| #![allow(cast_possible_truncation)] |
| |
| use rustc::lint::LateContext; |
| use rustc::hir::def::Def; |
| use rustc_const_eval::lookup_const_by_id; |
| use rustc_const_math::{ConstInt, ConstUsize, ConstIsize}; |
| use rustc::hir::*; |
| use std::cmp::Ordering::{self, Equal}; |
| use std::cmp::PartialOrd; |
| use std::hash::{Hash, Hasher}; |
| use std::mem; |
| use std::rc::Rc; |
| use syntax::ast::{FloatTy, LitIntType, LitKind, StrStyle, UintTy, IntTy, NodeId}; |
| use syntax::ptr::P; |
| |
| #[derive(Debug, Copy, Clone)] |
| pub enum FloatWidth { |
| F32, |
| F64, |
| Any, |
| } |
| |
| impl From<FloatTy> for FloatWidth { |
| fn from(ty: FloatTy) -> FloatWidth { |
| match ty { |
| FloatTy::F32 => FloatWidth::F32, |
| FloatTy::F64 => FloatWidth::F64, |
| } |
| } |
| } |
| |
| /// A `LitKind`-like enum to fold constant `Expr`s into. |
| #[derive(Debug, Clone)] |
| pub enum Constant { |
| /// a String "abc" |
| Str(String, StrStyle), |
| /// a Binary String b"abc" |
| Binary(Rc<Vec<u8>>), |
| /// a single char 'a' |
| Char(char), |
| /// an integer, third argument is whether the value is negated |
| Int(ConstInt), |
| /// a float with given type |
| Float(String, FloatWidth), |
| /// true or false |
| Bool(bool), |
| /// an array of constants |
| Vec(Vec<Constant>), |
| /// also an array, but with only one constant, repeated N times |
| Repeat(Box<Constant>, usize), |
| /// a tuple of constants |
| Tuple(Vec<Constant>), |
| } |
| |
| impl Constant { |
| /// Convert to `u64` if possible. |
| /// |
| /// # panics |
| /// |
| /// If the constant could not be converted to `u64` losslessly. |
| fn as_u64(&self) -> u64 { |
| if let Constant::Int(val) = *self { |
| val.to_u64().expect("negative constant can't be casted to `u64`") |
| } else { |
| panic!("Could not convert a `{:?}` to `u64`", self); |
| } |
| } |
| } |
| |
| impl PartialEq for Constant { |
| fn eq(&self, other: &Constant) -> bool { |
| match (self, other) { |
| (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => ls == rs && l_sty == r_sty, |
| (&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r, |
| (&Constant::Char(l), &Constant::Char(r)) => l == r, |
| (&Constant::Int(l), &Constant::Int(r)) => { |
| l.is_negative() == r.is_negative() && l.to_u128_unchecked() == r.to_u128_unchecked() |
| }, |
| (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { |
| // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have |
| // `Fw32 == Fw64` so don’t compare them |
| match (ls.parse::<f64>(), rs.parse::<f64>()) { |
| // mem::transmute is required to catch non-matching 0.0, -0.0, and NaNs |
| (Ok(l), Ok(r)) => unsafe { mem::transmute::<f64, u64>(l) == mem::transmute::<f64, u64>(r) }, |
| _ => false, |
| } |
| }, |
| (&Constant::Bool(l), &Constant::Bool(r)) => l == r, |
| (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l == r, |
| (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, |
| (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r, |
| _ => false, //TODO: Are there inter-type equalities? |
| } |
| } |
| } |
| |
| impl Hash for Constant { |
| fn hash<H>(&self, state: &mut H) |
| where H: Hasher |
| { |
| match *self { |
| Constant::Str(ref s, ref k) => { |
| s.hash(state); |
| k.hash(state); |
| }, |
| Constant::Binary(ref b) => { |
| b.hash(state); |
| }, |
| Constant::Char(c) => { |
| c.hash(state); |
| }, |
| Constant::Int(i) => { |
| i.to_u128_unchecked().hash(state); |
| i.is_negative().hash(state); |
| }, |
| Constant::Float(ref f, _) => { |
| // don’t use the width here because of PartialEq implementation |
| if let Ok(f) = f.parse::<f64>() { |
| unsafe { mem::transmute::<f64, u64>(f) }.hash(state); |
| } |
| }, |
| Constant::Bool(b) => { |
| b.hash(state); |
| }, |
| Constant::Vec(ref v) | |
| Constant::Tuple(ref v) => { |
| v.hash(state); |
| }, |
| Constant::Repeat(ref c, l) => { |
| c.hash(state); |
| l.hash(state); |
| }, |
| } |
| } |
| } |
| |
| impl PartialOrd for Constant { |
| fn partial_cmp(&self, other: &Constant) -> Option<Ordering> { |
| match (self, other) { |
| (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => { |
| if l_sty == r_sty { |
| Some(ls.cmp(rs)) |
| } else { |
| None |
| } |
| }, |
| (&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)), |
| (&Constant::Int(l), &Constant::Int(r)) => Some(l.cmp(&r)), |
| (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { |
| match (ls.parse::<f64>(), rs.parse::<f64>()) { |
