blob: cdf2bbb93304ff885e0051b0508595c29dfc8d1b [file] [log] [blame] [edit]
use std::path::PathBuf;
use anyhow::{Context, Result};
use path_macro::path;
use tempfile::TempDir;
use xshell::cmd;
use crate::util::MiriEnv;
/// CoverageReport can generate code coverage reports for miri.
pub struct CoverageReport {
/// path is a temporary directory where intermediate coverage artifacts will be stored.
/// (The final output will be stored in a permanent location.)
path: TempDir,
}
impl CoverageReport {
/// Creates a new CoverageReport.
///
/// # Errors
///
/// An error will be returned if a temporary directory could not be created.
pub fn new() -> Result<Self> {
Ok(Self { path: TempDir::new()? })
}
/// add_env_vars will add the required environment variables to MiriEnv `e`.
pub fn add_env_vars(&self, e: &mut MiriEnv) -> Result<()> {
let mut rustflags = e.sh.var("RUSTFLAGS")?;
rustflags.push_str(" -C instrument-coverage");
e.sh.set_var("RUSTFLAGS", rustflags);
// Copy-pasting from: https://doc.rust-lang.org/rustc/instrument-coverage.html#instrumentation-based-code-coverage
// The format symbols below have the following meaning:
// - %p - The process ID.
// - %Nm - the instrumented binary’s signature:
// The runtime creates a pool of N raw profiles, used for on-line
// profile merging. The runtime takes care of selecting a raw profile
// from the pool, locking it, and updating it before the program
// exits. N must be between 1 and 9, and defaults to 1 if omitted
// (with simply %m).
//
// Additionally the default for LLVM_PROFILE_FILE is default_%m_%p.profraw.
// So we just use the same template, replacing "default" with "miri".
let file_template = self.path.path().join("miri_%m_%p.profraw");
e.sh.set_var("LLVM_PROFILE_FILE", file_template);
Ok(())
}
/// show_coverage_report will print coverage information using the artifact
/// files in `self.path`.
pub fn show_coverage_report(&self, e: &MiriEnv, features: &[String]) -> Result<()> {
let profraw_files = self.profraw_files()?;
let profdata_bin = path!(e.libdir / ".." / "bin" / "llvm-profdata");
let merged_file = path!(e.miri_dir / "target" / "coverage.profdata");
// Merge the profraw files
cmd!(e.sh, "{profdata_bin} merge -sparse {profraw_files...} -o {merged_file}")
.quiet()
.run()?;
// Create the coverage report.
let cov_bin = path!(e.libdir / ".." / "bin" / "llvm-cov");
let miri_bin = e
.build_get_binary(".", features)
.context("failed to get filename of miri executable")?;
cmd!(
e.sh,
"{cov_bin} report --instr-profile={merged_file} --object {miri_bin} --sources src/"
)
.run()?;
println!("Profile data saved in {}", merged_file.display());
Ok(())
}
/// profraw_files returns the profraw files in `self.path`.
///
/// # Errors
///
/// An error will be returned if `self.path` can't be read.
fn profraw_files(&self) -> Result<Vec<PathBuf>> {
Ok(std::fs::read_dir(&self.path)?
.filter_map(|r| r.ok())
.filter(|e| e.file_type().is_ok_and(|t| t.is_file()))
.map(|e| e.path())
.filter(|p| p.extension().is_some_and(|e| e == "profraw"))
.collect())
}
}