| use rustc::hir; |
| use rustc::lint::*; |
| use rustc::middle::const_val::ConstVal; |
| use rustc::ty::{self, Ty}; |
| use rustc::hir::def::Def; |
| use rustc::ty::subst::Substs; |
| use rustc_const_eval::ConstContext; |
| use std::borrow::Cow; |
| use std::fmt; |
| use syntax::ast; |
| use syntax::codemap::Span; |
| use utils::{get_trait_def_id, implements_trait, in_external_macro, in_macro, is_copy, is_self, is_self_ty, |
| iter_input_pats, last_path_segment, match_def_path, match_path, match_qpath, match_trait_method, |
| match_type, method_chain_args, return_ty, same_tys, single_segment_path, snippet, span_lint, |
| span_lint_and_sugg, span_lint_and_then, span_note_and_lint, walk_ptrs_ty, walk_ptrs_ty_depth}; |
| use utils::paths; |
| use utils::sugg; |
| use utils::const_to_u64; |
| |
| #[derive(Clone)] |
| pub struct Pass; |
| |
| /// **What it does:** Checks for `.unwrap()` calls on `Option`s. |
| /// |
| /// **Why is this bad?** Usually it is better to handle the `None` case, or to |
| /// at least call `.expect(_)` with a more helpful message. Still, for a lot of |
| /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is |
| /// `Allow` by default. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.unwrap() |
| /// ``` |
| declare_lint! { |
| pub OPTION_UNWRAP_USED, |
| Allow, |
| "using `Option.unwrap()`, which should at least get a better message using `expect()`" |
| } |
| |
| /// **What it does:** Checks for `.unwrap()` calls on `Result`s. |
| /// |
| /// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err` |
| /// values. Normally, you want to implement more sophisticated error handling, |
| /// and propagate errors upwards with `try!`. |
| /// |
| /// Even if you want to panic on errors, not all `Error`s implement good |
| /// messages on display. Therefore it may be beneficial to look at the places |
| /// where they may get displayed. Activate this lint to do just that. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.unwrap() |
| /// ``` |
| declare_lint! { |
| pub RESULT_UNWRAP_USED, |
| Allow, |
| "using `Result.unwrap()`, which might be better handled" |
| } |
| |
| /// **What it does:** Checks for methods that should live in a trait |
| /// implementation of a `std` trait (see [llogiq's blog |
| /// post](http://llogiq.github.io/2015/07/30/traits.html) for further |
| /// information) instead of an inherent implementation. |
| /// |
| /// **Why is this bad?** Implementing the traits improve ergonomics for users of |
| /// the code, often with very little cost. Also people seeing a `mul(...)` |
| /// method |
| /// may expect `*` to work equally, so you should have good reason to disappoint |
| /// them. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// struct X; |
| /// impl X { |
| /// fn add(&self, other: &X) -> X { .. } |
| /// } |
| /// ``` |
| declare_lint! { |
| pub SHOULD_IMPLEMENT_TRAIT, |
| Warn, |
| "defining a method that should be implementing a std trait" |
| } |
| |
| /// **What it does:** Checks for methods with certain name prefixes and which |
| /// doesn't match how self is taken. The actual rules are: |
| /// |
| /// |Prefix |`self` taken | |
| /// |-------|----------------------| |
| /// |`as_` |`&self` or `&mut self`| |
| /// |`from_`| none | |
| /// |`into_`|`self` | |
| /// |`is_` |`&self` or none | |
| /// |`to_` |`&self` | |
| /// |
| /// **Why is this bad?** Consistency breeds readability. If you follow the |
| /// conventions, your users won't be surprised that they, e.g., need to supply a |
| /// mutable reference to a `as_..` function. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// impl X { |
| /// fn as_str(self) -> &str { .. } |
| /// } |
| /// ``` |
| declare_lint! { |
| pub WRONG_SELF_CONVENTION, |
| Warn, |
| "defining a method named with an established prefix (like \"into_\") that takes \ |
| `self` with the wrong convention" |
| } |
| |
| /// **What it does:** This is the same as |
| /// [`wrong_self_convention`](#wrong_self_convention), but for public items. |
| /// |
| /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention). |
| /// |
| /// **Known problems:** Actually *renaming* the function may break clients if |
| /// the function is part of the public interface. In that case, be mindful of |
| /// the stability guarantees you've given your users. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// impl X { |
| /// pub fn as_str(self) -> &str { .. } |
| /// } |
| /// ``` |
| declare_lint! { |
| pub WRONG_PUB_SELF_CONVENTION, |
| Allow, |
| "defining a public method named with an established prefix (like \"into_\") that takes \ |
| `self` with the wrong convention" |
| } |
| |
| /// **What it does:** Checks for usage of `ok().expect(..)`. |
| /// |
| /// **Why is this bad?** Because you usually call `expect()` on the `Result` |
| /// directly to get a better error message. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.ok().expect("why did I do this again?") |
| /// ``` |
| declare_lint! { |
| pub OK_EXPECT, |
| Warn, |
| "using `ok().expect()`, which gives worse error messages than \ |
| calling `expect` directly on the Result" |
| } |
| |
| /// **What it does:** Checks for usage of `_.map(_).unwrap_or(_)`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.map_or(_, _)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.map(|a| a + 1).unwrap_or(0) |
| /// ``` |
| declare_lint! { |
| pub OPTION_MAP_UNWRAP_OR, |
| Allow, |
| "using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \ |
| `map_or(a, f)`" |
| } |
| |
| /// **What it does:** Checks for usage of `_.map(_).unwrap_or_else(_)`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.map_or_else(_, _)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.map(|a| a + 1).unwrap_or_else(some_function) |
| /// ``` |
| declare_lint! { |
| pub OPTION_MAP_UNWRAP_OR_ELSE, |
| Allow, |
| "using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \ |
| `map_or_else(g, f)`" |
| } |
| |
| /// **What it does:** Checks for usage of `result.map(_).unwrap_or_else(_)`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `result.ok().map_or_else(_, _)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.map(|a| a + 1).unwrap_or_else(some_function) |
| /// ``` |
| declare_lint! { |
| pub RESULT_MAP_UNWRAP_OR_ELSE, |
| Allow, |
| "using `Result.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \ |
| `.ok().map_or_else(g, f)`" |
| } |
| |
| /// **What it does:** Checks for usage of `_.map_or(None, _)`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.and_then(_)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// opt.map_or(None, |a| a + 1) |
| /// ``` |
| declare_lint! { |
| pub OPTION_MAP_OR_NONE, |
| Warn, |
| "using `Option.map_or(None, f)`, which is more succinctly expressed as \ |
| `and_then(f)`" |
| } |
| |
| /// **What it does:** Checks for usage of `_.filter(_).next()`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.find(_)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// iter.filter(|x| x == 0).next() |
| /// ``` |
| declare_lint! { |
| pub FILTER_NEXT, |
| Warn, |
| "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`" |
| } |
| |
| /// **What it does:** Checks for usage of `_.filter(_).map(_)`, |
| /// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as a |
| /// single method call. |
| /// |
| /// **Known problems:** Often requires a condition + Option/Iterator creation |
