LifetimeDef], bounds_lts: T) |
| -> bool { |
| // There are two scenarios where elision works: |
| // * no output references, all input references have different LT |
| // * output references, exactly one input reference with same LT |
| // All lifetimes must be unnamed, 'static or defined without bounds on the |
| // level of the current item. |
| |
| // check named LTs |
| let allowed_lts = allowed_lts_from(named_lts); |
| |
| // these will collect all the lifetimes for references in arg/return types |
| let mut input_visitor = RefVisitor::new(cx); |
| let mut output_visitor = RefVisitor::new(cx); |
| |
| // extract lifetime in "self" argument for methods (there is a "self" argument |
| // in func.inputs, but its type is TyInfer) |
| if let Some(slf) = slf { |
| match slf.node { |
| SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt), |
| SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty), |
| _ => {} |
| } |
| } |
| // extract lifetimes in input argument types |
| for arg in &func.inputs { |
| input_visitor.visit_ty(&arg.ty); |
| } |
| // extract lifetimes in output type |
| if let Return(ref ty) = func.output { |
| output_visitor.visit_ty(ty); |
| } |
| |
| let input_lts = lts_from_bounds(input_visitor.into_vec(), bounds_lts); |
| let output_lts = output_visitor.into_vec(); |
| |
| // check for lifetimes from higher scopes |
| for lt in input_lts.iter().chain(output_lts.iter()) { |
| if !allowed_lts.contains(lt) { |
| return false; |
| } |
| } |
| |
| // no input lifetimes? easy case! |
| if input_lts.is_empty() { |
| false |
| } else if output_lts.is_empty() { |
| // no output lifetimes, check distinctness of input lifetimes |
| |
| // only unnamed and static, ok |
| if input_lts.iter().all(|lt| *lt == RefLt::Unnamed || *lt == RefLt::Static) { |
| return false; |
| } |
| // we have no output reference, so we only need all distinct lifetimes |
| input_lts.len() == unique_lifetimes(&input_lts) |
| } else { |
| // we have output references, so we need one input reference, |
| // and all output lifetimes must be the same |
| if unique_lifetimes(&output_lts) > 1 { |
| return false; |
| } |
| if input_lts.len() == 1 { |
| match (&input_lts[0], &output_lts[0]) { |
| (&RefLt::Named(n1), &RefLt::Named(n2)) if n1 == n2 => true, |
| (&RefLt::Named(_), &RefLt::Unnamed) => true, |
| _ => false, // already elided, different named lifetimes |
| // or something static going on |
| } |
| } else { |
| false |
| } |
| } |
| } |
| |
| fn allowed_lts_from(named_lts: &[LifetimeDef]) -> HashSet<RefLt> { |
| let mut allowed_lts = HashSet::new(); |
| for lt in named_lts { |
| if lt.bounds.is_empty() { |
| allowed_lts.insert(RefLt::Named(lt.lifetime.name)); |
| } |
| } |
| allowed_lts.insert(RefLt::Unnamed); |
| allowed_lts.insert(RefLt::Static); |
| allowed_lts |
| } |
| |
| fn lts_from_bounds<'a, T: Iterator<Item = &'a Lifetime>>(mut vec: Vec<RefLt>, bounds_lts: T) -> Vec<RefLt> { |
| for lt in bounds_lts { |
| if lt.name.as_str() != "'static" { |
| vec.push(RefLt::Named(lt.name)); |
| } |
| } |
| |
| vec |
| } |
| |
| /// Number of unique lifetimes in the given vector. |
| fn unique_lifetimes(lts: &[RefLt]) -> usize { |
| lts.iter().collect::<HashSet<_>>().len() |
| } |
| |
| /// A visitor usable for `rustc_front::visit::walk_ty()`. |
| struct RefVisitor<'v, 't: 'v> { |
| cx: &'v LateContext<'v, 't>, |
| lts: Vec<RefLt>, |
| } |
| |
| impl<'v, 't> RefVisitor<'v, 't> { |
| fn new(cx: &'v LateContext<'v, 't>) -> RefVisitor<'v, 't> { |
| RefVisitor { |
| cx: cx, |
| lts: Vec::new(), |
| } |
| } |
| |
| fn record(&mut self, lifetime: &Option<Lifetime>) { |
| if let Some(ref lt) = *lifetime { |
| if lt.name.as_str() == "'static" { |
| self.lts.push(RefLt::Static); |
| } else { |
| self.lts.push(RefLt::Named(lt.name)); |
| } |
| } else { |
| self.lts.push(RefLt::Unnamed); |
