|  | //===- InstCombineCompares.cpp --------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visitICmp and visitFCmp functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | // How many times is a select replaced by one of its operands? | 
|  | STATISTIC(NumSel, "Number of select opts"); | 
|  |  | 
|  |  | 
|  | /// Compute Result = In1+In2, returning true if the result overflowed for this | 
|  | /// type. | 
|  | static bool addWithOverflow(APInt &Result, const APInt &In1, | 
|  | const APInt &In2, bool IsSigned = false) { | 
|  | bool Overflow; | 
|  | if (IsSigned) | 
|  | Result = In1.sadd_ov(In2, Overflow); | 
|  | else | 
|  | Result = In1.uadd_ov(In2, Overflow); | 
|  |  | 
|  | return Overflow; | 
|  | } | 
|  |  | 
|  | /// Compute Result = In1-In2, returning true if the result overflowed for this | 
|  | /// type. | 
|  | static bool subWithOverflow(APInt &Result, const APInt &In1, | 
|  | const APInt &In2, bool IsSigned = false) { | 
|  | bool Overflow; | 
|  | if (IsSigned) | 
|  | Result = In1.ssub_ov(In2, Overflow); | 
|  | else | 
|  | Result = In1.usub_ov(In2, Overflow); | 
|  |  | 
|  | return Overflow; | 
|  | } | 
|  |  | 
|  | /// Given an icmp instruction, return true if any use of this comparison is a | 
|  | /// branch on sign bit comparison. | 
|  | static bool hasBranchUse(ICmpInst &I) { | 
|  | for (auto *U : I.users()) | 
|  | if (isa<BranchInst>(U)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given an exploded icmp instruction, return true if the comparison only | 
|  | /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the | 
|  | /// result of the comparison is true when the input value is signed. | 
|  | static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, | 
|  | bool &TrueIfSigned) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_SLT:   // True if LHS s< 0 | 
|  | TrueIfSigned = true; | 
|  | return RHS.isNullValue(); | 
|  | case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1 | 
|  | TrueIfSigned = true; | 
|  | return RHS.isAllOnesValue(); | 
|  | case ICmpInst::ICMP_SGT:   // True if LHS s> -1 | 
|  | TrueIfSigned = false; | 
|  | return RHS.isAllOnesValue(); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // True if LHS u> RHS and RHS == high-bit-mask - 1 | 
|  | TrueIfSigned = true; | 
|  | return RHS.isMaxSignedValue(); | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) | 
|  | TrueIfSigned = true; | 
|  | return RHS.isSignMask(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if the exploded icmp can be expressed as a signed comparison | 
|  | /// to zero and updates the predicate accordingly. | 
|  | /// The signedness of the comparison is preserved. | 
|  | /// TODO: Refactor with decomposeBitTestICmp()? | 
|  | static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { | 
|  | if (!ICmpInst::isSigned(Pred)) | 
|  | return false; | 
|  |  | 
|  | if (C.isNullValue()) | 
|  | return ICmpInst::isRelational(Pred); | 
|  |  | 
|  | if (C.isOneValue()) { | 
|  | if (Pred == ICmpInst::ICMP_SLT) { | 
|  | Pred = ICmpInst::ICMP_SLE; | 
|  | return true; | 
|  | } | 
|  | } else if (C.isAllOnesValue()) { | 
|  | if (Pred == ICmpInst::ICMP_SGT) { | 
|  | Pred = ICmpInst::ICMP_SGE; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given a signed integer type and a set of known zero and one bits, compute | 
|  | /// the maximum and minimum values that could have the specified known zero and | 
|  | /// known one bits, returning them in Min/Max. | 
|  | /// TODO: Move to method on KnownBits struct? | 
|  | static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, | 
|  | APInt &Min, APInt &Max) { | 
|  | assert(Known.getBitWidth() == Min.getBitWidth() && | 
|  | Known.getBitWidth() == Max.getBitWidth() && | 
|  | "KnownZero, KnownOne and Min, Max must have equal bitwidth."); | 
|  | APInt UnknownBits = ~(Known.Zero|Known.One); | 
|  |  | 
|  | // The minimum value is when all unknown bits are zeros, EXCEPT for the sign | 
|  | // bit if it is unknown. | 
|  | Min = Known.One; | 
|  | Max = Known.One|UnknownBits; | 
|  |  | 
|  | if (UnknownBits.isNegative()) { // Sign bit is unknown | 
|  | Min.setSignBit(); | 
|  | Max.clearSignBit(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given an unsigned integer type and a set of known zero and one bits, compute | 
|  | /// the maximum and minimum values that could have the specified known zero and | 
|  | /// known one bits, returning them in Min/Max. | 
|  | /// TODO: Move to method on KnownBits struct? | 
|  | static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, | 
|  | APInt &Min, APInt &Max) { | 
|  | assert(Known.getBitWidth() == Min.getBitWidth() && | 
|  | Known.getBitWidth() == Max.getBitWidth() && | 
|  | "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); | 
|  | APInt UnknownBits = ~(Known.Zero|Known.One); | 
|  |  | 
|  | // The minimum value is when the unknown bits are all zeros. | 
|  | Min = Known.One; | 
|  | // The maximum value is when the unknown bits are all ones. | 
|  | Max = Known.One|UnknownBits; | 
|  | } | 
|  |  | 
|  | /// This is called when we see this pattern: | 
|  | ///   cmp pred (load (gep GV, ...)), cmpcst | 
|  | /// where GV is a global variable with a constant initializer. Try to simplify | 
|  | /// this into some simple computation that does not need the load. For example | 
|  | /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". | 
|  | /// | 
|  | /// If AndCst is non-null, then the loaded value is masked with that constant | 
|  | /// before doing the comparison. This handles cases like "A[i]&4 == 0". | 
|  | Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, | 
|  | GlobalVariable *GV, | 
|  | CmpInst &ICI, | 
|  | ConstantInt *AndCst) { | 
|  | Constant *Init = GV->getInitializer(); | 
|  | if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) | 
|  | return nullptr; | 
|  |  | 
|  | uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); | 
|  | // Don't blow up on huge arrays. | 
|  | if (ArrayElementCount > MaxArraySizeForCombine) | 
|  | return nullptr; | 
|  |  | 
|  | // There are many forms of this optimization we can handle, for now, just do | 