| (Ok(ref l), Ok(ref r)) => { |
| match (l.partial_cmp(r), l.is_sign_positive() == r.is_sign_positive()) { |
| // Check for comparison of -0.0 and 0.0 |
| (Some(Ordering::Equal), false) => None, |
| (x, _) => x, |
| } |
| }, |
| _ => None, |
| } |
| }, |
| (&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)), |
| (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) | |
| (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l.partial_cmp(r), |
| (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => { |
| match lv.partial_cmp(rv) { |
| Some(Equal) => Some(ls.cmp(rs)), |
| x => x, |
| } |
| }, |
| _ => None, //TODO: Are there any useful inter-type orderings? |
| } |
| } |
| } |
| |
| /// parse a `LitKind` to a `Constant` |
| #[allow(cast_possible_wrap)] |
| pub fn lit_to_constant(lit: &LitKind) -> Constant { |
| match *lit { |
| LitKind::Str(ref is, style) => Constant::Str(is.to_string(), style), |
| LitKind::Byte(b) => Constant::Int(ConstInt::U8(b)), |
| LitKind::ByteStr(ref s) => Constant::Binary(s.clone()), |
| LitKind::Char(c) => Constant::Char(c), |
| LitKind::Int(value, LitIntType::Unsuffixed) => Constant::Int(ConstInt::Infer(value)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::U8)) => Constant::Int(ConstInt::U8(value as u8)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::U16)) => Constant::Int(ConstInt::U16(value as u16)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::U32)) => Constant::Int(ConstInt::U32(value as u32)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::U64)) => Constant::Int(ConstInt::U64(value as u64)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::U128)) => Constant::Int(ConstInt::U128(value as u128)), |
| LitKind::Int(value, LitIntType::Unsigned(UintTy::Us)) => { |
| Constant::Int(ConstInt::Usize(ConstUsize::Us32(value as u32))) |
| }, |
| LitKind::Int(value, LitIntType::Signed(IntTy::I8)) => Constant::Int(ConstInt::I8(value as i8)), |
| LitKind::Int(value, LitIntType::Signed(IntTy::I16)) => Constant::Int(ConstInt::I16(value as i16)), |
| LitKind::Int(value, LitIntType::Signed(IntTy::I32)) => Constant::Int(ConstInt::I32(value as i32)), |
| LitKind::Int(value, LitIntType::Signed(IntTy::I64)) => Constant::Int(ConstInt::I64(value as i64)), |
| LitKind::Int(value, LitIntType::Signed(IntTy::I128)) => Constant::Int(ConstInt::I128(value as i128)), |
| LitKind::Int(value, LitIntType::Signed(IntTy::Is)) => { |
| Constant::Int(ConstInt::Isize(ConstIsize::Is32(value as i32))) |
| }, |
| LitKind::Float(ref is, ty) => Constant::Float(is.to_string(), ty.into()), |
| LitKind::FloatUnsuffixed(ref is) => Constant::Float(is.to_string(), FloatWidth::Any), |
| LitKind::Bool(b) => Constant::Bool(b), |
| } |
| } |
| |
| fn constant_not(o: Constant) -> Option<Constant> { |
| use self::Constant::*; |
| match o { |
| Bool(b) => Some(Bool(!b)), |
| Int(value) => (!value).ok().map(Int), |
| _ => None, |
| } |
| } |
| |
| fn constant_negate(o: Constant) -> Option<Constant> { |
| use self::Constant::*; |
| match o { |
| Int(value) => (-value).ok().map(Int), |
| Float(is, ty) => Some(Float(neg_float_str(is), ty)), |
| _ => None, |
| } |
| } |
| |
| fn neg_float_str(s: String) -> String { |
| if s.starts_with('-') { |
| s[1..].to_owned() |
| } else { |
| format!("-{}", s) |
| } |
| } |
| |
| pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> { |
| let mut cx = ConstEvalLateContext { |
| lcx: Some(lcx), |
| needed_resolution: false, |
| }; |
| cx.expr(e).map(|cst| (cst, cx.needed_resolution)) |
| } |
| |
| pub fn constant_simple(e: &Expr) -> Option<Constant> { |
| let mut cx = ConstEvalLateContext { |
| lcx: None, |
| needed_resolution: false, |
| }; |
| cx.expr(e) |
| } |
| |
| struct ConstEvalLateContext<'c, 'cc: 'c> { |
| lcx: Option<&'c LateContext<'c, 'cc>>, |
| needed_resolution: bool, |
| } |
| |
| impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { |
| /// simple constant folding: Insert an expression, get a constant or none. |
| fn expr(&mut self, e: &Expr) -> Option<Constant> { |
| match e.node { |
| ExprPath(ref qpath) => self.fetch_path(qpath, e.id), |
| ExprBlock(ref block) => self.block(block), |
| ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), |
| ExprLit(ref lit) => Some(lit_to_constant(&lit.node)), |
| ExprArray(ref vec) => self.multi(vec).map(Constant::Vec), |
| ExprTup(ref tup) => self.multi(tup).map(Constant::Tuple), |