| /// inside the closure. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// iter.filter(|x| x == 0).map(|x| x * 2) |
| /// ``` |
| declare_lint! { |
| pub FILTER_MAP, |
| Allow, |
| "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can \ |
| usually be written as a single method call" |
| } |
| |
| /// **What it does:** Checks for an iterator search (such as `find()`, |
| /// `position()`, or `rposition()`) followed by a call to `is_some()`. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.any(_)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// iter.find(|x| x == 0).is_some() |
| /// ``` |
| declare_lint! { |
| pub SEARCH_IS_SOME, |
| Warn, |
| "using an iterator search followed by `is_some()`, which is more succinctly \ |
| expressed as a call to `any()`" |
| } |
| |
| /// **What it does:** Checks for usage of `.chars().next()` on a `str` to check |
| /// if it starts with a given char. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.starts_with(_)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// name.chars().next() == Some('_') |
| /// ``` |
| declare_lint! { |
| pub CHARS_NEXT_CMP, |
| Warn, |
| "using `.chars().next()` to check if a string starts with a char" |
| } |
| |
| /// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`, |
| /// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or |
| /// `unwrap_or_default` instead. |
| /// |
| /// **Why is this bad?** The function will always be called and potentially |
| /// allocate an object acting as the default. |
| /// |
| /// **Known problems:** If the function has side-effects, not calling it will |
| /// change the semantic of the program, but you shouldn't rely on that anyway. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// foo.unwrap_or(String::new()) |
| /// ``` |
| /// this can instead be written: |
| /// ```rust |
| /// foo.unwrap_or_else(String::new) |
| /// ``` |
| /// or |
| /// ```rust |
| /// foo.unwrap_or_default() |
| /// ``` |
| declare_lint! { |
| pub OR_FUN_CALL, |
| Warn, |
| "using any `*or` method with a function call, which suggests `*or_else`" |
| } |
| |
| /// **What it does:** Checks for usage of `.clone()` on a `Copy` type. |
| /// |
| /// **Why is this bad?** The only reason `Copy` types implement `Clone` is for |
| /// generics, not for using the `clone` method on a concrete type. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// 42u64.clone() |
| /// ``` |
| declare_lint! { |
| pub CLONE_ON_COPY, |
| Warn, |
| "using `clone` on a `Copy` type" |
| } |
| |
| /// **What it does:** Checks for usage of `.clone()` on a ref-counted pointer, |
| /// (Rc, Arc, rc::Weak, or sync::Weak), and suggests calling Clone on |
| /// the corresponding trait instead. |
| /// |
| /// **Why is this bad?**: Calling '.clone()' on an Rc, Arc, or Weak |
| /// can obscure the fact that only the pointer is being cloned, not the underlying |
| /// data. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// x.clone() |
| /// ``` |
| declare_lint! { |
| pub CLONE_ON_REF_PTR, |
| Warn, |
| "using 'clone' on a ref-counted pointer" |
| } |
| |
| /// **What it does:** Checks for usage of `.clone()` on an `&&T`. |
| /// |
| /// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of |
| /// cloning the underlying `T`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// fn main() { |
| /// let x = vec![1]; |
| /// let y = &&x; |
| /// let z = y.clone(); |
| /// println!("{:p} {:p}",*y, z); // prints out the same pointer |
| /// } |
| /// ``` |
| declare_lint! { |
| pub CLONE_DOUBLE_REF, |
| Warn, |
| "using `clone` on `&&T`" |
| } |
| |
| /// **What it does:** Checks for `new` not returning `Self`. |
| /// |
| /// **Why is this bad?** As a convention, `new` methods are used to make a new |
| /// instance of a type. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// impl Foo { |
| /// fn new(..) -> NotAFoo { |
| /// } |
| /// } |
| /// ``` |
| declare_lint! { |
| pub NEW_RET_NO_SELF, |
| Warn, |
| "not returning `Self` in a `new` method" |
| } |
| |
| /// **What it does:** Checks for string methods that receive a single-character |
| /// `str` as an argument, e.g. `_.split("x")`. |
| /// |
| /// **Why is this bad?** Performing these methods using a `char` is faster than |
| /// using a `str`. |
| /// |
| /// **Known problems:** Does not catch multi-byte unicode characters. |
| /// |
| /// **Example:** |
| /// `_.split("x")` could be `_.split('x') |
| declare_lint! { |
| pub SINGLE_CHAR_PATTERN, |
| Warn, |
| "using a single-character str where a char could be used, e.g. \ |
| `_.split(\"x\")`" |
| } |
| |
| /// **What it does:** Checks for getting the inner pointer of a temporary |
| /// `CString`. |
| /// |
| /// **Why is this bad?** The inner pointer of a `CString` is only valid as long |
| /// as the `CString` is alive. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust,ignore |
| /// let c_str = CString::new("foo").unwrap().as_ptr(); |
| /// unsafe { |
| /// call_some_ffi_func(c_str); |
| /// } |
| /// ``` |
| /// Here `c_str` point to a freed address. The correct use would be: |
| /// ```rust,ignore |
| /// let c_str = CString::new("foo").unwrap(); |
| /// unsafe { |
| /// call_some_ffi_func(c_str.as_ptr()); |
| /// } |
| /// ``` |
| declare_lint! { |
| pub TEMPORARY_CSTRING_AS_PTR, |
| Warn, |
| "getting the inner pointer of a temporary `CString`" |
| } |
| |
| /// **What it does:** Checks for use of `.iter().nth()` (and the related |
| /// `.iter_mut().nth()`) on standard library types with O(1) element access. |
| /// |
| /// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more |
| /// readable. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let bad_vec = some_vec.iter().nth(3); |
| /// let bad_slice = &some_vec[..].iter().nth(3); |
| /// ``` |
| /// The correct use would be: |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let bad_vec = some_vec.get(3); |
| /// let bad_slice = &some_vec[..].get(3); |
| /// ``` |
| declare_lint! { |
| pub ITER_NTH, |
| Warn, |
| "using `.iter().nth()` on a standard library type with O(1) element access" |
| } |
| |
| /// **What it does:** Checks for use of `.skip(x).next()` on iterators. |
| /// |
| /// **Why is this bad?** `.nth(x)` is cleaner |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let bad_vec = some_vec.iter().skip(3).next(); |
| /// let bad_slice = &some_vec[..].iter().skip(3).next(); |
| /// ``` |
| /// The correct use would be: |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let bad_vec = some_vec.iter().nth(3); |
| /// let bad_slice = &some_vec[..].iter().nth(3); |
| /// ``` |
| declare_lint! { |
| pub ITER_SKIP_NEXT, |
| Warn, |
| "using `.skip(x).next()` on an iterator" |
| } |
| |
| /// **What it does:** Checks for use of `.get().unwrap()` (or |
| /// `.get_mut().unwrap`) on a standard library type which implements `Index` |
| /// |
| /// **Why is this bad?** Using the Index trait (`[]`) is more clear and more |
| /// concise. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let last = some_vec.get(3).unwrap(); |
| /// *some_vec.get_mut(0).unwrap() = 1; |
| /// ``` |
| /// The correct use would be: |
| /// ```rust |
| /// let some_vec = vec![0, 1, 2, 3]; |
| /// let last = some_vec[3]; |
| /// some_vec[0] = 1; |
| /// ``` |
| declare_lint! { |
| pub GET_UNWRAP, |
| Warn, |
| "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead" |
| } |
| |
