blob: de8fbdcc5d7a4aca872c110b4a598d8b1cdcc611 [file] [log] [blame]
use reexport::*;
use rustc::hir::*;
use rustc::hir::intravisit::{FnKind, Visitor, walk_ty};
use rustc::lint::*;
use rustc::ty;
use std::cmp::Ordering;
use syntax::ast::{IntTy, UintTy, FloatTy};
use syntax::codemap::Span;
use utils::{comparisons, higher, in_external_macro, in_macro, match_def_path, snippet,
span_help_and_lint, span_lint};
use utils::paths;
/// Handles all the linting of funky types
#[allow(missing_copy_implementations)]
pub struct TypePass;
/// **What it does:** Checks for use of `Box<Vec<_>>` anywhere in the code.
///
/// **Why is this bad?** `Vec` already keeps its contents in a separate area on
/// the heap. So if you `Box` it, you just add another level of indirection
/// without any benefit whatsoever.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct X {
/// values: Box<Vec<Foo>>,
/// }
/// ```
declare_lint! {
pub BOX_VEC,
Warn,
"usage of `Box<Vec<T>>`, vector elements are already on the heap"
}
/// **What it does:** Checks for usage of any `LinkedList`, suggesting to use a
/// `Vec` or a `VecDeque` (formerly called `RingBuf`).
///
/// **Why is this bad?** Gankro says:
///
/// > The TL;DR of `LinkedList` is that it's built on a massive amount of pointers and indirection.
/// > It wastes memory, it has terrible cache locality, and is all-around slow. `RingBuf`, while
/// > "only" amortized for push/pop, should be faster in the general case for almost every possible
/// > workload, and isn't even amortized at all if you can predict the capacity you need.
/// >
/// > `LinkedList`s are only really good if you're doing a lot of merging or splitting of lists.
/// > This is because they can just mangle some pointers instead of actually copying the data. Even
/// > if you're doing a lot of insertion in the middle of the list, `RingBuf` can still be better
/// > because of how expensive it is to seek to the middle of a `LinkedList`.
///
/// **Known problems:** False positives – the instances where using a
/// `LinkedList` makes sense are few and far between, but they can still happen.
///
/// **Example:**
/// ```rust
/// let x = LinkedList::new();
/// ```
declare_lint! {
pub LINKEDLIST,
Warn,
"usage of LinkedList, usually a vector is faster, or a more specialized data \
structure like a VecDeque"
}
impl LintPass for TypePass {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_VEC, LINKEDLIST)
}
}
impl LateLintPass for TypePass {
fn check_ty(&mut self, cx: &LateContext, ast_ty: &Ty) {
if in_macro(cx, ast_ty.span) {
return;
}
if let Some(did) = cx.tcx.def_map.borrow().get(&ast_ty.id) {
if let def::Def::Struct(..) = did.full_def() {
if Some(did.full_def().def_id()) == cx.tcx.lang_items.owned_box() {
if_let_chain! {[
let TyPath(_, ref path) = ast_ty.node,
let Some(ref last) = path.segments.last(),
let PathParameters::AngleBracketedParameters(ref ag) = last.parameters,
let Some(ref vec) = ag.types.get(0),
let Some(did) = cx.tcx.def_map.borrow().get(&vec.id),
let def::Def::Struct(..) = did.full_def(),
match_def_path(cx, did.full_def().def_id(), &paths::VEC),
], {
span_help_and_lint(cx,
BOX_VEC,
ast_ty.span,
"you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
"`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.");
}}
} else if match_def_path(cx, did.full_def().def_id(), &paths::LINKED_LIST) {
span_help_and_lint(cx,
LINKEDLIST,
ast_ty.span,
"I see you're using a LinkedList! Perhaps you meant some other data structure?",
"a VecDeque might work");
}
}
}
}
}
#[allow(missing_copy_implementations)]
pub struct LetPass;
/// **What it does:** Checks for binding a unit value.