| ExprRepeat(ref value, number_id) => { |
| if let Some(lcx) = self.lcx { |
| self.binop_apply(value, |
| &lcx.tcx.map.body(number_id).value, |
| |v, n| Some(Constant::Repeat(Box::new(v), n.as_u64() as usize))) |
| } else { |
| None |
| } |
| }, |
| ExprUnary(op, ref operand) => { |
| self.expr(operand).and_then(|o| { |
| match op { |
| UnNot => constant_not(o), |
| UnNeg => constant_negate(o), |
| UnDeref => Some(o), |
| } |
| }) |
| }, |
| ExprBinary(op, ref left, ref right) => self.binop(op, left, right), |
| // TODO: add other expressions |
| _ => None, |
| } |
| } |
| |
| /// create `Some(Vec![..])` of all constants, unless there is any |
| /// non-constant part |
| fn multi(&mut self, vec: &[Expr]) -> Option<Vec<Constant>> { |
| vec.iter() |
| .map(|elem| self.expr(elem)) |
| .collect::<Option<_>>() |
| } |
| |
| /// lookup a possibly constant expression from a ExprPath |
| fn fetch_path(&mut self, qpath: &QPath, id: NodeId) -> Option<Constant> { |
| if let Some(lcx) = self.lcx { |
| let def = lcx.tcx.tables().qpath_def(qpath, id); |
| match def { |
| Def::Const(def_id) | |
| Def::AssociatedConst(def_id) => { |
| let substs = Some(lcx.tcx |
| .tables() |
| .node_id_item_substs(id) |
| .unwrap_or_else(|| lcx.tcx.intern_substs(&[]))); |
| if let Some((const_expr, _ty)) = lookup_const_by_id(lcx.tcx, def_id, substs) { |
| let ret = self.expr(const_expr); |
| if ret.is_some() { |
| self.needed_resolution = true; |
| } |
| return ret; |
| } |
| }, |
| _ => {}, |
| } |
| } |
| None |
| } |
| |
| /// A block can only yield a constant if it only has one constant expression |
| fn block(&mut self, block: &Block) -> Option<Constant> { |
| if block.stmts.is_empty() { |
| block.expr.as_ref().and_then(|b| self.expr(b)) |
| } else { |
| None |
| } |
| } |
| |
| fn ifthenelse(&mut self, cond: &Expr, then: &Block, otherwise: &Option<P<Expr>>) -> Option<Constant> { |
| if let Some(Constant::Bool(b)) = self.expr(cond) { |
| if b { |
| self.block(then) |
| } else { |
| otherwise.as_ref().and_then(|expr| self.expr(expr)) |
| } |
| } else { |
| None |
| } |
| } |
| |
| fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option<Constant> { |
| let l = if let Some(l) = self.expr(left) { |
| l |
| } else { |
| return None; |
| }; |
| let r = self.expr(right); |
| match (op.node, l, r) { |
| (BiAdd, Constant::Int(l), Some(Constant::Int(r))) => (l + r).ok().map(Constant::Int), |
| (BiSub, Constant::Int(l), Some(Constant::Int(r))) => (l - r).ok().map(Constant::Int), |
| (BiMul, Constant::Int(l), Some(Constant::Int(r))) => (l * r).ok().map(Constant::Int), |
| (BiDiv, Constant::Int(l), Some(Constant::Int(r))) => (l / r).ok().map(Constant::Int), |
| (BiRem, Constant::Int(l), Some(Constant::Int(r))) => (l % r).ok().map(Constant::Int), |
| (BiAnd, Constant::Bool(false), _) => Some(Constant::Bool(false)), |
| (BiOr, Constant::Bool(true), _) => Some(Constant::Bool(true)), |
| (BiAnd, Constant::Bool(true), Some(r)) | |
| (BiOr, Constant::Bool(false), Some(r)) => Some(r), |
| (BiBitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), |
| (BiBitXor, Constant::Int(l), Some(Constant::Int(r))) => (l ^ r).ok().map(Constant::Int), |
| (BiBitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), |
| (BiBitAnd, Constant::Int(l), Some(Constant::Int(r))) => (l & r).ok().map(Constant::Int), |
| (BiBitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), |
| (BiBitOr, Constant::Int(l), Some(Constant::Int(r))) => (l | r).ok().map(Constant::Int), |
| (BiShl, Constant::Int(l), Some(Constant::Int(r))) => (l << r).ok().map(Constant::Int), |
| (BiShr, Constant::Int(l), Some(Constant::Int(r))) => (l >> r).ok().map(Constant::Int), |
| (BiEq, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l == r)), |
| (BiNe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l != r)), |
| (BiLt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l < r)), |
| (BiLe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l <= r)), |
| (BiGe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l >= r)), |
| (BiGt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l > r)), |
| _ => None, |
| } |
| } |
| |
| |
| fn binop_apply<F>(&mut self, left: &Expr, right: &Expr, op: F) -> Option<Constant> |
| where F: Fn(Constant, Constant) -> Option<Constant> |
| { |
| if let (Some(lc), Some(rc)) = (self.expr(left), self.expr(right)) { |
| op(lc, rc) |
| } else { |
| None |
| } |
| } |
| } |