| /// **What it does:** Checks for the use of `.extend(s.chars())` where s is a |
| /// `&str` or `String`. |
| /// |
| /// **Why is this bad?** `.push_str(s)` is clearer |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let abc = "abc"; |
| /// let def = String::from("def"); |
| /// let mut s = String::new(); |
| /// s.extend(abc.chars()); |
| /// s.extend(def.chars()); |
| /// ``` |
| /// The correct use would be: |
| /// ```rust |
| /// let abc = "abc"; |
| /// let def = String::from("def"); |
| /// let mut s = String::new(); |
| /// s.push_str(abc); |
| /// s.push_str(&def)); |
| /// ``` |
| declare_lint! { |
| pub STRING_EXTEND_CHARS, |
| Warn, |
| "using `x.extend(s.chars())` where s is a `&str` or `String`" |
| } |
| |
| /// **What it does:** Checks for the use of `.cloned().collect()` on slice to |
| /// create a `Vec`. |
| /// |
| /// **Why is this bad?** `.to_vec()` is clearer |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let s = [1,2,3,4,5]; |
| /// let s2 : Vec<isize> = s[..].iter().cloned().collect(); |
| /// ``` |
| /// The better use would be: |
| /// ```rust |
| /// let s = [1,2,3,4,5]; |
| /// let s2 : Vec<isize> = s.to_vec(); |
| /// ``` |
| declare_lint! { |
| pub ITER_CLONED_COLLECT, |
| Warn, |
| "using `.cloned().collect()` on slice to create a `Vec`" |
| } |
| |
| /// **What it does:** Checks for usage of `.chars().last()` or |
| /// `.chars().next_back()` on a `str` to check if it ends with a given char. |
| /// |
| /// **Why is this bad?** Readability, this can be written more concisely as |
| /// `_.ends_with(_)`. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-') |
| /// ``` |
| declare_lint! { |
| pub CHARS_LAST_CMP, |
| Warn, |
| "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char" |
| } |
| |
| /// **What it does:** Checks for usage of `.as_ref()` or `.as_mut()` where the |
| /// types before and after the call are the same. |
| /// |
| /// **Why is this bad?** The call is unnecessary. |
| /// |
| /// **Known problems:** None. |
| /// |
| /// **Example:** |
| /// ```rust |
| /// let x: &[i32] = &[1,2,3,4,5]; |
| /// do_stuff(x.as_ref()); |
| /// ``` |
| /// The correct use would be: |
| /// ```rust |
| /// let x: &[i32] = &[1,2,3,4,5]; |
| /// do_stuff(x); |
| /// ``` |
| declare_lint! { |
| pub USELESS_ASREF, |
| Warn, |
| "using `as_ref` where the types before and after the call are the same" |
| } |
| |
| impl LintPass for Pass { |
| fn get_lints(&self) -> LintArray { |
| lint_array!( |
| OPTION_UNWRAP_USED, |
| RESULT_UNWRAP_USED, |
| SHOULD_IMPLEMENT_TRAIT, |
| WRONG_SELF_CONVENTION, |
| WRONG_PUB_SELF_CONVENTION, |
| OK_EXPECT, |
| OPTION_MAP_UNWRAP_OR, |
| OPTION_MAP_UNWRAP_OR_ELSE, |
| RESULT_MAP_UNWRAP_OR_ELSE, |
| OPTION_MAP_OR_NONE, |
| OR_FUN_CALL, |
| CHARS_NEXT_CMP, |
| CHARS_LAST_CMP, |
| CLONE_ON_COPY, |
| CLONE_ON_REF_PTR, |
| CLONE_DOUBLE_REF, |
| NEW_RET_NO_SELF, |
| SINGLE_CHAR_PATTERN, |
| SEARCH_IS_SOME, |
| TEMPORARY_CSTRING_AS_PTR, |
| FILTER_NEXT, |
| FILTER_MAP, |
| ITER_NTH, |
| ITER_SKIP_NEXT, |
| GET_UNWRAP, |
| STRING_EXTEND_CHARS, |
| ITER_CLONED_COLLECT, |
| USELESS_ASREF |
| ) |
| } |
| } |
| |
| impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { |
| #[allow(unused_attributes)] |
| // ^ required because `cyclomatic_complexity` attribute shows up as unused |
| #[cyclomatic_complexity = "30"] |
| fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) { |
| if in_macro(expr.span) { |
| return; |
| } |
| |
| match expr.node { |
| hir::ExprMethodCall(ref method_call, _, ref args) => { |
| // Chain calls |
| // GET_UNWRAP needs to be checked before general `UNWRAP` lints |
| if let Some(arglists) = method_chain_args(expr, &["get", "unwrap"]) { |
| lint_get_unwrap(cx, expr, arglists[0], false); |
| } else if let Some(arglists) = method_chain_args(expr, &["get_mut", "unwrap"]) { |
| lint_get_unwrap(cx, expr, arglists[0], true); |
| } else if let Some(arglists) = method_chain_args(expr, &["unwrap"]) { |
| lint_unwrap(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["ok", "expect"]) { |
| lint_ok_expect(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or"]) { |
| lint_map_unwrap_or(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or_else"]) { |
| lint_map_unwrap_or_else(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["map_or"]) { |
| lint_map_or_none(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["filter", "next"]) { |
| lint_filter_next(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["filter", "map"]) { |
| lint_filter_map(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "map"]) { |
| lint_filter_map_map(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["filter", "flat_map"]) { |
| lint_filter_flat_map(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "flat_map"]) { |
| lint_filter_map_flat_map(cx, expr, arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["find", "is_some"]) { |
| lint_search_is_some(cx, expr, "find", arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["position", "is_some"]) { |
| lint_search_is_some(cx, expr, "position", arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["rposition", "is_some"]) { |
| lint_search_is_some(cx, expr, "rposition", arglists[0], arglists[1]); |
| } else if let Some(arglists) = method_chain_args(expr, &["extend"]) { |
| lint_extend(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["unwrap", "as_ptr"]) { |
| lint_cstring_as_ptr(cx, expr, &arglists[0][0], &arglists[1][0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["iter", "nth"]) { |
| lint_iter_nth(cx, expr, arglists[0], false); |
| } else if let Some(arglists) = method_chain_args(expr, &["iter_mut", "nth"]) { |
| lint_iter_nth(cx, expr, arglists[0], true); |
| } else if method_chain_args(expr, &["skip", "next"]).is_some() { |
| lint_iter_skip_next(cx, expr); |
| } else if let Some(arglists) = method_chain_args(expr, &["cloned", "collect"]) { |
| lint_iter_cloned_collect(cx, expr, arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["as_ref"]) { |
| lint_asref(cx, expr, "as_ref", arglists[0]); |
| } else if let Some(arglists) = method_chain_args(expr, &["as_mut"]) { |
| lint_asref(cx, expr, "as_mut", arglists[0]); |
| } |
| |
| lint_or_fun_call(cx, expr, &method_call.name.as_str(), args); |
| |
| let self_ty = cx.tables.expr_ty_adjusted(&args[0]); |
| if args.len() == 1 && method_call.name == "clone" { |
| lint_clone_on_copy(cx, expr, &args[0], self_ty); |
| lint_clone_on_ref_ptr(cx, expr, &args[0]); |
| } |
| |
| match self_ty.sty { |
| ty::TyRef(_, ty) if ty.ty.sty == ty::TyStr => for &(method, pos) in &PATTERN_METHODS { |
| if method_call.name == method && args.len() > pos { |
| lint_single_char_pattern(cx, expr, &args[pos]); |
| } |
| }, |
| _ => (), |
| } |
| }, |
| hir::ExprBinary(op, ref lhs, ref rhs) if op.node == hir::BiEq || op.node == hir::BiNe => { |
| let mut info = BinaryExprInfo { |
| expr: expr, |
| chain: lhs, |
| other: rhs, |
| eq: op.node == hir::BiEq, |
| }; |
| lint_binary_expr_with_method_call(cx, &mut info); |
| }, |
| _ => (), |
| } |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, implitem: &'tcx hir::ImplItem) { |
| if in_external_macro(cx, implitem.span) { |
| return; |
| } |
| let name = implitem.name; |
| let parent = cx.tcx.hir.get_parent(implitem.id); |
| let item = cx.tcx.hir.expect_item(parent); |
| if_chain! { |
| if let hir::ImplItemKind::Method(ref sig, id) = implitem.node; |