///
/// **Why is this bad?** A unit value cannot usefully be used anywhere. So
/// binding one is kind of pointless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = { 1; };
/// ```
declare_lint! {
pub LET_UNIT_VALUE,
Warn,
"creating a let binding to a value of unit type, which usually can't be used afterwards"
}
fn check_let_unit(cx: &LateContext, decl: &Decl) {
if let DeclLocal(ref local) = decl.node {
let bindtype = &cx.tcx.tables().pat_ty(&local.pat).sty;
match *bindtype {
ty::TyTuple(slice) if slice.is_empty() => {
if in_external_macro(cx, decl.span) || in_macro(cx, local.pat.span) {
return;
}
if higher::is_from_for_desugar(decl) {
return;
}
span_lint(cx,
LET_UNIT_VALUE,
decl.span,
&format!("this let-binding has unit value. Consider omitting `let {} =`",
snippet(cx, local.pat.span, "..")));
}
_ => (),
}
}
}
impl LintPass for LetPass {
fn get_lints(&self) -> LintArray {
lint_array!(LET_UNIT_VALUE)
}
}
impl LateLintPass for LetPass {
fn check_decl(&mut self, cx: &LateContext, decl: &Decl) {
check_let_unit(cx, decl)
}
}
/// **What it does:** Checks for comparisons to unit.
///
/// **Why is this bad?** Unit is always equal to itself, and thus is just a
/// clumsily written constant. Mostly this happens when someone accidentally
/// adds semicolons at the end of the operands.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// if { foo(); } == { bar(); } { baz(); }
/// ```
/// is equal to
/// ```rust
/// { foo(); bar(); baz(); }
/// ```
declare_lint! {
pub UNIT_CMP,
Warn,
"comparing unit values"
}
#[allow(missing_copy_implementations)]
pub struct UnitCmp;
impl LintPass for UnitCmp {
fn get_lints(&self) -> LintArray {
lint_array!(UNIT_CMP)
}
}
impl LateLintPass for UnitCmp {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if in_macro(cx, expr.span) {
return;
}
if let ExprBinary(ref cmp, ref left, _) = expr.node {
let op = cmp.node;
if op.is_comparison() {
let sty = &cx.tcx.tables().expr_ty(left).sty;
match *sty {
ty::TyTuple(slice) if slice.is_empty() => {
let result = match op {
BiEq | BiLe | BiGe => "true",
_ => "false",
};
span_lint(cx,
UNIT_CMP,
expr.span,
&format!("{}-comparison of unit values detected. This will always be {}",
op.as_str(),
result));
}
_ => ()
}
}
}
}
}
pub struct CastPass;
/// **What it does:** Checks for casts from any numerical to a float type where
/// the receiving type cannot store all values from the original type without
/// rounding errors. This possible rounding is to be expected, so this lint is
/// `Allow` by default.
///
/// Basically, this warns on casting any integer with 32 or more bits to `f32`
/// or any 64-bit integer to `f64`.
///
/// **Why is this bad?** It's not bad at all. But in some applications it can be
/// helpful to know where precision loss can take place. This lint can help find
/// those places in the code.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = u64::MAX; x as f64
/// ```
declare_lint! {
pub CAST_PRECISION_LOSS,
Allow,
"casts that cause loss of precision, e.g `x as f32` where `x: u64`"
}
/// **What it does:** Checks for casts from a signed to an unsigned numerical
/// type. In this case, negative values wrap around to large positive values,
/// which can be quite surprising in practice. However, as the cast works as
/// defined, this lint is `Allow` by default.
///
/// **Why is this bad?** Possibly surprising results. You can activate this lint
/// as a one-time check to see where numerical wrapping can arise.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let y: i8 = -1;
/// y as u64 // will return 18446744073709551615
/// ```
declare_lint! {
pub CAST_SIGN_LOSS,
Allow,
"casts from signed types to unsigned types, e.g `x as u32` where `x: i32`"
}
/// **What it does:** Checks for on casts between numerical types that may
/// truncate large values. This is expected behavior, so the cast is `Allow` by
/// default.