|  | // the simple index into a single-dimensional array. | 
|  | // | 
|  | // Require: GEP GV, 0, i {{, constant indices}} | 
|  | if (GEP->getNumOperands() < 3 || | 
|  | !isa<ConstantInt>(GEP->getOperand(1)) || | 
|  | !cast<ConstantInt>(GEP->getOperand(1))->isZero() || | 
|  | isa<Constant>(GEP->getOperand(2))) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that indices after the variable are constants and in-range for the | 
|  | // type they index.  Collect the indices.  This is typically for arrays of | 
|  | // structs. | 
|  | SmallVector<unsigned, 4> LaterIndices; | 
|  |  | 
|  | Type *EltTy = Init->getType()->getArrayElementType(); | 
|  | for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { | 
|  | ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!Idx) return nullptr;  // Variable index. | 
|  |  | 
|  | uint64_t IdxVal = Idx->getZExtValue(); | 
|  | if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. | 
|  |  | 
|  | if (StructType *STy = dyn_cast<StructType>(EltTy)) | 
|  | EltTy = STy->getElementType(IdxVal); | 
|  | else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { | 
|  | if (IdxVal >= ATy->getNumElements()) return nullptr; | 
|  | EltTy = ATy->getElementType(); | 
|  | } else { | 
|  | return nullptr; // Unknown type. | 
|  | } | 
|  |  | 
|  | LaterIndices.push_back(IdxVal); | 
|  | } | 
|  |  | 
|  | enum { Overdefined = -3, Undefined = -2 }; | 
|  |  | 
|  | // Variables for our state machines. | 
|  |  | 
|  | // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form | 
|  | // "i == 47 | i == 87", where 47 is the first index the condition is true for, | 
|  | // and 87 is the second (and last) index.  FirstTrueElement is -2 when | 
|  | // undefined, otherwise set to the first true element.  SecondTrueElement is | 
|  | // -2 when undefined, -3 when overdefined and >= 0 when that index is true. | 
|  | int FirstTrueElement = Undefined, SecondTrueElement = Undefined; | 
|  |  | 
|  | // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the | 
|  | // form "i != 47 & i != 87".  Same state transitions as for true elements. | 
|  | int FirstFalseElement = Undefined, SecondFalseElement = Undefined; | 
|  |  | 
|  | /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these | 
|  | /// define a state machine that triggers for ranges of values that the index | 
|  | /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'. | 
|  | /// This is -2 when undefined, -3 when overdefined, and otherwise the last | 
|  | /// index in the range (inclusive).  We use -2 for undefined here because we | 
|  | /// use relative comparisons and don't want 0-1 to match -1. | 
|  | int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; | 
|  |  | 
|  | // MagicBitvector - This is a magic bitvector where we set a bit if the | 
|  | // comparison is true for element 'i'.  If there are 64 elements or less in | 
|  | // the array, this will fully represent all the comparison results. | 
|  | uint64_t MagicBitvector = 0; | 
|  |  | 
|  | // Scan the array and see if one of our patterns matches. | 
|  | Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); | 
|  | for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { | 
|  | Constant *Elt = Init->getAggregateElement(i); | 
|  | if (!Elt) return nullptr; | 
|  |  | 
|  | // If this is indexing an array of structures, get the structure element. | 
|  | if (!LaterIndices.empty()) | 
|  | Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); | 
|  |  | 
|  | // If the element is masked, handle it. | 
|  | if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); | 
|  |  | 
|  | // Find out if the comparison would be true or false for the i'th element. | 
|  | Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, | 
|  | CompareRHS, DL, &TLI); | 
|  | // If the result is undef for this element, ignore it. | 
|  | if (isa<UndefValue>(C)) { | 
|  | // Extend range state machines to cover this element in case there is an | 
|  | // undef in the middle of the range. | 
|  | if (TrueRangeEnd == (int)i-1) | 
|  | TrueRangeEnd = i; | 
|  | if (FalseRangeEnd == (int)i-1) | 
|  | FalseRangeEnd = i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we can't compute the result for any of the elements, we have to give | 
|  | // up evaluating the entire conditional. | 
|  | if (!isa<ConstantInt>(C)) return nullptr; | 
|  |  | 
|  | // Otherwise, we know if the comparison is true or false for this element, | 
|  | // update our state machines. | 
|  | bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); | 
|  |  | 
|  | // State machine for single/double/range index comparison. | 
|  | if (IsTrueForElt) { | 
|  | // Update the TrueElement state machine. | 
|  | if (FirstTrueElement == Undefined) | 
|  | FirstTrueElement = TrueRangeEnd = i;  // First true element. | 
|  | else { | 
|  | // Update double-compare state machine. | 
|  | if (SecondTrueElement == Undefined) | 
|  | SecondTrueElement = i; | 
|  | else | 
|  | SecondTrueElement = Overdefined; | 
|  |  | 
|  | // Update range state machine. | 
|  | if (TrueRangeEnd == (int)i-1) | 
|  | TrueRangeEnd = i; | 
|  | else | 
|  | TrueRangeEnd = Overdefined; | 
|  | } | 
|  | } else { | 
|  | // Update the FalseElement state machine. | 
|  | if (FirstFalseElement == Undefined) | 
|  | FirstFalseElement = FalseRangeEnd = i; // First false element. | 
|  | else { | 
|  | // Update double-compare state machine. | 
|  | if (SecondFalseElement == Undefined) | 
|  | SecondFalseElement = i; | 
|  | else | 
|  | SecondFalseElement = Overdefined; | 
|  |  | 
|  | // Update range state machine. | 
|  | if (FalseRangeEnd == (int)i-1) | 
|  | FalseRangeEnd = i; | 
|  | else | 
|  | FalseRangeEnd = Overdefined; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this element is in range, update our magic bitvector. | 
|  | if (i < 64 && IsTrueForElt) | 
|  | MagicBitvector |= 1ULL << i; | 
|  |  | 
|  | // If all of our states become overdefined, bail out early.  Since the | 
|  | // predicate is expensive, only check it every 8 elements.  This is only | 
|  | // really useful for really huge arrays. | 
|  | if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && | 