| if let Some(first_arg_ty) = sig.decl.inputs.get(0); |
| if let Some(first_arg) = iter_input_pats(&sig.decl, cx.tcx.hir.body(id)).next(); |
| if let hir::ItemImpl(_, _, _, _, None, ref self_ty, _) = item.node; |
| then { |
| if cx.access_levels.is_exported(implitem.id) { |
| // check missing trait implementations |
| for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS { |
| if name == method_name && |
| sig.decl.inputs.len() == n_args && |
| out_type.matches(&sig.decl.output) && |
| self_kind.matches(first_arg_ty, first_arg, self_ty, false, &implitem.generics) { |
| span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!( |
| "defining a method called `{}` on this type; consider implementing \ |
| the `{}` trait or choosing a less ambiguous name", name, trait_name)); |
| } |
| } |
| } |
| |
| // check conventions w.r.t. conversion method names and predicates |
| let def_id = cx.tcx.hir.local_def_id(item.id); |
| let ty = cx.tcx.type_of(def_id); |
| let is_copy = is_copy(cx, ty); |
| for &(ref conv, self_kinds) in &CONVENTIONS { |
| if_chain! { |
| if conv.check(&name.as_str()); |
| if !self_kinds |
| .iter() |
| .any(|k| k.matches(first_arg_ty, first_arg, self_ty, is_copy, &implitem.generics)); |
| then { |
| let lint = if item.vis == hir::Visibility::Public { |
| WRONG_PUB_SELF_CONVENTION |
| } else { |
| WRONG_SELF_CONVENTION |
| }; |
| span_lint(cx, |
| lint, |
| first_arg.pat.span, |
| &format!("methods called `{}` usually take {}; consider choosing a less \ |
| ambiguous name", |
| conv, |
| &self_kinds.iter() |
| .map(|k| k.description()) |
| .collect::<Vec<_>>() |
| .join(" or "))); |
| } |
| } |
| } |
| |
| let ret_ty = return_ty(cx, implitem.id); |
| if name == "new" && |
| !ret_ty.walk().any(|t| same_tys(cx, t, ty)) { |
| span_lint(cx, |
| NEW_RET_NO_SELF, |
| implitem.span, |
| "methods called `new` usually return `Self`"); |
| } |
| } |
| } |
| } |
| } |
| |
| /// Checks for the `OR_FUN_CALL` lint. |
| fn lint_or_fun_call(cx: &LateContext, expr: &hir::Expr, name: &str, args: &[hir::Expr]) { |
| /// Check for `unwrap_or(T::new())` or `unwrap_or(T::default())`. |
| fn check_unwrap_or_default( |
| cx: &LateContext, |
| name: &str, |
| fun: &hir::Expr, |
| self_expr: &hir::Expr, |
| arg: &hir::Expr, |
| or_has_args: bool, |
| span: Span, |
| ) -> bool { |
| if or_has_args { |
| return false; |
| } |
| |
| if name == "unwrap_or" { |
| if let hir::ExprPath(ref qpath) = fun.node { |
| let path = &*last_path_segment(qpath).name.as_str(); |
| |
| if ["default", "new"].contains(&path) { |
| let arg_ty = cx.tables.expr_ty(arg); |
| let default_trait_id = if let Some(default_trait_id) = get_trait_def_id(cx, &paths::DEFAULT_TRAIT) { |
| default_trait_id |
| } else { |
| return false; |
| }; |
| |
| if implements_trait(cx, arg_ty, default_trait_id, &[]) { |
| span_lint_and_sugg( |
| cx, |
| OR_FUN_CALL, |
| span, |
| &format!("use of `{}` followed by a call to `{}`", name, path), |
| "try this", |
| format!("{}.unwrap_or_default()", snippet(cx, self_expr.span, "_")), |
| ); |
| return true; |
| } |
| } |
| } |
| } |
| |
| false |
| } |
| |
| /// Check for `*or(foo())`. |
| fn check_general_case( |
| cx: &LateContext, |
| name: &str, |
| fun_span: Span, |
| self_expr: &hir::Expr, |
| arg: &hir::Expr, |
| or_has_args: bool, |
| span: Span, |
| ) { |
| // (path, fn_has_argument, methods, suffix) |
| let know_types: &[(&[_], _, &[_], _)] = &[ |
| (&paths::BTREEMAP_ENTRY, false, &["or_insert"], "with"), |
| (&paths::HASHMAP_ENTRY, false, &["or_insert"], "with"), |
| (&paths::OPTION, false, &["map_or", "ok_or", "or", "unwrap_or"], "else"), |
| (&paths::RESULT, true, &["or", "unwrap_or"], "else"), |
| ]; |
| |
| // early check if the name is one we care about |
| if know_types.iter().all(|k| !k.2.contains(&name)) { |
| return; |
| } |
| |
| // don't lint for constant values |
| let owner_def = cx.tcx.hir.get_parent_did(arg.id); |
| let promotable = cx.tcx.rvalue_promotable_map(owner_def).contains(&arg.hir_id.local_id); |
| if promotable { |
| return; |
| } |
| |
| let self_ty = cx.tables.expr_ty(self_expr); |
| |
| let (fn_has_arguments, poss, suffix) = if let Some(&(_, fn_has_arguments, poss, suffix)) = |
| know_types.iter().find(|&&i| match_type(cx, self_ty, i.0)) |
| { |
| (fn_has_arguments, poss, suffix) |
| } else { |
| return; |
| }; |
| |
| if !poss.contains(&name) { |
| return; |
| } |
| |
| let sugg: Cow<_> = match (fn_has_arguments, !or_has_args) { |
| (true, _) => format!("|_| {}", snippet(cx, arg.span, "..")).into(), |
| (false, false) => format!("|| {}", snippet(cx, arg.span, "..")).into(), |
| (false, true) => snippet(cx, fun_span, ".."), |
| }; |
| |
| span_lint_and_sugg( |
| cx, |
| OR_FUN_CALL, |
| span, |
| &format!("use of `{}` followed by a function call", name), |
| "try this", |
| format!("{}.{}_{}({})", snippet(cx, self_expr.span, "_"), name, suffix, sugg), |
| ); |
| } |
| |
| if args.len() == 2 { |
| match args[1].node { |
| hir::ExprCall(ref fun, ref or_args) => { |
| let or_has_args = !or_args.is_empty(); |
| if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) { |
| check_general_case(cx, name, fun.span, &args[0], &args[1], or_has_args, expr.span); |
| } |
| }, |
| hir::ExprMethodCall(_, span, ref or_args) => { |
| check_general_case(cx, name, span, &args[0], &args[1], !or_args.is_empty(), expr.span) |
| }, |
| _ => {}, |
| } |
| } |
| } |
| |
| /// Checks for the `CLONE_ON_COPY` lint. |
| fn lint_clone_on_copy(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr, arg_ty: Ty) { |
| let ty = cx.tables.expr_ty(expr); |
| if let ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) = arg_ty.sty { |
| if let ty::TyRef(..) = inner.sty { |
| span_lint_and_then( |
| cx, |
| CLONE_DOUBLE_REF, |
| expr.span, |
| "using `clone` on a double-reference; \ |
| this will copy the reference instead of cloning the inner type", |
| |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) { |
| db.span_suggestion(expr.span, "try dereferencing it", format!("({}).clone()", snip.deref())); |
| }, |
| ); |
| return; // don't report clone_on_copy |
| } |
| } |
| |
| if is_copy(cx, ty) { |
| span_lint_and_then(cx, CLONE_ON_COPY, expr.span, "using `clone` on a `Copy` type", |db| { |
| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) { |
| if let ty::TyRef(..) = cx.tables.expr_ty(arg).sty { |
| db.span_suggestion(expr.span, "try dereferencing it", format!("{}", snip.deref())); |
| } else { |
| db.span_suggestion(expr.span, "try removing the `clone` call", format!("{}", snip)); |
| } |
| } |
| }); |
| } |
| } |
| |
| fn lint_clone_on_ref_ptr(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr) { |
| let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(arg)); |
| |
| let caller_type = if match_type(cx, obj_ty, &paths::RC) { |
| "Rc" |
| } else if match_type(cx, obj_ty, &paths::ARC) { |
| "Arc" |
| } else if match_type(cx, obj_ty, &paths::WEAK_RC) || match_type(cx, obj_ty, &paths::WEAK_ARC) { |
| "Weak" |
| } else { |
| return; |
| }; |
| |
| span_lint_and_sugg( |
| cx, |
| CLONE_ON_REF_PTR, |
| expr.span, |
| "using '.clone()' on a ref-counted pointer", |
| "try this", |
| format!("{}::clone(&{})", caller_type, snippet(cx, arg.span, "_")), |
| ); |
| } |
| |
| |
| fn lint_string_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) { |
| let arg = &args[1]; |
| if let Some(arglists) = method_chain_args(arg, &["chars"]) { |
| let target = &arglists[0][0]; |