///
/// **Why is this bad?** In some problem domains, it is good practice to avoid
/// truncation. This lint can be activated to help assess where additional
/// checks could be beneficial.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u8(x: u64) -> u8 { x as u8 }
/// ```
declare_lint! {
pub CAST_POSSIBLE_TRUNCATION,
Allow,
"casts that may cause truncation of the value, e.g `x as u8` where `x: u32`, \
or `x as i32` where `x: f32`"
}
/// **What it does:** Checks for casts from an unsigned type to a signed type of
/// the same size. Performing such a cast is a 'no-op' for the compiler,
/// i.e. nothing is changed at the bit level, and the binary representation of
/// the value is reinterpreted. This can cause wrapping if the value is too big
/// for the target signed type. However, the cast works as defined, so this lint
/// is `Allow` by default.
///
/// **Why is this bad?** While such a cast is not bad in itself, the results can
/// be surprising when this is not the intended behavior, as demonstrated by the
/// example below.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// u32::MAX as i32 // will yield a value of `-1`
/// ```
declare_lint! {
pub CAST_POSSIBLE_WRAP,
Allow,
"casts that may cause wrapping around the value, e.g `x as i32` where `x: u32` \
and `x > i32::MAX`"
}
/// Returns the size in bits of an integral type.
/// Will return 0 if the type is not an int or uint variant
fn int_ty_to_nbits(typ: &ty::TyS) -> usize {
let n = match typ.sty {
ty::TyInt(i) => 4 << (i as usize),
ty::TyUint(u) => 4 << (u as usize),
_ => 0,
};
// n == 4 is the usize/isize case
if n == 4 {
::std::mem::size_of::<usize>() * 8
} else {
n
}
}
fn is_isize_or_usize(typ: &ty::TyS) -> bool {
match typ.sty {
ty::TyInt(IntTy::Is) |
ty::TyUint(UintTy::Us) => true,
_ => false,
}
}
fn span_precision_loss_lint(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to_f64: bool) {
let mantissa_nbits = if cast_to_f64 {
52
} else {
23
};
let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
let arch_dependent_str = "on targets with 64-bit wide pointers ";
let from_nbits_str = if arch_dependent {
"64".to_owned()
} else if is_isize_or_usize(cast_from) {
"32 or 64".to_owned()
} else {
int_ty_to_nbits(cast_from).to_string()
};
span_lint(cx,
CAST_PRECISION_LOSS,
expr.span,
&format!("casting {0} to {1} causes a loss of precision {2}({0} is {3} bits wide, but {1}'s mantissa \
is only {4} bits wide)",
cast_from,
if cast_to_f64 {
"f64"
} else {
"f32"
},
if arch_dependent {
arch_dependent_str
} else {
""
},
from_nbits_str,
mantissa_nbits));
}
enum ArchSuffix {
_32,
_64,
None,
}
fn check_truncation_and_wrapping(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to: &ty::TyS) {
let arch_64_suffix = " on targets with 64-bit wide pointers";
let arch_32_suffix = " on targets with 32-bit wide pointers";
let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
let (from_nbits, to_nbits) = (int_ty_to_nbits(cast_from), int_ty_to_nbits(cast_to));
let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) = match (is_isize_or_usize(cast_from),
is_isize_or_usize(cast_to)) {
(true, true) | (false, false) => {
(to_nbits < from_nbits,
ArchSuffix::None,
to_nbits == from_nbits && cast_unsigned_to_signed,
ArchSuffix::None)
}
(true, false) => {
(to_nbits <= 32,
if to_nbits == 32 {
ArchSuffix::_64
} else {
ArchSuffix::None
},
to_nbits <= 32 && cast_unsigned_to_signed,
ArchSuffix::_32)
}
(false, true) => {
(from_nbits == 64,
ArchSuffix::_32,
cast_unsigned_to_signed,
if from_nbits == 64 {
ArchSuffix::_64
} else {
ArchSuffix::_32
})
}
};
if span_truncation {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
&format!("casting {} to {} may truncate the value{}",
cast_from,
cast_to,
match suffix_truncation {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "",
}));
}
if span_wrap {
span_lint(cx,
CAST_POSSIBLE_WRAP,
expr.span,
&format!("casting {} to {} may wrap around the value{}",
cast_from,
cast_to,
match suffix_wrap {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "",
