| //! This module contains functions for retrieve the original AST from lowered |
| //! `hir`. |
| |
| #![deny(missing_docs_in_private_items)] |
| |
| use rustc::hir; |
| use rustc::lint::LateContext; |
| use syntax::ast; |
| use utils::{is_expn_of, match_qpath, match_def_path, resolve_node, paths}; |
| |
| /// Convert a hir binary operator to the corresponding `ast` type. |
| pub fn binop(op: hir::BinOp_) -> ast::BinOpKind { |
| match op { |
| hir::BiEq => ast::BinOpKind::Eq, |
| hir::BiGe => ast::BinOpKind::Ge, |
| hir::BiGt => ast::BinOpKind::Gt, |
| hir::BiLe => ast::BinOpKind::Le, |
| hir::BiLt => ast::BinOpKind::Lt, |
| hir::BiNe => ast::BinOpKind::Ne, |
| hir::BiOr => ast::BinOpKind::Or, |
| hir::BiAdd => ast::BinOpKind::Add, |
| hir::BiAnd => ast::BinOpKind::And, |
| hir::BiBitAnd => ast::BinOpKind::BitAnd, |
| hir::BiBitOr => ast::BinOpKind::BitOr, |
| hir::BiBitXor => ast::BinOpKind::BitXor, |
| hir::BiDiv => ast::BinOpKind::Div, |
| hir::BiMul => ast::BinOpKind::Mul, |
| hir::BiRem => ast::BinOpKind::Rem, |
| hir::BiShl => ast::BinOpKind::Shl, |
| hir::BiShr => ast::BinOpKind::Shr, |
| hir::BiSub => ast::BinOpKind::Sub, |
| } |
| } |
| |
| /// Represent a range akin to `ast::ExprKind::Range`. |
| #[derive(Debug, Copy, Clone)] |
| pub struct Range<'a> { |
| /// The lower bound of the range, or `None` for ranges such as `..X`. |
| pub start: Option<&'a hir::Expr>, |
| /// The upper bound of the range, or `None` for ranges such as `X..`. |
| pub end: Option<&'a hir::Expr>, |
| /// Whether the interval is open or closed. |
| pub limits: ast::RangeLimits, |
| } |
| |
| /// Higher a `hir` range to something similar to `ast::ExprKind::Range`. |
| pub fn range(expr: &hir::Expr) -> Option<Range> { |
| /// Find the field named `name` in the field. Always return `Some` for |
| /// convenience. |
| fn get_field<'a>(name: &str, fields: &'a [hir::Field]) -> Option<&'a hir::Expr> { |
| let expr = &fields |
| .iter() |
| .find(|field| field.name.node == name) |
| .unwrap_or_else(|| panic!("missing {} field for range", name)) |
| .expr; |
| |
| Some(expr) |
| } |
| |
| // The range syntax is expanded to literal paths starting with `core` or `std` |
| // depending on |
| // `#[no_std]`. Testing both instead of resolving the paths. |
| |
| match expr.node { |
| hir::ExprPath(ref path) => { |
| if match_qpath(path, &paths::RANGE_FULL_STD) || match_qpath(path, &paths::RANGE_FULL) { |
| Some(Range { |
| start: None, |
| end: None, |
| limits: ast::RangeLimits::HalfOpen, |
| }) |
| } else { |
| None |
| } |
| }, |
| hir::ExprStruct(ref path, ref fields, None) => { |
| if match_qpath(path, &paths::RANGE_FROM_STD) || match_qpath(path, &paths::RANGE_FROM) { |
| Some(Range { |
| start: get_field("start", fields), |
| end: None, |
| limits: ast::RangeLimits::HalfOpen, |
| }) |
| } else if match_qpath(path, &paths::RANGE_INCLUSIVE_STD) || match_qpath(path, &paths::RANGE_INCLUSIVE) { |
| Some(Range { |
| start: get_field("start", fields), |
| end: get_field("end", fields), |
| limits: ast::RangeLimits::Closed, |
| }) |
| } else if match_qpath(path, &paths::RANGE_STD) || match_qpath(path, &paths::RANGE) { |
| Some(Range { |
| start: get_field("start", fields), |
| end: get_field("end", fields), |
| limits: ast::RangeLimits::HalfOpen, |
| }) |