| let (self_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(target)); |
| let ref_str = if self_ty.sty == ty::TyStr { |
| "" |
| } else if match_type(cx, self_ty, &paths::STRING) { |
| "&" |
| } else { |
| return; |
| }; |
| |
| span_lint_and_sugg( |
| cx, |
| STRING_EXTEND_CHARS, |
| expr.span, |
| "calling `.extend(_.chars())`", |
| "try this", |
| format!( |
| "{}.push_str({}{})", |
| snippet(cx, args[0].span, "_"), |
| ref_str, |
| snippet(cx, target.span, "_") |
| ), |
| ); |
| } |
| } |
| |
| fn lint_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) { |
| let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&args[0])); |
| if match_type(cx, obj_ty, &paths::STRING) { |
| lint_string_extend(cx, expr, args); |
| } |
| } |
| |
| fn lint_cstring_as_ptr(cx: &LateContext, expr: &hir::Expr, new: &hir::Expr, unwrap: &hir::Expr) { |
| if_chain! { |
| if let hir::ExprCall(ref fun, ref args) = new.node; |
| if args.len() == 1; |
| if let hir::ExprPath(ref path) = fun.node; |
| if let Def::Method(did) = cx.tables.qpath_def(path, fun.hir_id); |
| if match_def_path(cx.tcx, did, &paths::CSTRING_NEW); |
| then { |
| span_lint_and_then( |
| cx, |
| TEMPORARY_CSTRING_AS_PTR, |
| expr.span, |
| "you are getting the inner pointer of a temporary `CString`", |
| |db| { |
| db.note("that pointer will be invalid outside this expression"); |
| db.span_help(unwrap.span, "assign the `CString` to a variable to extend its lifetime"); |
| }); |
| } |
| } |
| } |
| |
| fn lint_iter_cloned_collect(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr]) { |
| if match_type(cx, cx.tables.expr_ty(expr), &paths::VEC) |
| && derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some() |
| { |
| span_lint( |
| cx, |
| ITER_CLONED_COLLECT, |
| expr.span, |
| "called `cloned().collect()` on a slice to create a `Vec`. Calling `to_vec()` is both faster and \ |
| more readable", |
| ); |
| } |
| } |
| |
| fn lint_iter_nth(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr], is_mut: bool) { |
| let mut_str = if is_mut { "_mut" } else { "" }; |
| let caller_type = if derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some() { |
| "slice" |
| } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC) { |
| "Vec" |
| } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC_DEQUE) { |
| "VecDeque" |
| } else { |
| return; // caller is not a type that we want to lint |
| }; |
| |
| span_lint( |
| cx, |
| ITER_NTH, |
| expr.span, |
| &format!( |
| "called `.iter{0}().nth()` on a {1}. Calling `.get{0}()` is both faster and more readable", |
| mut_str, |
| caller_type |
| ), |
| ); |
| } |
| |
| fn lint_get_unwrap(cx: &LateContext, expr: &hir::Expr, get_args: &[hir::Expr], is_mut: bool) { |
| // Note: we don't want to lint `get_mut().unwrap` for HashMap or BTreeMap, |
| // because they do not implement `IndexMut` |
| let expr_ty = cx.tables.expr_ty(&get_args[0]); |
| let caller_type = if derefs_to_slice(cx, &get_args[0], expr_ty).is_some() { |
| "slice" |
| } else if match_type(cx, expr_ty, &paths::VEC) { |
| "Vec" |
| } else if match_type(cx, expr_ty, &paths::VEC_DEQUE) { |
| "VecDeque" |
| } else if !is_mut && match_type(cx, expr_ty, &paths::HASHMAP) { |
| "HashMap" |
| } else if !is_mut && match_type(cx, expr_ty, &paths::BTREEMAP) { |
| "BTreeMap" |
| } else { |
| return; // caller is not a type that we want to lint |
| }; |
| |
| let mut_str = if is_mut { "_mut" } else { "" }; |
| let borrow_str = if is_mut { "&mut " } else { "&" }; |
| span_lint_and_sugg( |
| cx, |
| GET_UNWRAP, |
| expr.span, |
| &format!( |
| "called `.get{0}().unwrap()` on a {1}. Using `[]` is more clear and more concise", |
| mut_str, |
| caller_type |
| ), |
| "try this", |
| format!( |
| "{}{}[{}]", |
| borrow_str, |
| snippet(cx, get_args[0].span, "_"), |
| snippet(cx, get_args[1].span, "_") |
| ), |
| ); |
| } |
| |
| fn lint_iter_skip_next(cx: &LateContext, expr: &hir::Expr) { |
| // lint if caller of skip is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| span_lint( |
| cx, |
| ITER_SKIP_NEXT, |
| expr.span, |
| "called `skip(x).next()` on an iterator. This is more succinctly expressed by calling `nth(x)`", |
| ); |
| } |
| } |
| |
| fn derefs_to_slice(cx: &LateContext, expr: &hir::Expr, ty: Ty) -> Option<sugg::Sugg<'static>> { |
| fn may_slice(cx: &LateContext, ty: Ty) -> bool { |
| match ty.sty { |
| ty::TySlice(_) => true, |
| ty::TyAdt(def, _) if def.is_box() => may_slice(cx, ty.boxed_ty()), |
| ty::TyAdt(..) => match_type(cx, ty, &paths::VEC), |
| ty::TyArray(_, size) => const_to_u64(size) < 32, |
| ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => may_slice(cx, inner), |
| _ => false, |
| } |
| } |
| |
| if let hir::ExprMethodCall(ref path, _, ref args) = expr.node { |
| if path.name == "iter" && may_slice(cx, cx.tables.expr_ty(&args[0])) { |
| sugg::Sugg::hir_opt(cx, &args[0]).map(|sugg| sugg.addr()) |
| } else { |
| None |
| } |
| } else { |
| match ty.sty { |
| ty::TySlice(_) => sugg::Sugg::hir_opt(cx, expr), |
| ty::TyAdt(def, _) if def.is_box() && may_slice(cx, ty.boxed_ty()) => sugg::Sugg::hir_opt(cx, expr), |
| ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => if may_slice(cx, inner) { |
| sugg::Sugg::hir_opt(cx, expr) |
| } else { |
| None |
| }, |
| _ => None, |
| } |
| } |
| } |
| |
| /// lint use of `unwrap()` for `Option`s and `Result`s |
| fn lint_unwrap(cx: &LateContext, expr: &hir::Expr, unwrap_args: &[hir::Expr]) { |
| let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&unwrap_args[0])); |
| |
| let mess = if match_type(cx, obj_ty, &paths::OPTION) { |
| Some((OPTION_UNWRAP_USED, "an Option", "None")) |
| } else if match_type(cx, obj_ty, &paths::RESULT) { |
| Some((RESULT_UNWRAP_USED, "a Result", "Err")) |
| } else { |
| None |
| }; |
| |
| if let Some((lint, kind, none_value)) = mess { |
| span_lint( |
| cx, |
| lint, |
| expr.span, |
| &format!( |
| "used unwrap() on {} value. If you don't want to handle the {} case gracefully, consider \ |
| using expect() to provide a better panic \ |
| message", |
| kind, |
| none_value |
| ), |
| ); |
| } |
| } |
| |
| /// lint use of `ok().expect()` for `Result`s |
| fn lint_ok_expect(cx: &LateContext, expr: &hir::Expr, ok_args: &[hir::Expr]) { |
| // lint if the caller of `ok()` is a `Result` |
| if match_type(cx, cx.tables.expr_ty(&ok_args[0]), &paths::RESULT) { |
| let result_type = cx.tables.expr_ty(&ok_args[0]); |
| if let Some(error_type) = get_error_type(cx, result_type) { |
| if has_debug_impl(error_type, cx) { |
| span_lint( |
| cx, |
| OK_EXPECT, |
| expr.span, |
| "called `ok().expect()` on a Result value. You can call `expect` directly on the `Result`", |
| ); |
| } |
| } |
| } |
| } |
| |
| /// lint use of `map().unwrap_or()` for `Option`s |
| fn lint_map_unwrap_or(cx: &LateContext, expr: &hir::Expr, map_args: &[hir::Expr], unwrap_args: &[hir::Expr]) { |
| // lint if the caller of `map()` is an `Option` |
| if match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION) { |
| // get snippets for args to map() and unwrap_or() |
| let map_snippet = snippet(cx, map_args[1].span, ".."); |
| let unwrap_snippet = snippet(cx, unwrap_args[1].span, ".."); |
| // lint message |
| // comparing the snippet from source to raw text ("None") below is safe |
| // because we already have checked the type. |
| let arg = if unwrap_snippet == "None" { |
| "None" |
| } else { |
| "a" |
| }; |