}));
}
}
impl LintPass for CastPass {
fn get_lints(&self) -> LintArray {
lint_array!(CAST_PRECISION_LOSS,
CAST_SIGN_LOSS,
CAST_POSSIBLE_TRUNCATION,
CAST_POSSIBLE_WRAP)
}
}
impl LateLintPass for CastPass {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprCast(ref ex, _) = expr.node {
let (cast_from, cast_to) = (cx.tcx.tables().expr_ty(ex), cx.tcx.tables().expr_ty(expr));
if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
match (cast_from.is_integral(), cast_to.is_integral()) {
(true, false) => {
let from_nbits = int_ty_to_nbits(cast_from);
let to_nbits = if let ty::TyFloat(FloatTy::F32) = cast_to.sty {
32
} else {
64
};
if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
}
}
(false, true) => {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
&format!("casting {} to {} may truncate the value", cast_from, cast_to));
if !cast_to.is_signed() {
span_lint(cx,
CAST_SIGN_LOSS,
expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
}
(true, true) => {
if cast_from.is_signed() && !cast_to.is_signed() {
span_lint(cx,
CAST_SIGN_LOSS,
expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
}
(false, false) => {
if let (&ty::TyFloat(FloatTy::F64), &ty::TyFloat(FloatTy::F32)) = (&cast_from.sty,
&cast_to.sty) {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
"casting f64 to f32 may truncate the value");
}
}
}
}
}
}
}
/// **What it does:** Checks for types used in structs, parameters and `let`
/// declarations above a certain complexity threshold.
///
/// **Why is this bad?** Too complex types make the code less readable. Consider
/// using a `type` definition to simplify them.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct Foo { inner: Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>> }
/// ```
declare_lint! {
pub TYPE_COMPLEXITY,
Warn,
"usage of very complex types that might be better factored into `type` definitions"
}
#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass {
threshold: u64,
}
impl TypeComplexityPass {
pub fn new(threshold: u64) -> Self {
TypeComplexityPass { threshold: threshold }
}
}
impl LintPass for TypeComplexityPass {
fn get_lints(&self) -> LintArray {
lint_array!(TYPE_COMPLEXITY)
}
}
impl LateLintPass for TypeComplexityPass {
fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, _: &Expr, _: Span, _: NodeId) {
self.check_fndecl(cx, decl);
}
fn check_struct_field(&mut self, cx: &LateContext, field: &StructField) {
// enum variants are also struct fields now
self.check_type(cx, &field.ty);
}
fn check_item(&mut self, cx: &LateContext, item: &Item) {
match item.node {
ItemStatic(ref ty, _, _) |
ItemConst(ref ty, _) => self.check_type(cx, ty),
// functions, enums, structs, impls and traits are covered
_ => (),
}
}
fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
match item.node {
ConstTraitItem(ref ty, _) |
TypeTraitItem(_, Some(ref ty)) => self.check_type(cx, ty),
MethodTraitItem(MethodSig { ref decl, .. }, None) => self.check_fndecl(cx, decl),
// methods with default impl are covered by check_fn
_ => (),
}
}
fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
match item.node {
ImplItemKind::Const(ref ty, _) |
ImplItemKind::Type(ref ty) => self.check_type(cx, ty),
// methods are covered by check_fn
_ => (),
}
}
fn check_local(&mut self, cx: &LateContext, local: &Local) {
if let Some(ref ty) = local.ty {
self.check_type(cx, ty);
}
}
}
impl TypeComplexityPass {
fn check_fndecl(&self, cx: &LateContext, decl: &FnDecl) {
for arg in &decl.inputs {
self.check_type(cx, &arg.ty);
}
if let Return(ref ty) = decl.output {
self.check_type(cx, ty);
}
}
fn check_type(&self, cx: &LateContext, ty: &Ty) {
if in_macro(cx, ty.span) {
return;
}
let score = {
let mut visitor = TypeComplexityVisitor {
score: 0,
nest: 1,
};
visitor.visit_ty(ty);
visitor.score
};
if score > self.threshold {
span_lint(cx,
TYPE_COMPLEXITY,
ty.span,
"very complex type used. Consider factoring parts into `type` definitions");
}
}
}
/// Walks a type and assigns a complexity score to it.