|  | SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && | 
|  | FalseRangeEnd == Overdefined) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Now that we've scanned the entire array, emit our new comparison(s).  We | 
|  | // order the state machines in complexity of the generated code. | 
|  | Value *Idx = GEP->getOperand(2); | 
|  |  | 
|  | // If the index is larger than the pointer size of the target, truncate the | 
|  | // index down like the GEP would do implicitly.  We don't have to do this for | 
|  | // an inbounds GEP because the index can't be out of range. | 
|  | if (!GEP->isInBounds()) { | 
|  | Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); | 
|  | unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); | 
|  | if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) | 
|  | Idx = Builder.CreateTrunc(Idx, IntPtrTy); | 
|  | } | 
|  |  | 
|  | // If the comparison is only true for one or two elements, emit direct | 
|  | // comparisons. | 
|  | if (SecondTrueElement != Overdefined) { | 
|  | // None true -> false. | 
|  | if (FirstTrueElement == Undefined) | 
|  | return replaceInstUsesWith(ICI, Builder.getFalse()); | 
|  |  | 
|  | Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); | 
|  |  | 
|  | // True for one element -> 'i == 47'. | 
|  | if (SecondTrueElement == Undefined) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); | 
|  |  | 
|  | // True for two elements -> 'i == 47 | i == 72'. | 
|  | Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); | 
|  | Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); | 
|  | Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); | 
|  | return BinaryOperator::CreateOr(C1, C2); | 
|  | } | 
|  |  | 
|  | // If the comparison is only false for one or two elements, emit direct | 
|  | // comparisons. | 
|  | if (SecondFalseElement != Overdefined) { | 
|  | // None false -> true. | 
|  | if (FirstFalseElement == Undefined) | 
|  | return replaceInstUsesWith(ICI, Builder.getTrue()); | 
|  |  | 
|  | Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); | 
|  |  | 
|  | // False for one element -> 'i != 47'. | 
|  | if (SecondFalseElement == Undefined) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); | 
|  |  | 
|  | // False for two elements -> 'i != 47 & i != 72'. | 
|  | Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); | 
|  | Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); | 
|  | Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); | 
|  | return BinaryOperator::CreateAnd(C1, C2); | 
|  | } | 
|  |  | 
|  | // If the comparison can be replaced with a range comparison for the elements | 
|  | // where it is true, emit the range check. | 
|  | if (TrueRangeEnd != Overdefined) { | 
|  | assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); | 
|  |  | 
|  | // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). | 
|  | if (FirstTrueElement) { | 
|  | Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); | 
|  | Idx = Builder.CreateAdd(Idx, Offs); | 
|  | } | 
|  |  | 
|  | Value *End = ConstantInt::get(Idx->getType(), | 
|  | TrueRangeEnd-FirstTrueElement+1); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); | 
|  | } | 
|  |  | 
|  | // False range check. | 
|  | if (FalseRangeEnd != Overdefined) { | 
|  | assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); | 
|  | // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). | 
|  | if (FirstFalseElement) { | 
|  | Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); | 
|  | Idx = Builder.CreateAdd(Idx, Offs); | 
|  | } | 
|  |  | 
|  | Value *End = ConstantInt::get(Idx->getType(), | 
|  | FalseRangeEnd-FirstFalseElement); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); | 
|  | } | 
|  |  | 
|  | // If a magic bitvector captures the entire comparison state | 
|  | // of this load, replace it with computation that does: | 
|  | //   ((magic_cst >> i) & 1) != 0 | 
|  | { | 
|  | Type *Ty = nullptr; | 
|  |  | 
|  | // Look for an appropriate type: | 
|  | // - The type of Idx if the magic fits | 
|  | // - The smallest fitting legal type | 
|  | if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) | 
|  | Ty = Idx->getType(); | 
|  | else | 
|  | Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); | 
|  |  | 
|  | if (Ty) { | 
|  | Value *V = Builder.CreateIntCast(Idx, Ty, false); | 
|  | V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); | 
|  | V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return a value that can be used to compare the *offset* implied by a GEP to | 
|  | /// zero. For example, if we have &A[i], we want to return 'i' for | 
|  | /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales | 
|  | /// are involved. The above expression would also be legal to codegen as | 
|  | /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). | 
|  | /// This latter form is less amenable to optimization though, and we are allowed | 
|  | /// to generate the first by knowing that pointer arithmetic doesn't overflow. | 
|  | /// | 
|  | /// If we can't emit an optimized form for this expression, this returns null. | 
|  | /// | 
|  | static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, | 
|  | const DataLayout &DL) { | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  |  | 
|  | // Check to see if this gep only has a single variable index.  If so, and if | 
|  | // any constant indices are a multiple of its scale, then we can compute this | 
|  | // in terms of the scale of the variable index.  For example, if the GEP | 
|  | // implies an offset of "12 + i*4", then we can codegen this as "3 + i", | 
|  | // because the expression will cross zero at the same point. | 
|  | unsigned i, e = GEP->getNumOperands(); | 
|  | int64_t Offset = 0; | 
|  | for (i = 1; i != e; ++i, ++GTI) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { | 
|  | // Compute the aggregate offset of constant indices. | 
|  | if (CI->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += Size*CI->getSExtValue(); | 
|  | } | 
|  | } else { | 
|  | // Found our variable index. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are no variable indices, we must have a constant offset, just | 