| let suggest = if unwrap_snippet == "None" { |
| "and_then(f)" |
| } else { |
| "map_or(a, f)" |
| }; |
| let msg = &format!( |
| "called `map(f).unwrap_or({})` on an Option value. \ |
| This can be done more directly by calling `{}` instead", |
| arg, |
| suggest |
| ); |
| // lint, with note if neither arg is > 1 line and both map() and |
| // unwrap_or() have the same span |
| let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1; |
| let same_span = map_args[1].span.ctxt() == unwrap_args[1].span.ctxt(); |
| if same_span && !multiline { |
| let suggest = if unwrap_snippet == "None" { |
| format!("and_then({})", map_snippet) |
| } else { |
| format!("map_or({}, {})", unwrap_snippet, map_snippet) |
| }; |
| let note = format!( |
| "replace `map({}).unwrap_or({})` with `{}`", |
| map_snippet, |
| unwrap_snippet, |
| suggest |
| ); |
| span_note_and_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg, expr.span, ¬e); |
| } else if same_span && multiline { |
| span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg); |
| }; |
| } |
| } |
| |
| /// lint use of `map().unwrap_or_else()` for `Option`s and `Result`s |
| fn lint_map_unwrap_or_else<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| map_args: &'tcx [hir::Expr], |
| unwrap_args: &'tcx [hir::Expr], |
| ) { |
| // lint if the caller of `map()` is an `Option` |
| let is_option = match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION); |
| let is_result = match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::RESULT); |
| if is_option || is_result { |
| // lint message |
| let msg = if is_option { |
| "called `map(f).unwrap_or_else(g)` on an Option value. This can be done more directly by calling \ |
| `map_or_else(g, f)` instead" |
| } else { |
| "called `map(f).unwrap_or_else(g)` on a Result value. This can be done more directly by calling \ |
| `ok().map_or_else(g, f)` instead" |
| }; |
| // get snippets for args to map() and unwrap_or_else() |
| let map_snippet = snippet(cx, map_args[1].span, ".."); |
| let unwrap_snippet = snippet(cx, unwrap_args[1].span, ".."); |
| // lint, with note if neither arg is > 1 line and both map() and |
| // unwrap_or_else() have the same span |
| let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1; |
| let same_span = map_args[1].span.ctxt() == unwrap_args[1].span.ctxt(); |
| if same_span && !multiline { |
| span_note_and_lint( |
| cx, |
| if is_option { |
| OPTION_MAP_UNWRAP_OR_ELSE |
| } else { |
| RESULT_MAP_UNWRAP_OR_ELSE |
| }, |
| expr.span, |
| msg, |
| expr.span, |
| &format!( |
| "replace `map({0}).unwrap_or_else({1})` with `{2}map_or_else({1}, {0})`", |
| map_snippet, |
| unwrap_snippet, |
| if is_result { "ok()." } else { "" } |
| ), |
| ); |
| } else if same_span && multiline { |
| span_lint( |
| cx, |
| if is_option { |
| OPTION_MAP_UNWRAP_OR_ELSE |
| } else { |
| RESULT_MAP_UNWRAP_OR_ELSE |
| }, |
| expr.span, |
| msg, |
| ); |
| }; |
| } |
| } |
| |
| /// lint use of `_.map_or(None, _)` for `Option`s |
| fn lint_map_or_none<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, map_or_args: &'tcx [hir::Expr]) { |
| if match_type(cx, cx.tables.expr_ty(&map_or_args[0]), &paths::OPTION) { |
| // check if the first non-self argument to map_or() is None |
| let map_or_arg_is_none = if let hir::Expr_::ExprPath(ref qpath) = map_or_args[1].node { |
| match_qpath(qpath, &paths::OPTION_NONE) |
| } else { |
| false |
| }; |
| |
| if map_or_arg_is_none { |
| // lint message |
| let msg = "called `map_or(None, f)` on an Option value. This can be done more directly by calling \ |
| `and_then(f)` instead"; |
| let map_or_self_snippet = snippet(cx, map_or_args[0].span, ".."); |
| let map_or_func_snippet = snippet(cx, map_or_args[2].span, ".."); |
| let hint = format!("{0}.and_then({1})", map_or_self_snippet, map_or_func_snippet); |
| span_lint_and_then(cx, OPTION_MAP_OR_NONE, expr.span, msg, |db| { |
| db.span_suggestion(expr.span, "try using and_then instead", hint); |
| }); |
| } |
| } |
| } |
| |
| /// lint use of `filter().next()` for `Iterators` |
| fn lint_filter_next<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, filter_args: &'tcx [hir::Expr]) { |
| // lint if caller of `.filter().next()` is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| let msg = "called `filter(p).next()` on an `Iterator`. This is more succinctly expressed by calling \ |
| `.find(p)` instead."; |
| let filter_snippet = snippet(cx, filter_args[1].span, ".."); |
| if filter_snippet.lines().count() <= 1 { |
| // add note if not multi-line |
| span_note_and_lint( |
| cx, |
| FILTER_NEXT, |
| expr.span, |
| msg, |
| expr.span, |
| &format!("replace `filter({0}).next()` with `find({0})`", filter_snippet), |
| ); |
| } else { |
| span_lint(cx, FILTER_NEXT, expr.span, msg); |
| } |
| } |
| } |
| |
| /// lint use of `filter().map()` for `Iterators` |
| fn lint_filter_map<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| _filter_args: &'tcx [hir::Expr], |
| _map_args: &'tcx [hir::Expr], |
| ) { |
| // lint if caller of `.filter().map()` is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| let msg = "called `filter(p).map(q)` on an `Iterator`. \ |
| This is more succinctly expressed by calling `.filter_map(..)` instead."; |
| span_lint(cx, FILTER_MAP, expr.span, msg); |
| } |
| } |
| |
| /// lint use of `filter().map()` for `Iterators` |
| fn lint_filter_map_map<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| _filter_args: &'tcx [hir::Expr], |
| _map_args: &'tcx [hir::Expr], |
| ) { |
| // lint if caller of `.filter().map()` is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| let msg = "called `filter_map(p).map(q)` on an `Iterator`. \ |
| This is more succinctly expressed by only calling `.filter_map(..)` instead."; |
| span_lint(cx, FILTER_MAP, expr.span, msg); |
| } |
| } |
| |
| /// lint use of `filter().flat_map()` for `Iterators` |
| fn lint_filter_flat_map<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| _filter_args: &'tcx [hir::Expr], |
| _map_args: &'tcx [hir::Expr], |
| ) { |
| // lint if caller of `.filter().flat_map()` is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| let msg = "called `filter(p).flat_map(q)` on an `Iterator`. \ |
| This is more succinctly expressed by calling `.flat_map(..)` \ |
| and filtering by returning an empty Iterator."; |
| span_lint(cx, FILTER_MAP, expr.span, msg); |
| } |
| } |
| |
| /// lint use of `filter_map().flat_map()` for `Iterators` |
| fn lint_filter_map_flat_map<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| _filter_args: &'tcx [hir::Expr], |
| _map_args: &'tcx [hir::Expr], |
| ) { |
| // lint if caller of `.filter_map().flat_map()` is an Iterator |
| if match_trait_method(cx, expr, &paths::ITERATOR) { |
| let msg = "called `filter_map(p).flat_map(q)` on an `Iterator`. \ |
| This is more succinctly expressed by calling `.flat_map(..)` \ |
| and filtering by returning an empty Iterator."; |
| span_lint(cx, FILTER_MAP, expr.span, msg); |
| } |
| } |
| |
| /// lint searching an Iterator followed by `is_some()` |
| fn lint_search_is_some<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| expr: &'tcx hir::Expr, |
| search_method: &str, |
| search_args: &'tcx [hir::Expr], |
| is_some_args: &'tcx [hir::Expr], |
| ) { |
| // lint if caller of search is an Iterator |
| if match_trait_method(cx, &is_some_args[0], &paths::ITERATOR) { |
| let msg = format!( |