struct TypeComplexityVisitor {
/// total complexity score of the type
score: u64,
/// current nesting level
nest: u64,
}
impl<'v> Visitor<'v> for TypeComplexityVisitor {
fn visit_ty(&mut self, ty: &'v Ty) {
let (add_score, sub_nest) = match ty.node {
// _, &x and *x have only small overhead; don't mess with nesting level
TyInfer | TyPtr(..) | TyRptr(..) => (1, 0),
// the "normal" components of a type: named types, arrays/tuples
TyPath(..) |
TySlice(..) |
TyTup(..) |
TyArray(..) => (10 * self.nest, 1),
// "Sum" of trait bounds
TyObjectSum(..) => (20 * self.nest, 0),
// function types and "for<...>" bring a lot of overhead
TyBareFn(..) |
TyPolyTraitRef(..) => (50 * self.nest, 1),
_ => (0, 0),
};
self.score += add_score;
self.nest += sub_nest;
walk_ty(self, ty);
self.nest -= sub_nest;
}
}
/// **What it does:** Checks for expressions where a character literal is cast
/// to `u8` and suggests using a byte literal instead.
///
/// **Why is this bad?** In general, casting values to smaller types is
/// error-prone and should be avoided where possible. In the particular case of
/// converting a character literal to u8, it is easy to avoid by just using a
/// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
/// than `'a' as u8`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// 'x' as u8
/// ```
declare_lint! {
pub CHAR_LIT_AS_U8,
Warn,
"casting a character literal to u8"
}
pub struct CharLitAsU8;
impl LintPass for CharLitAsU8 {
fn get_lints(&self) -> LintArray {
lint_array!(CHAR_LIT_AS_U8)
}
}
impl LateLintPass for CharLitAsU8 {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
use syntax::ast::{LitKind, UintTy};
if let ExprCast(ref e, _) = expr.node {
if let ExprLit(ref l) = e.node {
if let LitKind::Char(_) = l.node {
if ty::TyUint(UintTy::U8) == cx.tcx.tables().expr_ty(expr).sty && !in_macro(cx, expr.span) {
let msg = "casting character literal to u8. `char`s \
are 4 bytes wide in rust, so casting to u8 \
truncates them";
let help = format!("Consider using a byte literal \
instead:\nb{}",
snippet(cx, e.span, "'x'"));
span_help_and_lint(cx, CHAR_LIT_AS_U8, expr.span, msg, &help);
}
}
}
}
}
}
/// **What it does:** Checks for comparisons where one side of the relation is
/// either the minimum or maximum value for its type and warns if it involves a
/// case that is always true or always false. Only integer and boolean types are
/// checked.
///
/// **Why is this bad?** An expression like `min <= x` may misleadingly imply
/// that is is possible for `x` to be less than the minimum. Expressions like
/// `max < x` are probably mistakes.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// vec.len() <= 0
/// 100 > std::i32::MAX
/// ```
declare_lint! {
pub ABSURD_EXTREME_COMPARISONS,
Warn,
"a comparison with a maximum or minimum value that is always true or false"
}
pub struct AbsurdExtremeComparisons;
impl LintPass for AbsurdExtremeComparisons {
fn get_lints(&self) -> LintArray {
lint_array!(ABSURD_EXTREME_COMPARISONS)
}
}
enum ExtremeType {
Minimum,
Maximum,
}
struct ExtremeExpr<'a> {
which: ExtremeType,
expr: &'a Expr,
}
enum AbsurdComparisonResult {
AlwaysFalse,
AlwaysTrue,
InequalityImpossible,
}
fn detect_absurd_comparison<'a>(cx: &LateContext, op: BinOp_, lhs: &'a Expr, rhs: &'a Expr)