|  | // evaluate it the general way. | 
|  | if (i == e) return nullptr; | 
|  |  | 
|  | Value *VariableIdx = GEP->getOperand(i); | 
|  | // Determine the scale factor of the variable element.  For example, this is | 
|  | // 4 if the variable index is into an array of i32. | 
|  | uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  |  | 
|  | // Verify that there are no other variable indices.  If so, emit the hard way. | 
|  | for (++i, ++GTI; i != e; ++i, ++GTI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!CI) return nullptr; | 
|  |  | 
|  | // Compute the aggregate offset of constant indices. | 
|  | if (CI->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += Size*CI->getSExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we know we have a single variable index, which must be a | 
|  | // pointer/array/vector index.  If there is no offset, life is simple, return | 
|  | // the index. | 
|  | Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); | 
|  | unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); | 
|  | if (Offset == 0) { | 
|  | // Cast to intptrty in case a truncation occurs.  If an extension is needed, | 
|  | // we don't need to bother extending: the extension won't affect where the | 
|  | // computation crosses zero. | 
|  | if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { | 
|  | VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); | 
|  | } | 
|  | return VariableIdx; | 
|  | } | 
|  |  | 
|  | // Otherwise, there is an index.  The computation we will do will be modulo | 
|  | // the pointer size. | 
|  | Offset = SignExtend64(Offset, IntPtrWidth); | 
|  | VariableScale = SignExtend64(VariableScale, IntPtrWidth); | 
|  |  | 
|  | // To do this transformation, any constant index must be a multiple of the | 
|  | // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i", | 
|  | // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a | 
|  | // multiple of the variable scale. | 
|  | int64_t NewOffs = Offset / (int64_t)VariableScale; | 
|  | if (Offset != NewOffs*(int64_t)VariableScale) | 
|  | return nullptr; | 
|  |  | 
|  | // Okay, we can do this evaluation.  Start by converting the index to intptr. | 
|  | if (VariableIdx->getType() != IntPtrTy) | 
|  | VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, | 
|  | true /*Signed*/); | 
|  | Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); | 
|  | return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); | 
|  | } | 
|  |  | 
|  | /// Returns true if we can rewrite Start as a GEP with pointer Base | 
|  | /// and some integer offset. The nodes that need to be re-written | 
|  | /// for this transformation will be added to Explored. | 
|  | static bool canRewriteGEPAsOffset(Value *Start, Value *Base, | 
|  | const DataLayout &DL, | 
|  | SetVector<Value *> &Explored) { | 
|  | SmallVector<Value *, 16> WorkList(1, Start); | 
|  | Explored.insert(Base); | 
|  |  | 
|  | // The following traversal gives us an order which can be used | 
|  | // when doing the final transformation. Since in the final | 
|  | // transformation we create the PHI replacement instructions first, | 
|  | // we don't have to get them in any particular order. | 
|  | // | 
|  | // However, for other instructions we will have to traverse the | 
|  | // operands of an instruction first, which means that we have to | 
|  | // do a post-order traversal. | 
|  | while (!WorkList.empty()) { | 
|  | SetVector<PHINode *> PHIs; | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | if (Explored.size() >= 100) | 
|  | return false; | 
|  |  | 
|  | Value *V = WorkList.back(); | 
|  |  | 
|  | if (Explored.count(V) != 0) { | 
|  | WorkList.pop_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && | 
|  | !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) | 
|  | // We've found some value that we can't explore which is different from | 
|  | // the base. Therefore we can't do this transformation. | 
|  | return false; | 
|  |  | 
|  | if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { | 
|  | auto *CI = dyn_cast<CastInst>(V); | 
|  | if (!CI->isNoopCast(DL)) | 
|  | return false; | 
|  |  | 
|  | if (Explored.count(CI->getOperand(0)) == 0) | 
|  | WorkList.push_back(CI->getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | // We're limiting the GEP to having one index. This will preserve | 
|  | // the original pointer type. We could handle more cases in the | 
|  | // future. | 
|  | if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || | 
|  | GEP->getType() != Start->getType()) | 
|  | return false; | 
|  |  | 
|  | if (Explored.count(GEP->getOperand(0)) == 0) | 
|  | WorkList.push_back(GEP->getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (WorkList.back() == V) { | 
|  | WorkList.pop_back(); | 
|  | // We've finished visiting this node, mark it as such. | 
|  | Explored.insert(V); | 
|  | } | 
|  |  | 
|  | if (auto *PN = dyn_cast<PHINode>(V)) { | 
|  | // We cannot transform PHIs on unsplittable basic blocks. | 
|  | if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) | 
|  | return false; | 
|  | Explored.insert(PN); | 
|  | PHIs.insert(PN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Explore the PHI nodes further. | 
|  | for (auto *PN : PHIs) | 
|  | for (Value *Op : PN->incoming_values()) | 
|  | if (Explored.count(Op) == 0) | 
|  | WorkList.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Make sure that we can do this. Since we can't insert GEPs in a basic | 
|  | // block before a PHI node, we can't easily do this transformation if | 
|  | // we have PHI node users of transformed instructions. | 
|  | for (Value *Val : Explored) { | 
|  | for (Value *Use : Val->uses()) { | 
|  |  | 
|  | auto *PHI = dyn_cast<PHINode>(Use); | 
|  | auto *Inst = dyn_cast<Instruction>(Val); | 
|  |  | 
|  | if (Inst == Base || Inst == PHI || !Inst || !PHI || | 
|  | Explored.count(PHI) == 0) | 
|  | continue; | 
|  |  | 
|  | if (PHI->getParent() == Inst->getParent()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Sets the appropriate insert point on Builder where we can add | 