| "called `is_some()` after searching an `Iterator` with {}. This is more succinctly \ |
| expressed by calling `any()`.", |
| search_method |
| ); |
| let search_snippet = snippet(cx, search_args[1].span, ".."); |
| if search_snippet.lines().count() <= 1 { |
| // add note if not multi-line |
| span_note_and_lint( |
| cx, |
| SEARCH_IS_SOME, |
| expr.span, |
| &msg, |
| expr.span, |
| &format!("replace `{0}({1}).is_some()` with `any({1})`", search_method, search_snippet), |
| ); |
| } else { |
| span_lint(cx, SEARCH_IS_SOME, expr.span, &msg); |
| } |
| } |
| } |
| |
| /// Used for `lint_binary_expr_with_method_call`. |
| #[derive(Copy, Clone)] |
| struct BinaryExprInfo<'a> { |
| expr: &'a hir::Expr, |
| chain: &'a hir::Expr, |
| other: &'a hir::Expr, |
| eq: bool, |
| } |
| |
| /// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints. |
| fn lint_binary_expr_with_method_call<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, info: &mut BinaryExprInfo) { |
| macro_rules! lint_with_both_lhs_and_rhs { |
| ($func:ident, $cx:expr, $info:ident) => { |
| if !$func($cx, $info) { |
| ::std::mem::swap(&mut $info.chain, &mut $info.other); |
| if $func($cx, $info) { |
| return; |
| } |
| } |
| } |
| } |
| |
| lint_with_both_lhs_and_rhs!(lint_chars_next_cmp, cx, info); |
| lint_with_both_lhs_and_rhs!(lint_chars_last_cmp, cx, info); |
| lint_with_both_lhs_and_rhs!(lint_chars_next_cmp_with_unwrap, cx, info); |
| lint_with_both_lhs_and_rhs!(lint_chars_last_cmp_with_unwrap, cx, info); |
| } |
| |
| /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_NEXT_CMP` lints. |
| fn lint_chars_cmp<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| info: &BinaryExprInfo, |
| chain_methods: &[&str], |
| lint: &'static Lint, |
| suggest: &str, |
| ) -> bool { |
| if_chain! { |
| if let Some(args) = method_chain_args(info.chain, chain_methods); |
| if let hir::ExprCall(ref fun, ref arg_char) = info.other.node; |
| if arg_char.len() == 1; |
| if let hir::ExprPath(ref qpath) = fun.node; |
| if let Some(segment) = single_segment_path(qpath); |
| if segment.name == "Some"; |
| then { |
| let self_ty = walk_ptrs_ty(cx.tables.expr_ty_adjusted(&args[0][0])); |
| |
| if self_ty.sty != ty::TyStr { |
| return false; |
| } |
| |
| span_lint_and_sugg(cx, |
| lint, |
| info.expr.span, |
| &format!("you should use the `{}` method", suggest), |
| "like this", |
| format!("{}{}.{}({})", |
| if info.eq { "" } else { "!" }, |
| snippet(cx, args[0][0].span, "_"), |
| suggest, |
| snippet(cx, arg_char[0].span, "_"))); |
| |
| return true; |
| } |
| } |
| |
| false |
| } |
| |
| /// Checks for the `CHARS_NEXT_CMP` lint. |
| fn lint_chars_next_cmp<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool { |
| lint_chars_cmp(cx, info, &["chars", "next"], CHARS_NEXT_CMP, "starts_with") |
| } |
| |
| /// Checks for the `CHARS_LAST_CMP` lint. |
| fn lint_chars_last_cmp<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool { |
| if lint_chars_cmp(cx, info, &["chars", "last"], CHARS_NEXT_CMP, "ends_with") { |
| true |
| } else { |
| lint_chars_cmp(cx, info, &["chars", "next_back"], CHARS_NEXT_CMP, "ends_with") |
| } |
| } |
| |
| /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints with `unwrap()`. |
| fn lint_chars_cmp_with_unwrap<'a, 'tcx>( |
| cx: &LateContext<'a, 'tcx>, |
| info: &BinaryExprInfo, |
| chain_methods: &[&str], |
| lint: &'static Lint, |
| suggest: &str, |
| ) -> bool { |
| if_chain! { |
| if let Some(args) = method_chain_args(info.chain, chain_methods); |
| if let hir::ExprLit(ref lit) = info.other.node; |
| if let ast::LitKind::Char(c) = lit.node; |
| then { |
| span_lint_and_sugg( |
| cx, |
| lint, |
| info.expr.span, |
| &format!("you should use the `{}` method", suggest), |
| "like this", |
| format!("{}{}.{}('{}')", |
| if info.eq { "" } else { "!" }, |
| snippet(cx, args[0][0].span, "_"), |
| suggest, |
| c) |
| ); |
| |
| return true; |
| } |
| } |
| |
| false |
| } |
| |
| /// Checks for the `CHARS_NEXT_CMP` lint with `unwrap()`. |
| fn lint_chars_next_cmp_with_unwrap<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool { |
| lint_chars_cmp_with_unwrap(cx, info, &["chars", "next", "unwrap"], CHARS_NEXT_CMP, "starts_with") |
| } |
| |
| /// Checks for the `CHARS_LAST_CMP` lint with `unwrap()`. |
| fn lint_chars_last_cmp_with_unwrap<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool { |
| if lint_chars_cmp_with_unwrap(cx, info, &["chars", "last", "unwrap"], CHARS_LAST_CMP, "ends_with") { |
| true |
| } else { |
| lint_chars_cmp_with_unwrap(cx, info, &["chars", "next_back", "unwrap"], CHARS_LAST_CMP, "ends_with") |
| } |
| } |
| |
| /// lint for length-1 `str`s for methods in `PATTERN_METHODS` |
| fn lint_single_char_pattern<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, arg: &'tcx hir::Expr) { |
| let parent_item = cx.tcx.hir.get_parent(arg.id); |
| let parent_def_id = cx.tcx.hir.local_def_id(parent_item); |
| let substs = Substs::identity_for_item(cx.tcx, parent_def_id); |
| if let Ok(&ty::Const { |
| val: ConstVal::Str(r), |
| .. |
| }) = ConstContext::new(cx.tcx, cx.param_env.and(substs), cx.tables).eval(arg) |
| { |
| if r.len() == 1 { |
| let hint = snippet(cx, expr.span, "..").replace(&format!("\"{}\"", r), &format!("'{}'", r)); |
| span_lint_and_then( |
| cx, |
| SINGLE_CHAR_PATTERN, |
| arg.span, |
| "single-character string constant used as pattern", |
| |db| { |
| db.span_suggestion(expr.span, "try using a char instead", hint); |
| }, |
| ); |
| } |
| } |
| } |
| |
| /// Checks for the `USELESS_ASREF` lint. |
| fn lint_asref(cx: &LateContext, expr: &hir::Expr, call_name: &str, as_ref_args: &[hir::Expr]) { |
| // when we get here, we've already checked that the call name is "as_ref" or "as_mut" |
| // check if the call is to the actual `AsRef` or `AsMut` trait |
| if match_trait_method(cx, expr, &paths::ASREF_TRAIT) || match_trait_method(cx, expr, &paths::ASMUT_TRAIT) { |
| // check if the type after `as_ref` or `as_mut` is the same as before |
| let recvr = &as_ref_args[0]; |
| let rcv_ty = cx.tables.expr_ty(recvr); |
| let res_ty = cx.tables.expr_ty(expr); |
| let (base_res_ty, res_depth) = walk_ptrs_ty_depth(res_ty); |
| let (base_rcv_ty, rcv_depth) = walk_ptrs_ty_depth(rcv_ty); |
| if base_rcv_ty == base_res_ty && rcv_depth >= res_depth { |
| span_lint_and_sugg( |
| cx, |
| USELESS_ASREF, |
| expr.span, |
| &format!("this call to `{}` does nothing", call_name), |
| "try this", |
| snippet(cx, recvr.span, "_").into_owned(), |
| ); |
| } |
| } |
| } |
| |
| /// Given a `Result<T, E>` type, return its error type (`E`). |
| fn get_error_type<'a>(cx: &LateContext, ty: Ty<'a>) -> Option<Ty<'a>> { |
| if let ty::TyAdt(_, substs) = ty.sty { |
| if match_type(cx, ty, &paths::RESULT) { |
| substs.types().nth(1) |
| } else { |
| None |
| } |
| } else { |
| None |
| } |
| } |
| |
| /// This checks whether a given type is known to implement Debug. |
| fn has_debug_impl<'a, 'b>(ty: Ty<'a>, cx: &LateContext<'b, 'a>) -> bool { |
| match cx.tcx.lang_items().debug_trait() { |
| Some(debug) => implements_trait(cx, ty, debug, &[]), |
| None => false, |
| } |
| } |
| |
| enum Convention { |
| Eq(&'static str), |
| StartsWith(&'static str), |
| } |
| |
| #[cfg_attr(rustfmt, rustfmt_skip)] |
| const CONVENTIONS: [(Convention, &[SelfKind]); 6] = [ |
| (Convention::Eq("new"), &[SelfKind::No]), |
| (Convention::StartsWith("as_"), &[SelfKind::Ref, SelfKind::RefMut]), |