-> Option<(ExtremeExpr<'a>, AbsurdComparisonResult)> {
use types::ExtremeType::*;
use types::AbsurdComparisonResult::*;
use utils::comparisons::*;
type Extr<'a> = ExtremeExpr<'a>;
let normalized = normalize_comparison(op, lhs, rhs);
let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
val
} else {
return None;
};
let lx = detect_extreme_expr(cx, normalized_lhs);
let rx = detect_extreme_expr(cx, normalized_rhs);
Some(match rel {
Rel::Lt => {
match (lx, rx) {
(Some(l @ Extr { which: Maximum, .. }), _) => (l, AlwaysFalse), // max < x
(_, Some(r @ Extr { which: Minimum, .. })) => (r, AlwaysFalse), // x < min
_ => return None,
}
}
Rel::Le => {
match (lx, rx) {
(Some(l @ Extr { which: Minimum, .. }), _) => (l, AlwaysTrue), // min <= x
(Some(l @ Extr { which: Maximum, .. }), _) => (l, InequalityImpossible), //max <= x
(_, Some(r @ Extr { which: Minimum, .. })) => (r, InequalityImpossible), // x <= min
(_, Some(r @ Extr { which: Maximum, .. })) => (r, AlwaysTrue), // x <= max
_ => return None,
}
}
Rel::Ne | Rel::Eq => return None,
})
}
fn detect_extreme_expr<'a>(cx: &LateContext, expr: &'a Expr) -> Option<ExtremeExpr<'a>> {
use rustc::middle::const_val::ConstVal::*;
use rustc_const_math::*;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::*;
use types::ExtremeType::*;
let ty = &cx.tcx.tables().expr_ty(expr).sty;
match *ty {
ty::TyBool | ty::TyInt(_) | ty::TyUint(_) => (),
_ => return None,
};
let cv = match eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None) {
Ok(val) => val,
Err(_) => return None,
};
let which = match (ty, cv) {
(&ty::TyBool, Bool(false)) |
(&ty::TyInt(IntTy::Is), Integral(Isize(Is32(::std::i32::MIN)))) |
(&ty::TyInt(IntTy::Is), Integral(Isize(Is64(::std::i64::MIN)))) |
(&ty::TyInt(IntTy::I8), Integral(I8(::std::i8::MIN))) |
(&ty::TyInt(IntTy::I16), Integral(I16(::std::i16::MIN))) |
(&ty::TyInt(IntTy::I32), Integral(I32(::std::i32::MIN))) |
(&ty::TyInt(IntTy::I64), Integral(I64(::std::i64::MIN))) |
(&ty::TyUint(UintTy::Us), Integral(Usize(Us32(::std::u32::MIN)))) |
(&ty::TyUint(UintTy::Us), Integral(Usize(Us64(::std::u64::MIN)))) |
(&ty::TyUint(UintTy::U8), Integral(U8(::std::u8::MIN))) |
(&ty::TyUint(UintTy::U16), Integral(U16(::std::u16::MIN))) |
(&ty::TyUint(UintTy::U32), Integral(U32(::std::u32::MIN))) |
(&ty::TyUint(UintTy::U64), Integral(U64(::std::u64::MIN))) => Minimum,
(&ty::TyBool, Bool(true)) |
(&ty::TyInt(IntTy::Is), Integral(Isize(Is32(::std::i32::MAX)))) |
(&ty::TyInt(IntTy::Is), Integral(Isize(Is64(::std::i64::MAX)))) |
(&ty::TyInt(IntTy::I8), Integral(I8(::std::i8::MAX))) |
(&ty::TyInt(IntTy::I16), Integral(I16(::std::i16::MAX))) |
(&ty::TyInt(IntTy::I32), Integral(I32(::std::i32::MAX))) |
(&ty::TyInt(IntTy::I64), Integral(I64(::std::i64::MAX))) |
(&ty::TyUint(UintTy::Us), Integral(Usize(Us32(::std::u32::MAX)))) |
(&ty::TyUint(UintTy::Us), Integral(Usize(Us64(::std::u64::MAX)))) |
(&ty::TyUint(UintTy::U8), Integral(U8(::std::u8::MAX))) |
(&ty::TyUint(UintTy::U16), Integral(U16(::std::u16::MAX))) |
(&ty::TyUint(UintTy::U32), Integral(U32(::std::u32::MAX))) |
(&ty::TyUint(UintTy::U64), Integral(U64(::std::u64::MAX))) => Maximum,
_ => return None,
};
Some(ExtremeExpr {
which: which,
expr: expr,
})
}
impl LateLintPass for AbsurdExtremeComparisons {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