|  | // a replacement Instruction for V (if that is possible). | 
|  | static void setInsertionPoint(IRBuilder<> &Builder, Value *V, | 
|  | bool Before = true) { | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) { | 
|  | Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); | 
|  | return; | 
|  | } | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | if (!Before) | 
|  | I = &*std::next(I->getIterator()); | 
|  | Builder.SetInsertPoint(I); | 
|  | return; | 
|  | } | 
|  | if (auto *A = dyn_cast<Argument>(V)) { | 
|  | // Set the insertion point in the entry block. | 
|  | BasicBlock &Entry = A->getParent()->getEntryBlock(); | 
|  | Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); | 
|  | return; | 
|  | } | 
|  | // Otherwise, this is a constant and we don't need to set a new | 
|  | // insertion point. | 
|  | assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); | 
|  | } | 
|  |  | 
|  | /// Returns a re-written value of Start as an indexed GEP using Base as a | 
|  | /// pointer. | 
|  | static Value *rewriteGEPAsOffset(Value *Start, Value *Base, | 
|  | const DataLayout &DL, | 
|  | SetVector<Value *> &Explored) { | 
|  | // Perform all the substitutions. This is a bit tricky because we can | 
|  | // have cycles in our use-def chains. | 
|  | // 1. Create the PHI nodes without any incoming values. | 
|  | // 2. Create all the other values. | 
|  | // 3. Add the edges for the PHI nodes. | 
|  | // 4. Emit GEPs to get the original pointers. | 
|  | // 5. Remove the original instructions. | 
|  | Type *IndexType = IntegerType::get( | 
|  | Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); | 
|  |  | 
|  | DenseMap<Value *, Value *> NewInsts; | 
|  | NewInsts[Base] = ConstantInt::getNullValue(IndexType); | 
|  |  | 
|  | // Create the new PHI nodes, without adding any incoming values. | 
|  | for (Value *Val : Explored) { | 
|  | if (Val == Base) | 
|  | continue; | 
|  | // Create empty phi nodes. This avoids cyclic dependencies when creating | 
|  | // the remaining instructions. | 
|  | if (auto *PHI = dyn_cast<PHINode>(Val)) | 
|  | NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), | 
|  | PHI->getName() + ".idx", PHI); | 
|  | } | 
|  | IRBuilder<> Builder(Base->getContext()); | 
|  |  | 
|  | // Create all the other instructions. | 
|  | for (Value *Val : Explored) { | 
|  |  | 
|  | if (NewInsts.find(Val) != NewInsts.end()) | 
|  | continue; | 
|  |  | 
|  | if (auto *CI = dyn_cast<CastInst>(Val)) { | 
|  | NewInsts[CI] = NewInsts[CI->getOperand(0)]; | 
|  | continue; | 
|  | } | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(Val)) { | 
|  | Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] | 
|  | : GEP->getOperand(1); | 
|  | setInsertionPoint(Builder, GEP); | 
|  | // Indices might need to be sign extended. GEPs will magically do | 
|  | // this, but we need to do it ourselves here. | 
|  | if (Index->getType()->getScalarSizeInBits() != | 
|  | NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { | 
|  | Index = Builder.CreateSExtOrTrunc( | 
|  | Index, NewInsts[GEP->getOperand(0)]->getType(), | 
|  | GEP->getOperand(0)->getName() + ".sext"); | 
|  | } | 
|  |  | 
|  | auto *Op = NewInsts[GEP->getOperand(0)]; | 
|  | if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) | 
|  | NewInsts[GEP] = Index; | 
|  | else | 
|  | NewInsts[GEP] = Builder.CreateNSWAdd( | 
|  | Op, Index, GEP->getOperand(0)->getName() + ".add"); | 
|  | continue; | 
|  | } | 
|  | if (isa<PHINode>(Val)) | 
|  | continue; | 
|  |  | 
|  | llvm_unreachable("Unexpected instruction type"); | 
|  | } | 
|  |  | 
|  | // Add the incoming values to the PHI nodes. | 
|  | for (Value *Val : Explored) { | 
|  | if (Val == Base) | 
|  | continue; | 
|  | // All the instructions have been created, we can now add edges to the | 
|  | // phi nodes. | 
|  | if (auto *PHI = dyn_cast<PHINode>(Val)) { | 
|  | PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); | 
|  | for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { | 
|  | Value *NewIncoming = PHI->getIncomingValue(I); | 
|  |  | 
|  | if (NewInsts.find(NewIncoming) != NewInsts.end()) | 
|  | NewIncoming = NewInsts[NewIncoming]; | 
|  |  | 
|  | NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Value *Val : Explored) { | 
|  | if (Val == Base) | 
|  | continue; | 
|  |  | 
|  | // Depending on the type, for external users we have to emit | 
|  | // a GEP or a GEP + ptrtoint. | 
|  | setInsertionPoint(Builder, Val, false); | 
|  |  | 
|  | // If required, create an inttoptr instruction for Base. | 
|  | Value *NewBase = Base; | 
|  | if (!Base->getType()->isPointerTy()) | 
|  | NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), | 
|  | Start->getName() + "to.ptr"); | 
|  |  | 
|  | Value *GEP = Builder.CreateInBoundsGEP( | 
|  | Start->getType()->getPointerElementType(), NewBase, | 
|  | makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); | 
|  |  | 
|  | if (!Val->getType()->isPointerTy()) { | 
|  | Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), | 
|  | Val->getName() + ".conv"); | 
|  | GEP = Cast; | 
|  | } | 
|  | Val->replaceAllUsesWith(GEP); | 
|  | } | 
|  |  | 
|  | return NewInsts[Start]; | 
|  | } | 
|  |  | 
|  | /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express | 
|  | /// the input Value as a constant indexed GEP. Returns a pair containing | 
|  | /// the GEPs Pointer and Index. | 
|  | static std::pair<Value *, Value *> | 
|  | getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { | 
|  | Type *IndexType = IntegerType::get(V->getContext(), | 
|  | DL.getIndexTypeSizeInBits(V->getType())); | 
|  |  | 
|  | Constant *Index = ConstantInt::getNullValue(IndexType); | 
|  | while (true) { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | // We accept only inbouds GEPs here to exclude the possibility of | 
|  | // overflow. | 
|  | if (!GEP->isInBounds()) | 
|  | break; | 
|  | if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && | 
|  | GEP->getType() == V->getType()) { | 
|  | V = GEP->getOperand(0); | 
|  | Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); | 
|  | Index = ConstantExpr::getAdd( | 