| (Convention::StartsWith("from_"), &[SelfKind::No]), |
| (Convention::StartsWith("into_"), &[SelfKind::Value]), |
| (Convention::StartsWith("is_"), &[SelfKind::Ref, SelfKind::No]), |
| (Convention::StartsWith("to_"), &[SelfKind::Ref]), |
| ]; |
| |
| #[cfg_attr(rustfmt, rustfmt_skip)] |
| const TRAIT_METHODS: [(&str, usize, SelfKind, OutType, &str); 30] = [ |
| ("add", 2, SelfKind::Value, OutType::Any, "std::ops::Add"), |
| ("as_mut", 1, SelfKind::RefMut, OutType::Ref, "std::convert::AsMut"), |
| ("as_ref", 1, SelfKind::Ref, OutType::Ref, "std::convert::AsRef"), |
| ("bitand", 2, SelfKind::Value, OutType::Any, "std::ops::BitAnd"), |
| ("bitor", 2, SelfKind::Value, OutType::Any, "std::ops::BitOr"), |
| ("bitxor", 2, SelfKind::Value, OutType::Any, "std::ops::BitXor"), |
| ("borrow", 1, SelfKind::Ref, OutType::Ref, "std::borrow::Borrow"), |
| ("borrow_mut", 1, SelfKind::RefMut, OutType::Ref, "std::borrow::BorrowMut"), |
| ("clone", 1, SelfKind::Ref, OutType::Any, "std::clone::Clone"), |
| ("cmp", 2, SelfKind::Ref, OutType::Any, "std::cmp::Ord"), |
| ("default", 0, SelfKind::No, OutType::Any, "std::default::Default"), |
| ("deref", 1, SelfKind::Ref, OutType::Ref, "std::ops::Deref"), |
| ("deref_mut", 1, SelfKind::RefMut, OutType::Ref, "std::ops::DerefMut"), |
| ("div", 2, SelfKind::Value, OutType::Any, "std::ops::Div"), |
| ("drop", 1, SelfKind::RefMut, OutType::Unit, "std::ops::Drop"), |
| ("eq", 2, SelfKind::Ref, OutType::Bool, "std::cmp::PartialEq"), |
| ("from_iter", 1, SelfKind::No, OutType::Any, "std::iter::FromIterator"), |
| ("from_str", 1, SelfKind::No, OutType::Any, "std::str::FromStr"), |
| ("hash", 2, SelfKind::Ref, OutType::Unit, "std::hash::Hash"), |
| ("index", 2, SelfKind::Ref, OutType::Ref, "std::ops::Index"), |
| ("index_mut", 2, SelfKind::RefMut, OutType::Ref, "std::ops::IndexMut"), |
| ("into_iter", 1, SelfKind::Value, OutType::Any, "std::iter::IntoIterator"), |
| ("mul", 2, SelfKind::Value, OutType::Any, "std::ops::Mul"), |
| ("neg", 1, SelfKind::Value, OutType::Any, "std::ops::Neg"), |
| ("next", 1, SelfKind::RefMut, OutType::Any, "std::iter::Iterator"), |
| ("not", 1, SelfKind::Value, OutType::Any, "std::ops::Not"), |
| ("rem", 2, SelfKind::Value, OutType::Any, "std::ops::Rem"), |
| ("shl", 2, SelfKind::Value, OutType::Any, "std::ops::Shl"), |
| ("shr", 2, SelfKind::Value, OutType::Any, "std::ops::Shr"), |
| ("sub", 2, SelfKind::Value, OutType::Any, "std::ops::Sub"), |
| ]; |
| |
| #[cfg_attr(rustfmt, rustfmt_skip)] |
| const PATTERN_METHODS: [(&str, usize); 17] = [ |
| ("contains", 1), |
| ("starts_with", 1), |
| ("ends_with", 1), |
| ("find", 1), |
| ("rfind", 1), |
| ("split", 1), |
| ("rsplit", 1), |
| ("split_terminator", 1), |
| ("rsplit_terminator", 1), |
| ("splitn", 2), |
| ("rsplitn", 2), |
| ("matches", 1), |
| ("rmatches", 1), |
| ("match_indices", 1), |
| ("rmatch_indices", 1), |
| ("trim_left_matches", 1), |
| ("trim_right_matches", 1), |
| ]; |
| |
| |
| #[derive(Clone, Copy, PartialEq, Debug)] |
| enum SelfKind { |
| Value, |
| Ref, |
| RefMut, |
| No, |
| } |
| |
| impl SelfKind { |
| fn matches( |
| self, |
| ty: &hir::Ty, |
| arg: &hir::Arg, |
| self_ty: &hir::Ty, |
| allow_value_for_ref: bool, |
| generics: &hir::Generics, |
| ) -> bool { |
| // Self types in the HIR are desugared to explicit self types. So it will |
| // always be `self: |
| // SomeType`, |
| // where SomeType can be `Self` or an explicit impl self type (e.g. `Foo` if |
| // the impl is on `Foo`) |
| // Thus, we only need to test equality against the impl self type or if it is |
| // an explicit |
| // `Self`. Furthermore, the only possible types for `self: ` are `&Self`, |
| // `Self`, `&mut Self`, |
| // and `Box<Self>`, including the equivalent types with `Foo`. |
| |
| let is_actually_self = |ty| is_self_ty(ty) || ty == self_ty; |
| if is_self(arg) { |
| match self { |
| SelfKind::Value => is_actually_self(ty), |
| SelfKind::Ref | SelfKind::RefMut => { |
| if allow_value_for_ref && is_actually_self(ty) { |
| return true; |
| } |
| match ty.node { |
| hir::TyRptr(_, ref mt_ty) => { |
| let mutability_match = if self == SelfKind::Ref { |
| mt_ty.mutbl == hir::MutImmutable |
| } else { |
| mt_ty.mutbl == hir::MutMutable |
| }; |
| is_actually_self(&mt_ty.ty) && mutability_match |
| }, |
| _ => false, |
| } |
| }, |
| _ => false, |
| } |
| } else { |
| match self { |
| SelfKind::Value => false, |
| SelfKind::Ref => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASREF_TRAIT), |
| SelfKind::RefMut => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASMUT_TRAIT), |
| SelfKind::No => true, |
| } |
| } |
| } |
| |
| fn description(&self) -> &'static str { |
| match *self { |
| SelfKind::Value => "self by value", |
| SelfKind::Ref => "self by reference", |
| SelfKind::RefMut => "self by mutable reference", |
| SelfKind::No => "no self", |
| } |
| } |
| } |
| |
| fn is_as_ref_or_mut_trait(ty: &hir::Ty, self_ty: &hir::Ty, generics: &hir::Generics, name: &[&str]) -> bool { |
| single_segment_ty(ty).map_or(false, |seg| { |
| generics.ty_params.iter().any(|param| { |
| param.name == seg.name && param.bounds.iter().any(|bound| { |
| if let hir::TyParamBound::TraitTyParamBound(ref ptr, ..) = *bound { |
| let path = &ptr.trait_ref.path; |
| match_path(path, name) && path.segments.last().map_or(false, |s| { |
| if let Some(ref params) = s.parameters { |
| if params.parenthesized { |
| false |
| } else { |
| params.types.len() == 1 |
| && (is_self_ty(¶ms.types[0]) || is_ty(&*params.types[0], self_ty)) |
| } |
| } else { |
| false |
| } |
| }) |
| } else { |
| false |
| } |
| }) |
| }) |
| }) |
| } |
| |
| fn is_ty(ty: &hir::Ty, self_ty: &hir::Ty) -> bool { |
| match (&ty.node, &self_ty.node) { |
| ( |
| &hir::TyPath(hir::QPath::Resolved(_, ref ty_path)), |
| &hir::TyPath(hir::QPath::Resolved(_, ref self_ty_path)), |
| ) => ty_path |
| .segments |
| .iter() |
| .map(|seg| seg.name) |
| .eq(self_ty_path.segments.iter().map(|seg| seg.name)), |
| _ => false, |
| } |
| } |
| |
| fn single_segment_ty(ty: &hir::Ty) -> Option<&hir::PathSegment> { |
| if let hir::TyPath(ref path) = ty.node { |
| single_segment_path(path) |
| } else { |
| None |
| } |
| } |
| |
| impl Convention { |
| fn check(&self, other: &str) -> bool { |
| match *self { |
| Convention::Eq(this) => this == other, |
| Convention::StartsWith(this) => other.starts_with(this) && this != other, |
| } |
| } |
| } |
| |
| impl fmt::Display for Convention { |
| fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { |
| match *self { |
| Convention::Eq(this) => this.fmt(f), |
| Convention::StartsWith(this) => this.fmt(f).and_then(|_| '*'.fmt(f)), |
| } |
| } |
| } |
| |
| #[derive(Clone, Copy)] |
| enum OutType { |
| Unit, |
| Bool, |
| Any, |
| Ref, |
| } |
| |
| impl OutType { |
| fn matches(&self, ty: &hir::FunctionRetTy) -> bool { |
| match (self, ty) { |
| (&OutType::Unit, &hir::DefaultReturn(_)) => true, |
| (&OutType::Unit, &hir::Return(ref ty)) if ty.node == hir::TyTup(vec![].into()) => true, |
| (&OutType::Bool, &hir::Return(ref ty)) if is_bool(ty) => true, |
| (&OutType::Any, &hir::Return(ref ty)) if ty.node != hir::TyTup(vec![].into()) => true, |
| (&OutType::Ref, &hir::Return(ref ty)) => matches!(ty.node, hir::TyRptr(_, _)), |
| _ => false, |
| } |
| } |
| } |
| |
| fn is_bool(ty: &hir::Ty) -> bool { |
| if let hir::TyPath(ref p) = ty.node { |
| match_qpath(p, &["bool"]) |
| } else { |
| false |
| } |
| } |