| } else if match_qpath(path, &paths::RANGE_TO_INCLUSIVE_STD) || match_qpath(path, &paths::RANGE_TO_INCLUSIVE) { |
| Some(Range { |
| start: None, |
| end: get_field("end", fields), |
| limits: ast::RangeLimits::Closed, |
| }) |
| } else if match_qpath(path, &paths::RANGE_TO_STD) || match_qpath(path, &paths::RANGE_TO) { |
| Some(Range { |
| start: None, |
| end: get_field("end", fields), |
| limits: ast::RangeLimits::HalfOpen, |
| }) |
| } else { |
| None |
| } |
| }, |
| _ => None, |
| } |
| } |
| |
| /// Checks if a `let` decl is from a `for` loop desugaring. |
| pub fn is_from_for_desugar(decl: &hir::Decl) -> bool { |
| // This will detect plain for-loops without an actual variable binding: |
| // |
| // ``` |
| // for x in some_vec { |
| // // do stuff |
| // } |
| // ``` |
| if_let_chain! {[ |
| let hir::DeclLocal(ref loc) = decl.node, |
| let Some(ref expr) = loc.init, |
| let hir::ExprMatch(_, _, hir::MatchSource::ForLoopDesugar) = expr.node, |
| ], { |
| return true; |
| }} |
| |
| // This detects a variable binding in for loop to avoid `let_unit_value` |
| // lint (see issue #1964). |
| // |
| // ``` |
| // for _ in vec![()] { |
| // // anything |
| // } |
| // ``` |
| if_let_chain! {[ |
| let hir::DeclLocal(ref loc) = decl.node, |
| let hir::LocalSource::ForLoopDesugar = loc.source, |
| ], { |
| return true; |
| }} |
| |
| false |
| } |
| |
| /// Recover the essential nodes of a desugared for loop: |
| /// `for pat in arg { body }` becomes `(pat, arg, body)`. |
| pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> { |
| if_let_chain! {[ |
| let hir::ExprMatch(ref iterexpr, ref arms, hir::MatchSource::ForLoopDesugar) = expr.node, |
| let hir::ExprCall(_, ref iterargs) = iterexpr.node, |
| iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), |
| let hir::ExprLoop(ref block, _, _) = arms[0].body.node, |
| block.expr.is_none(), |
| let [ _, _, ref let_stmt, ref body ] = *block.stmts, |
| let hir::StmtDecl(ref decl, _) = let_stmt.node, |
| let hir::DeclLocal(ref decl) = decl.node, |
| let hir::StmtExpr(ref expr, _) = body.node, |
| ], { |
| return Some((&*decl.pat, &iterargs[0], expr)); |
| }} |
| None |
| } |
| |
| /// Represent the pre-expansion arguments of a `vec!` invocation. |
| pub enum VecArgs<'a> { |
| /// `vec![elem; len]` |
| Repeat(&'a hir::Expr, &'a hir::Expr), |
| /// `vec![a, b, c]` |
| Vec(&'a [hir::Expr]), |
| } |
| |
| /// Returns the arguments of the `vec!` macro if this expression was expanded |
| /// from `vec!`. |
| pub fn vec_macro<'e>(cx: &LateContext, expr: &'e hir::Expr) -> Option<VecArgs<'e>> { |
| if_let_chain!{[ |
| let hir::ExprCall(ref fun, ref args) = expr.node, |
| let hir::ExprPath(ref path) = fun.node, |
| is_expn_of(fun.span, "vec").is_some(), |
| ], { |
| let fun_def = resolve_node(cx, path, fun.hir_id); |
| return if match_def_path(cx.tcx, fun_def.def_id(), &paths::VEC_FROM_ELEM) && args.len() == 2 { |
| // `vec![elem; size]` case |
| Some(VecArgs::Repeat(&args[0], &args[1])) |
| } |
| else if match_def_path(cx.tcx, fun_def.def_id(), &paths::SLICE_INTO_VEC) && args.len() == 1 { |
| // `vec![a, b, c]` case |
| if_let_chain!{[ |
| let hir::ExprBox(ref boxed) = args[0].node, |
| let hir::ExprArray(ref args) = boxed.node |
| ], { |
| return Some(VecArgs::Vec(&*args)); |
| }} |
| |
| None |
| } |
| else { |
| None |
| }; |
| }} |
| |
| None |
| } |