|  | Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (auto *CI = dyn_cast<IntToPtrInst>(V)) { | 
|  | if (!CI->isNoopCast(DL)) | 
|  | break; | 
|  | V = CI->getOperand(0); | 
|  | continue; | 
|  | } | 
|  | if (auto *CI = dyn_cast<PtrToIntInst>(V)) { | 
|  | if (!CI->isNoopCast(DL)) | 
|  | break; | 
|  | V = CI->getOperand(0); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return {V, Index}; | 
|  | } | 
|  |  | 
|  | /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. | 
|  | /// We can look through PHIs, GEPs and casts in order to determine a common base | 
|  | /// between GEPLHS and RHS. | 
|  | static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, | 
|  | const DataLayout &DL) { | 
|  | if (!GEPLHS->hasAllConstantIndices()) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the pointers have the same type. | 
|  | if (GEPLHS->getType() != RHS->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *PtrBase, *Index; | 
|  | std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); | 
|  |  | 
|  | // The set of nodes that will take part in this transformation. | 
|  | SetVector<Value *> Nodes; | 
|  |  | 
|  | if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) | 
|  | return nullptr; | 
|  |  | 
|  | // We know we can re-write this as | 
|  | //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) | 
|  | // Since we've only looked through inbouds GEPs we know that we | 
|  | // can't have overflow on either side. We can therefore re-write | 
|  | // this as: | 
|  | //   OFFSET1 cmp OFFSET2 | 
|  | Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); | 
|  |  | 
|  | // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written | 
|  | // GEP having PtrBase as the pointer base, and has returned in NewRHS the | 
|  | // offset. Since Index is the offset of LHS to the base pointer, we will now | 
|  | // compare the offsets instead of comparing the pointers. | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); | 
|  | } | 
|  |  | 
|  | /// Fold comparisons between a GEP instruction and something else. At this point | 
|  | /// we know that the GEP is on the LHS of the comparison. | 
|  | Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, | 
|  | Instruction &I) { | 
|  | // Don't transform signed compares of GEPs into index compares. Even if the | 
|  | // GEP is inbounds, the final add of the base pointer can have signed overflow | 
|  | // and would change the result of the icmp. | 
|  | // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be | 
|  | // the maximum signed value for the pointer type. | 
|  | if (ICmpInst::isSigned(Cond)) | 
|  | return nullptr; | 
|  |  | 
|  | // Look through bitcasts and addrspacecasts. We do not however want to remove | 
|  | // 0 GEPs. | 
|  | if (!isa<GetElementPtrInst>(RHS)) | 
|  | RHS = RHS->stripPointerCasts(); | 
|  |  | 
|  | Value *PtrBase = GEPLHS->getOperand(0); | 
|  | if (PtrBase == RHS && GEPLHS->isInBounds()) { | 
|  | // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0). | 
|  | // This transformation (ignoring the base and scales) is valid because we | 
|  | // know pointers can't overflow since the gep is inbounds.  See if we can | 
|  | // output an optimized form. | 
|  | Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); | 
|  |  | 
|  | // If not, synthesize the offset the hard way. | 
|  | if (!Offset) | 
|  | Offset = EmitGEPOffset(GEPLHS); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, | 
|  | Constant::getNullValue(Offset->getType())); | 
|  | } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { | 
|  | // If the base pointers are different, but the indices are the same, just | 
|  | // compare the base pointer. | 
|  | if (PtrBase != GEPRHS->getOperand(0)) { | 
|  | bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); | 
|  | IndicesTheSame &= GEPLHS->getOperand(0)->getType() == | 
|  | GEPRHS->getOperand(0)->getType(); | 
|  | if (IndicesTheSame) | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | IndicesTheSame = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If all indices are the same, just compare the base pointers. | 
|  | Type *BaseType = GEPLHS->getOperand(0)->getType(); | 
|  | if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) | 
|  | return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); | 
|  |  | 
|  | // If we're comparing GEPs with two base pointers that only differ in type | 
|  | // and both GEPs have only constant indices or just one use, then fold | 
|  | // the compare with the adjusted indices. | 
|  | if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && | 
|  | (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && | 
|  | (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && | 
|  | PtrBase->stripPointerCasts() == | 
|  | GEPRHS->getOperand(0)->stripPointerCasts()) { | 
|  | Value *LOffset = EmitGEPOffset(GEPLHS); | 
|  | Value *ROffset = EmitGEPOffset(GEPRHS); | 
|  |  | 
|  | // If we looked through an addrspacecast between different sized address | 
|  | // spaces, the LHS and RHS pointers are different sized | 
|  | // integers. Truncate to the smaller one. | 
|  | Type *LHSIndexTy = LOffset->getType(); | 
|  | Type *RHSIndexTy = ROffset->getType(); | 
|  | if (LHSIndexTy != RHSIndexTy) { | 
|  | if (LHSIndexTy->getPrimitiveSizeInBits() < | 
|  | RHSIndexTy->getPrimitiveSizeInBits()) { | 
|  | ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); | 
|  | } else | 
|  | LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); | 
|  | } | 
|  |  | 
|  | Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), | 
|  | LOffset, ROffset); | 
|  | return replaceInstUsesWith(I, Cmp); | 
|  | } | 
|  |  | 
|  | // Otherwise, the base pointers are different and the indices are | 
|  | // different. Try convert this to an indexed compare by looking through | 
|  | // PHIs/casts. | 
|  | return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); | 
|  | } | 
|  |  | 
|  | // If one of the GEPs has all zero indices, recurse. | 
|  | if (GEPLHS->hasAllZeroIndices()) | 
|  | return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), | 
|  | ICmpInst::getSwappedPredicate(Cond), I); | 
|  |  | 
