| use rustc::lint::*; |
| use rustc::ty::subst::Subst; |
| use rustc::ty::TypeVariants; |
| use rustc::ty::fast_reject::simplify_type; |
| use rustc::ty; |
| use rustc::hir::*; |
| use syntax::ast::{Attribute, MetaItemKind}; |
| use syntax::codemap::Span; |
| use utils::{CLONE_TRAIT_PATH, HASH_PATH}; |
| use utils::{match_path, span_lint_and_then}; |
| |
| /// **What it does:** This lint warns about deriving `Hash` but implementing `PartialEq` |
| /// explicitly. |
| /// |
| /// **Why is this bad?** The implementation of these traits must agree (for example for use with |
| /// `HashMap`) so it’s probably a bad idea to use a default-generated `Hash` implementation with |
| /// an explicitly defined `PartialEq`. In particular, the following must hold for any type: |
| /// |
| /// ```rust |
| /// k1 == k2 ⇒ hash(k1) == hash(k2) |
| /// ``` |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// #[derive(Hash)] |
| /// struct Foo; |
| /// |
| /// impl PartialEq for Foo { |
| /// .. |
| /// } |
| /// ``` |
| declare_lint! { |
| pub DERIVE_HASH_XOR_EQ, |
| Warn, |
| "deriving `Hash` but implementing `PartialEq` explicitly" |
| } |
| |
| /// **What it does:** This lint warns about explicit `Clone` implementation for `Copy` types. |
| /// |
| /// **Why is this bad?** To avoid surprising behaviour, these traits should agree and the behaviour |
| /// of `Copy` cannot be overridden. In almost all situations a `Copy` type should have a `Clone` |
| /// implementation that does nothing more than copy the object, which is what |
| /// `#[derive(Copy, Clone)]` gets you. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// #[derive(Copy)] |
| /// struct Foo; |
| /// |
| /// impl Clone for Foo { |
| /// .. |
| /// } |
| /// ``` |
| declare_lint! { |
| pub EXPL_IMPL_CLONE_ON_COPY, |
| Warn, |
| "implementing `Clone` explicitly on `Copy` types" |
| } |
| |
| pub struct Derive; |
| |
| impl LintPass for Derive { |
| fn get_lints(&self) -> LintArray { |
| lint_array!(EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ) |
| } |
| } |
| |
| impl LateLintPass for Derive { |
| fn check_item(&mut self, cx: &LateContext, item: &Item) { |
| if_let_chain! {[ |
| let ItemImpl(_, _, _, Some(ref trait_ref), _, _) = item.node |
| ], { |
| let ty = cx.tcx.lookup_item_type(cx.tcx.map.local_def_id(item.id)).ty; |
| let is_automatically_derived = item.attrs.iter().any(is_automatically_derived); |
| |
| check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived); |
| |
| if !is_automatically_derived { |
| check_copy_clone(cx, item, trait_ref, ty); |
| } |
| }} |
| } |
| } |
| |
| /// Implementation of the `DERIVE_HASH_XOR_EQ` lint. |
| fn check_hash_peq(cx: &LateContext, span: Span, trait_ref: &TraitRef, ty: ty::Ty, hash_is_automatically_derived: bool) { |
| if_let_chain! {[ |
| match_path(&trait_ref.path, &HASH_PATH), |
| let Some(peq_trait_def_id) = cx.tcx.lang_items.eq_trait() |
| ], { |
| let peq_trait_def = cx.tcx.lookup_trait_def(peq_trait_def_id); |
| |
| cx.tcx.populate_implementations_for_trait_if_necessary(peq_trait_def.trait_ref.def_id); |
| let peq_impls = peq_trait_def.borrow_impl_lists(cx.tcx).1; |
| |
| // Look for the PartialEq implementations for `ty` |
| if_let_chain! {[ |
| let Some(simpl_ty) = simplify_type(cx.tcx, ty, false), |
| let Some(impl_ids) = peq_impls.get(&simpl_ty) |
| ], { |
| for &impl_id in impl_ids { |
| let peq_is_automatically_derived = cx.tcx.get_attrs(impl_id).iter().any(is_automatically_derived); |
| |
| if peq_is_automatically_derived == hash_is_automatically_derived { |
| return; |
| } |
| |
| let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); |
| |
| // Only care about `impl PartialEq<Foo> for Foo` |
| if trait_ref.input_types()[0] == ty { |
| let mess = if peq_is_automatically_derived { |
| "you are implementing `Hash` explicitly but have derived `PartialEq`" |
| } else { |
| "you are deriving `Hash` but have implemented `PartialEq` explicitly" |
| }; |
| |
| span_lint_and_then( |
| cx, DERIVE_HASH_XOR_EQ, span, |
| mess, |
| |db| { |
| if let Some(node_id) = cx.tcx.map.as_local_node_id(impl_id) { |
| db.span_note( |
| cx.tcx.map.span(node_id), |
| "`PartialEq` implemented here" |
| ); |
| } |
| }); |
| } |
| } |
| }} |
| }} |
| } |
| |
| /// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint. |
| fn check_copy_clone<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, item: &Item, trait_ref: &TraitRef, ty: ty::Ty<'tcx>) { |
| if match_path(&trait_ref.path, &CLONE_TRAIT_PATH) { |
| let parameter_environment = ty::ParameterEnvironment::for_item(cx.tcx, item.id); |
| let subst_ty = ty.subst(cx.tcx, ¶meter_environment.free_substs); |
| |
| if subst_ty.moves_by_default(¶meter_environment, item.span) { |
| return; // ty is not Copy |
| } |
| |
| // Some types are not Clone by default but could be cloned `by hand` if necessary |
| match ty.sty { |
| TypeVariants::TyEnum(def, substs) | TypeVariants::TyStruct(def, substs) => { |
| for variant in &def.variants { |
| for field in &variant.fields { |
| match field.ty(cx.tcx, substs).sty { |
| TypeVariants::TyArray(_, size) if size > 32 => { |
| return; |
| } |
| TypeVariants::TyFnPtr(..) => { |
| return; |
| } |
| TypeVariants::TyTuple(ref tys) if tys.len() > 12 => { |
| return; |
| } |
| _ => (), |
| } |
| } |
| } |
| } |
| _ => (), |
| } |
| |
| span_lint_and_then(cx, |
| EXPL_IMPL_CLONE_ON_COPY, |
| item.span, |
| "you are implementing `Clone` explicitly on a `Copy` type", |
| |db| { |
| db.span_note(item.span, "consider deriving `Clone` or removing `Copy`"); |
| }); |
| } |
| } |
| |
| /// Checks for the `#[automatically_derived]` attribute all `#[derive]`d implementations have. |
| fn is_automatically_derived(attr: &Attribute) -> bool { |
| if let MetaItemKind::Word(ref word) = attr.node.value.node { |
| word == &"automatically_derived" |
| } else { |
| false |
| } |
| } |