blob: 797ff1f3986682bfc2d57e8828d2875a2f2047b8 [file] [log] [blame]
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::{fn_def_id, is_from_proc_macro, is_lint_allowed};
use hir::intravisit::{Visitor, walk_expr};
use hir::{Expr, ExprKind, FnRetTy, FnSig, Node, TyKind};
use rustc_ast::Label;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_lint::{LateContext, LintContext};
use rustc_span::sym;
use super::INFINITE_LOOP;
pub(super) fn check<'tcx>(
cx: &LateContext<'tcx>,
expr: &Expr<'tcx>,
loop_block: &'tcx hir::Block<'_>,
label: Option<Label>,
) {
if is_lint_allowed(cx, INFINITE_LOOP, expr.hir_id) {
return;
}
// Skip check if this loop is not in a function/method/closure. (In some weird case)
let Some(parent_fn_ret) = get_parent_fn_ret_ty(cx, expr) else {
return;
};
// Or, its parent function is already returning `Never`
if is_never_return(parent_fn_ret) {
return;
}
if expr.span.in_external_macro(cx.sess().source_map()) || is_from_proc_macro(cx, expr) {
return;
}
let mut loop_visitor = LoopVisitor {
cx,
label,
inner_labels: label.into_iter().collect(),
loop_depth: 0,
is_finite: false,
};
loop_visitor.visit_block(loop_block);
let is_finite_loop = loop_visitor.is_finite;
if !is_finite_loop {
span_lint_and_then(cx, INFINITE_LOOP, expr.span, "infinite loop detected", |diag| {
if let FnRetTy::DefaultReturn(ret_span) = parent_fn_ret {
diag.span_suggestion(
ret_span,
"if this is intentional, consider specifying `!` as function return",
" -> !",
Applicability::MaybeIncorrect,
);
} else {
diag.help("if this is not intended, try adding a `break` or `return` condition in the loop");
}
});
}
}
fn get_parent_fn_ret_ty<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>) -> Option<FnRetTy<'tcx>> {
for (_, parent_node) in cx.tcx.hir_parent_iter(expr.hir_id) {
match parent_node {
// Skip `Coroutine` closures, these are the body of `async fn`, not async closures.
// This is because we still need to backtrack one parent node to get the `OpaqueDef` ty.
Node::Expr(Expr {
kind:
ExprKind::Closure(hir::Closure {
kind: hir::ClosureKind::Coroutine(_),
..
}),
..
}) => (),
Node::Item(hir::Item {
kind:
hir::ItemKind::Fn {
sig: FnSig { decl, .. },
..
},
..
})
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(FnSig { decl, .. }, _),
..
})
| Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(FnSig { decl, .. }, _),
..
})
| Node::Expr(Expr {
kind: ExprKind::Closure(hir::Closure { fn_decl: decl, .. }),
..
}) => return Some(decl.output),
_ => (),
}
}
None
}
struct LoopVisitor<'hir, 'tcx> {
cx: &'hir LateContext<'tcx>,
label: Option<Label>,
inner_labels: Vec<Label>,
loop_depth: usize,
is_finite: bool,
}
impl<'hir> Visitor<'hir> for LoopVisitor<'hir, '_> {
fn visit_expr(&mut self, ex: &'hir Expr<'_>) {
match &ex.kind {
ExprKind::Break(hir::Destination { label, .. }, ..) => {
// Assuming breaks the loop when `loop_depth` is 0,
// as it could only means this `break` breaks current loop or any of its upper loop.
// Or, the depth is not zero but the label is matched.
if self.loop_depth == 0 || (label.is_some() && *label == self.label) {
self.is_finite = true;
}
},
ExprKind::Continue(hir::Destination { label, .. }) => {
// Check whether we are leaving this loop by continuing into an outer loop
// whose label we did not encounter.
if label.is_some_and(|label| !self.inner_labels.contains(&label)) {
self.is_finite = true;
}
},
ExprKind::Ret(..) => self.is_finite = true,
ExprKind::Loop(_, label, _, _) => {
if let Some(label) = label {
self.inner_labels.push(*label);
}
self.loop_depth += 1;
walk_expr(self, ex);
self.loop_depth -= 1;
if label.is_some() {
self.inner_labels.pop();
}
},
_ => {
// Calls to a function that never return
if let Some(did) = fn_def_id(self.cx, ex) {
let fn_ret_ty = self.cx.tcx.fn_sig(did).skip_binder().output().skip_binder();
if fn_ret_ty.is_never() {
self.is_finite = true;
return;
}
}
walk_expr(self, ex);
},
}
}
}
/// Return `true` if the given [`FnRetTy`] is never (!).
///
/// Note: This function also take care of return type of async fn,
/// as the actual type is behind an [`OpaqueDef`](TyKind::OpaqueDef).
fn is_never_return(ret_ty: FnRetTy<'_>) -> bool {
let FnRetTy::Return(hir_ty) = ret_ty else { return false };
match hir_ty.kind {
TyKind::Never => true,
TyKind::OpaqueDef(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::AsyncFn { .. },
bounds,
..
}) => {
if let Some(trait_ref) = bounds.iter().find_map(|b| b.trait_ref())
&& let Some(segment) = trait_ref
.path
.segments
.iter()
.find(|seg| seg.ident.name == sym::future_trait)
&& let Some(args) = segment.args
&& let Some(cst_kind) = args
.constraints
.iter()
.find_map(|cst| (cst.ident.name == sym::Output).then_some(cst.kind))
&& let hir::AssocItemConstraintKind::Equality {
term: hir::Term::Ty(ty),
} = cst_kind
{
matches!(ty.kind, TyKind::Never)
} else {
false
}
},
_ => false,
}
}