|  | // If the other GEP has all zero indices, recurse. | 
|  | if (GEPRHS->hasAllZeroIndices()) | 
|  | return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); | 
|  |  | 
|  | bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); | 
|  | if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { | 
|  | // If the GEPs only differ by one index, compare it. | 
|  | unsigned NumDifferences = 0;  // Keep track of # differences. | 
|  | unsigned DiffOperand = 0;     // The operand that differs. | 
|  | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != | 
|  | GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { | 
|  | // Irreconcilable differences. | 
|  | NumDifferences = 2; | 
|  | break; | 
|  | } else { | 
|  | if (NumDifferences++) break; | 
|  | DiffOperand = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumDifferences == 0)   // SAME GEP? | 
|  | return replaceInstUsesWith(I, // No comparison is needed here. | 
|  | ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); | 
|  |  | 
|  | else if (NumDifferences == 1 && GEPsInBounds) { | 
|  | Value *LHSV = GEPLHS->getOperand(DiffOperand); | 
|  | Value *RHSV = GEPRHS->getOperand(DiffOperand); | 
|  | // Make sure we do a signed comparison here. | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only lower this if the icmp is the only user of the GEP or if we expect | 
|  | // the result to fold to a constant! | 
|  | if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && | 
|  | (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { | 
|  | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2) | 
|  | Value *L = EmitGEPOffset(GEPLHS); | 
|  | Value *R = EmitGEPOffset(GEPRHS); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try convert this to an indexed compare by looking through PHIs/casts as a | 
|  | // last resort. | 
|  | return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, | 
|  | const AllocaInst *Alloca, | 
|  | const Value *Other) { | 
|  | assert(ICI.isEquality() && "Cannot fold non-equality comparison."); | 
|  |  | 
|  | // It would be tempting to fold away comparisons between allocas and any | 
|  | // pointer not based on that alloca (e.g. an argument). However, even | 
|  | // though such pointers cannot alias, they can still compare equal. | 
|  | // | 
|  | // But LLVM doesn't specify where allocas get their memory, so if the alloca | 
|  | // doesn't escape we can argue that it's impossible to guess its value, and we | 
|  | // can therefore act as if any such guesses are wrong. | 
|  | // | 
|  | // The code below checks that the alloca doesn't escape, and that it's only | 
|  | // used in a comparison once (the current instruction). The | 
|  | // single-comparison-use condition ensures that we're trivially folding all | 
|  | // comparisons against the alloca consistently, and avoids the risk of | 
|  | // erroneously folding a comparison of the pointer with itself. | 
|  |  | 
|  | unsigned MaxIter = 32; // Break cycles and bound to constant-time. | 
|  |  | 
|  | SmallVector<const Use *, 32> Worklist; | 
|  | for (const Use &U : Alloca->uses()) { | 
|  | if (Worklist.size() >= MaxIter) | 
|  | return nullptr; | 
|  | Worklist.push_back(&U); | 
|  | } | 
|  |  | 
|  | unsigned NumCmps = 0; | 
|  | while (!Worklist.empty()) { | 
|  | assert(Worklist.size() <= MaxIter); | 
|  | const Use *U = Worklist.pop_back_val(); | 
|  | const Value *V = U->getUser(); | 
|  | --MaxIter; | 
|  |  | 
|  | if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || | 
|  | isa<SelectInst>(V)) { | 
|  | // Track the uses. | 
|  | } else if (isa<LoadInst>(V)) { | 
|  | // Loading from the pointer doesn't escape it. | 
|  | continue; | 
|  | } else if (const auto *SI = dyn_cast<StoreInst>(V)) { | 
|  | // Storing *to* the pointer is fine, but storing the pointer escapes it. | 
|  | if (SI->getValueOperand() == U->get()) | 
|  | return nullptr; | 
|  | continue; | 
|  | } else if (isa<ICmpInst>(V)) { | 
|  | if (NumCmps++) | 
|  | return nullptr; // Found more than one cmp. | 
|  | continue; | 
|  | } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { | 
|  | switch (Intrin->getIntrinsicID()) { | 
|  | // These intrinsics don't escape or compare the pointer. Memset is safe | 
|  | // because we don't allow ptrtoint. Memcpy and memmove are safe because | 
|  | // we don't allow stores, so src cannot point to V. | 
|  | case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: | 
|  | case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: | 
|  | continue; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | for (const Use &U : V->uses()) { | 
|  | if (Worklist.size() >= MaxIter) | 
|  | return nullptr; | 
|  | Worklist.push_back(&U); | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); | 
|  | return replaceInstUsesWith( | 
|  | ICI, | 
|  | ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); | 
|  | } | 
|  |  | 
|  | /// Fold "icmp pred (X+C), X". | 
|  | Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, | 
|  | ICmpInst::Predicate Pred) { | 
|  | // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, | 
|  | // so the values can never be equal.  Similarly for all other "or equals" | 
|  | // operators. | 
|  | assert(!!C && "C should not be zero!"); | 
|  |  | 
|  | // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255 | 
|  | // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253 | 
|  | // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0 | 
|  | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { | 
|  | Constant *R = ConstantInt::get(X->getType(), | 
|  | APInt::getMaxValue(C.getBitWidth()) - C); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, X, R); | 
|  | } | 
|  |  | 
|  | // (X+1) >u X        --> X <u (0-1)        --> X != 255 | 
|  | // (X+2) >u X        --> X <u (0-2)        --> X <u 254 | 
|  | // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0 | 
|  | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, X, | 
|  | ConstantInt::get(X->getType(), -C)); | 
|  |  | 
|  | APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); | 
|  |  | 
|  | // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127 | 