use types::ExtremeType::*;
use types::AbsurdComparisonResult::*;
if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
if let Some((culprit, result)) = detect_absurd_comparison(cx, cmp.node, lhs, rhs) {
if !in_macro(cx, expr.span) {
let msg = "this comparison involving the minimum or maximum element for this \
type contains a case that is always true or always false";
let conclusion = match result {
AlwaysFalse => "this comparison is always false".to_owned(),
AlwaysTrue => "this comparison is always true".to_owned(),
InequalityImpossible => {
format!("the case where the two sides are not equal never occurs, consider using {} == {} \
instead",
snippet(cx, lhs.span, "lhs"),
snippet(cx, rhs.span, "rhs"))
}
};
let help = format!("because {} is the {} value for this type, {}",
snippet(cx, culprit.expr.span, "x"),
match culprit.which {
Minimum => "minimum",
Maximum => "maximum",
},
conclusion);
span_help_and_lint(cx, ABSURD_EXTREME_COMPARISONS, expr.span, msg, &help);
}
}
}
}
}
/// **What it does:** Checks for comparisons where the relation is always either
/// true or false, but where one side has been upcast so that the comparison is
/// necessary. Only integer types are checked.
///
/// **Why is this bad?** An expression like `let x : u8 = ...; (x as u32) > 300`
/// will mistakenly imply that it is possible for `x` to be outside the range of
/// `u8`.
///
/// **Known problems:** https://github.com/Manishearth/rust-clippy/issues/886
///
/// **Example:**
/// ```rust
/// let x : u8 = ...; (x as u32) > 300
/// ```
declare_lint! {
pub INVALID_UPCAST_COMPARISONS,
Allow,
"a comparison involving an upcast which is always true or false"
}
pub struct InvalidUpcastComparisons;
impl LintPass for InvalidUpcastComparisons {
fn get_lints(&self) -> LintArray {
lint_array!(INVALID_UPCAST_COMPARISONS)
}
}
#[derive(Copy, Clone, Debug, Eq)]
enum FullInt {
S(i64),
U(u64),
}
impl FullInt {
#[allow(cast_sign_loss)]
fn cmp_s_u(s: i64, u: u64) -> Ordering {
if s < 0 {
Ordering::Less
} else if u > (i64::max_value() as u64) {
Ordering::Greater
} else {
(s as u64).cmp(&u)
}
}
}
impl PartialEq for FullInt {
fn eq(&self, other: &Self) -> bool {
self.partial_cmp(other).expect("partial_cmp only returns Some(_)") == Ordering::Equal
}
}
impl PartialOrd for FullInt {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(match (self, other) {
(&FullInt::S(s), &FullInt::S(o)) => s.cmp(&o),
(&FullInt::U(s), &FullInt::U(o)) => s.cmp(&o),
(&FullInt::S(s), &FullInt::U(o)) => Self::cmp_s_u(s, o),
(&FullInt::U(s), &FullInt::S(o)) => Self::cmp_s_u(o, s).reverse(),
})
}
}
impl Ord for FullInt {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).expect("partial_cmp for FullInt can never return None")
}
}
fn numeric_cast_precast_bounds<'a>(cx: &LateContext, expr: &'a Expr) -> Option<(FullInt, FullInt)> {
use rustc::ty::TypeVariants::{TyInt, TyUint};
use syntax::ast::{IntTy, UintTy};
use std::*;
if let ExprCast(ref cast_exp, _) = expr.node {
match cx.tcx.tables().expr_ty(cast_exp).sty {
TyInt(int_ty) => {
Some(match int_ty {
IntTy::I8 => (FullInt::S(i8::min_value() as i64), FullInt::S(i8::max_value() as i64)),
IntTy::I16 => (FullInt::S(i16::min_value() as i64), FullInt::S(i16::max_value() as i64)),