| } |
| } |
| |
| fn into_vec(self) -> Vec<RefLt> { |
| self.lts |
| } |
| |
| fn collect_anonymous_lifetimes(&mut self, path: &Path, ty: &Ty) { |
| let last_path_segment = path.segments.last().map(|s| &s.parameters); |
| if let Some(&AngleBracketedParameters(ref params)) = last_path_segment { |
| if params.lifetimes.is_empty() { |
| if let Some(def) = self.cx.tcx.def_map.borrow().get(&ty.id).map(|r| r.full_def()) { |
| match def { |
| Def::TyAlias(def_id) | Def::Struct(def_id) => { |
| let type_scheme = self.cx.tcx.lookup_item_type(def_id); |
| for _ in type_scheme.generics.regions.as_slice() { |
| self.record(&None); |
| } |
| } |
| Def::Trait(def_id) => { |
| let trait_def = self.cx.tcx.trait_defs.borrow()[&def_id]; |
| for _ in &trait_def.generics.regions { |
| self.record(&None); |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| impl<'v, 't> Visitor<'v> for RefVisitor<'v, 't> { |
| // for lifetimes as parameters of generics |
| fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { |
| self.record(&Some(*lifetime)); |
| } |
| |
| fn visit_ty(&mut self, ty: &'v Ty) { |
| match ty.node { |
| TyRptr(None, _) => { |
| self.record(&None); |
| } |
| TyPath(_, ref path) => { |
| self.collect_anonymous_lifetimes(path, ty); |
| } |
| _ => {} |
| } |
| walk_ty(self, ty); |
| } |
| } |
| |
| /// Are any lifetimes mentioned in the `where` clause? If yes, we don't try to |
| /// reason about elision. |
| fn has_where_lifetimes(cx: &LateContext, where_clause: &WhereClause) -> bool { |
| for predicate in &where_clause.predicates { |
| match *predicate { |
| WherePredicate::RegionPredicate(..) => return true, |
| WherePredicate::BoundPredicate(ref pred) => { |
| // a predicate like F: Trait or F: for<'a> Trait<'a> |
| let mut visitor = RefVisitor::new(cx); |
| // walk the type F, it may not contain LT refs |
| walk_ty(&mut visitor, &pred.bounded_ty); |
| if !visitor.lts.is_empty() { |
| return true; |
| } |
| // if the bounds define new lifetimes, they are fine to occur |
| let allowed_lts = allowed_lts_from(&pred.bound_lifetimes); |
| // now walk the bounds |
| for bound in pred.bounds.iter() { |
| walk_ty_param_bound(&mut visitor, bound); |
| } |
| // and check that all lifetimes are allowed |
| for lt in visitor.into_vec() { |
| if !allowed_lts.contains(<) { |
| return true; |
| } |
| } |
| } |
| WherePredicate::EqPredicate(ref pred) => { |
| let mut visitor = RefVisitor::new(cx); |
| walk_ty(&mut visitor, &pred.ty); |
| if !visitor.lts.is_empty() { |
| return true; |
| } |
| } |
| } |
| } |
| false |
| } |
| |
| struct LifetimeChecker(HashMap<Name, Span>); |
| |
| impl<'v> Visitor<'v> for LifetimeChecker { |
| // for lifetimes as parameters of generics |
| fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { |
| self.0.remove(&lifetime.name); |
| } |
| |
| fn visit_lifetime_def(&mut self, _: &'v LifetimeDef) { |
| // don't actually visit `<'a>` or `<'a: 'b>` |
| // we've already visited the `'a` declarations and |
| // don't want to spuriously remove them |
| // `'b` in `'a: 'b` is useless unless used elsewhere in |
| // a non-lifetime bound |
| } |
| } |
| |
| fn report_extra_lifetimes(cx: &LateContext, func: &FnDecl, generics: &Generics, slf: Option<&ExplicitSelf>) { |
| let hs = generics.lifetimes |
| .iter() |
| .map(|lt| (lt.lifetime.name, lt.lifetime.span)) |
| .collect(); |
| let mut checker = LifetimeChecker(hs); |
| |
| walk_generics(&mut checker, generics); |
| walk_fn_decl(&mut checker, func); |
| |
| if let Some(slf) = slf { |
| match slf.node { |
| SelfRegion(Some(ref lt), _, _) => checker.visit_lifetime(lt), |
| SelfExplicit(ref t, _) => walk_ty(&mut checker, t), |
| _ => {} |
| } |
| } |
| |
| for &v in checker.0.values() { |
| span_lint(cx, UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition"); |
| } |
| } |