IntTy::I32 => (FullInt::S(i32::min_value() as i64), FullInt::S(i32::max_value() as i64)),
IntTy::I64 => (FullInt::S(i64::min_value() as i64), FullInt::S(i64::max_value() as i64)),
IntTy::Is => (FullInt::S(isize::min_value() as i64), FullInt::S(isize::max_value() as i64)),
})
}
TyUint(uint_ty) => {
Some(match uint_ty {
UintTy::U8 => (FullInt::U(u8::min_value() as u64), FullInt::U(u8::max_value() as u64)),
UintTy::U16 => (FullInt::U(u16::min_value() as u64), FullInt::U(u16::max_value() as u64)),
UintTy::U32 => (FullInt::U(u32::min_value() as u64), FullInt::U(u32::max_value() as u64)),
UintTy::U64 => (FullInt::U(u64::min_value() as u64), FullInt::U(u64::max_value() as u64)),
UintTy::Us => (FullInt::U(usize::min_value() as u64), FullInt::U(usize::max_value() as u64)),
})
}
_ => None,
}
} else {
None
}
}
fn node_as_const_fullint(cx: &LateContext, expr: &Expr) -> Option<FullInt> {
use rustc::middle::const_val::ConstVal::*;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::eval_const_expr_partial;
use rustc_const_math::ConstInt;
match eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None) {
Ok(val) => {
if let Integral(const_int) = val {
Some(match const_int.erase_type() {
ConstInt::InferSigned(x) => FullInt::S(x as i64),
ConstInt::Infer(x) => FullInt::U(x as u64),
_ => unreachable!(),
})
} else {
None
}
}
Err(_) => None,
}
}
fn err_upcast_comparison(cx: &LateContext, span: &Span, expr: &Expr, always: bool) {
if let ExprCast(ref cast_val, _) = expr.node {
span_lint(cx,
INVALID_UPCAST_COMPARISONS,
*span,
&format!(
"because of the numeric bounds on `{}` prior to casting, this expression is always {}",
snippet(cx, cast_val.span, "the expression"),
if always { "true" } else { "false" },
));
}
}
fn upcast_comparison_bounds_err(cx: &LateContext, span: &Span, rel: comparisons::Rel,
lhs_bounds: Option<(FullInt, FullInt)>, lhs: &Expr, rhs: &Expr, invert: bool) {
use utils::comparisons::*;
if let Some((lb, ub)) = lhs_bounds {
if let Some(norm_rhs_val) = node_as_const_fullint(cx, rhs) {
if rel == Rel::Eq || rel == Rel::Ne {
if norm_rhs_val < lb || norm_rhs_val > ub {
err_upcast_comparison(cx, span, lhs, rel == Rel::Ne);
}
} else if match rel {
Rel::Lt => {
if invert {
norm_rhs_val < lb
} else {
ub < norm_rhs_val
}
}
Rel::Le => {
if invert {
norm_rhs_val <= lb
} else {
ub <= norm_rhs_val
}
}
Rel::Eq | Rel::Ne => unreachable!(),
} {
err_upcast_comparison(cx, span, lhs, true)
} else if match rel {
Rel::Lt => {
if invert {
norm_rhs_val >= ub
} else {
lb >= norm_rhs_val
}
}
Rel::Le => {
if invert {
norm_rhs_val > ub
} else {
lb > norm_rhs_val
}
}
Rel::Eq | Rel::Ne => unreachable!(),
} {
err_upcast_comparison(cx, span, lhs, false)
}
}
}
}
impl LateLintPass for InvalidUpcastComparisons {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
let normalized = comparisons::normalize_comparison(cmp.node, lhs, rhs);
let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
val
} else {
return;
};
let lhs_bounds = numeric_cast_precast_bounds(cx, normalized_lhs);
let rhs_bounds = numeric_cast_precast_bounds(cx, normalized_rhs);
upcast_comparison_bounds_err(cx, &expr.span, rel, lhs_bounds, normalized_lhs, normalized_rhs, false);
upcast_comparison_bounds_err(cx, &expr.span, rel, rhs_bounds, normalized_rhs, normalized_lhs, true);
}
}
}