|  | // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125 | 
|  | // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0 | 
|  | // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1 | 
|  | // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126 | 
|  | // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127 | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, X, | 
|  | ConstantInt::get(X->getType(), SMax - C)); | 
|  |  | 
|  | // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127 | 
|  | // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126 | 
|  | // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 | 
|  | // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 | 
|  | // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126 | 
|  | // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128 | 
|  |  | 
|  | assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, X, | 
|  | ConstantInt::get(X->getType(), SMax - (C - 1))); | 
|  | } | 
|  |  | 
|  | /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> | 
|  | /// (icmp eq/ne A, Log2(AP2/AP1)) -> | 
|  | /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). | 
|  | Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, | 
|  | const APInt &AP1, | 
|  | const APInt &AP2) { | 
|  | assert(I.isEquality() && "Cannot fold icmp gt/lt"); | 
|  |  | 
|  | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { | 
|  | if (I.getPredicate() == I.ICMP_NE) | 
|  | Pred = CmpInst::getInversePredicate(Pred); | 
|  | return new ICmpInst(Pred, LHS, RHS); | 
|  | }; | 
|  |  | 
|  | // Don't bother doing any work for cases which InstSimplify handles. | 
|  | if (AP2.isNullValue()) | 
|  | return nullptr; | 
|  |  | 
|  | bool IsAShr = isa<AShrOperator>(I.getOperand(0)); | 
|  | if (IsAShr) { | 
|  | if (AP2.isAllOnesValue()) | 
|  | return nullptr; | 
|  | if (AP2.isNegative() != AP1.isNegative()) | 
|  | return nullptr; | 
|  | if (AP2.sgt(AP1)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!AP1) | 
|  | // 'A' must be large enough to shift out the highest set bit. | 
|  | return getICmp(I.ICMP_UGT, A, | 
|  | ConstantInt::get(A->getType(), AP2.logBase2())); | 
|  |  | 
|  | if (AP1 == AP2) | 
|  | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); | 
|  |  | 
|  | int Shift; | 
|  | if (IsAShr && AP1.isNegative()) | 
|  | Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); | 
|  | else | 
|  | Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); | 
|  |  | 
|  | if (Shift > 0) { | 
|  | if (IsAShr && AP1 == AP2.ashr(Shift)) { | 
|  | // There are multiple solutions if we are comparing against -1 and the LHS | 
|  | // of the ashr is not a power of two. | 
|  | if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) | 
|  | return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); | 
|  | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); | 
|  | } else if (AP1 == AP2.lshr(Shift)) { | 
|  | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shifting const2 will never be equal to const1. | 
|  | // FIXME: This should always be handled by InstSimplify? | 
|  | auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); | 
|  | return replaceInstUsesWith(I, TorF); | 
|  | } | 
|  |  | 
|  | /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> | 
|  | /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). | 
|  | Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, | 
|  | const APInt &AP1, | 
|  | const APInt &AP2) { | 
|  | assert(I.isEquality() && "Cannot fold icmp gt/lt"); | 
|  |  | 
|  | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { | 
|  | if (I.getPredicate() == I.ICMP_NE) | 
|  | Pred = CmpInst::getInversePredicate(Pred); | 
|  | return new ICmpInst(Pred, LHS, RHS); | 
|  | }; | 
|  |  | 
|  | // Don't bother doing any work for cases which InstSimplify handles. | 
|  | if (AP2.isNullValue()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned AP2TrailingZeros = AP2.countTrailingZeros(); | 
|  |  | 
|  | if (!AP1 && AP2TrailingZeros != 0) | 
|  | return getICmp( | 
|  | I.ICMP_UGE, A, | 
|  | ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); | 
|  |  | 
|  | if (AP1 == AP2) | 
|  | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); | 
|  |  | 
|  | // Get the distance between the lowest bits that are set. | 
|  | int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; | 
|  |  | 
|  | if (Shift > 0 && AP2.shl(Shift) == AP1) | 
|  | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); | 
|  |  | 
|  | // Shifting const2 will never be equal to const1. | 
|  | // FIXME: This should always be handled by InstSimplify? | 
|  | auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); | 
|  | return replaceInstUsesWith(I, TorF); | 
|  | } | 
|  |  | 
|  | /// The caller has matched a pattern of the form: | 
|  | ///   I = icmp ugt (add (add A, B), CI2), CI1 | 
|  | /// If this is of the form: | 
|  | ///   sum = a + b | 
|  | ///   if (sum+128 >u 255) | 
|  | /// Then replace it with llvm.sadd.with.overflow.i8. | 
|  | /// | 
|  | static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, | 
|  | ConstantInt *CI2, ConstantInt *CI1, | 
|  | InstCombiner &IC) { | 
|  | // The transformation we're trying to do here is to transform this into an | 
|  | // llvm.sadd.with.overflow.  To do this, we have to replace the original add | 
|  | // with a narrower add, and discard the add-with-constant that is part of the | 
|  | // range check (if we can't eliminate it, this isn't profitable). | 
|  |  | 
|  | // In order to eliminate the add-with-constant, the compare can be its only | 
|  | // use. | 
|  | Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); | 
|  | if (!AddWithCst->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. | 
|  | if (!CI2->getValue().isPowerOf2()) | 
|  | return nullptr; | 
|  | unsigned NewWidth = CI2->getValue().countTrailingZeros(); | 
|  | if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) | 
|  | return nullptr; | 
|  |  | 
|  | // The width of the new add formed is 1 more than the bias. | 
|  | ++NewWidth; | 
|  |  | 
|  | // Check to see that CI1 is an all-ones value with NewWidth bits. | 
|  | if (CI1->getBitWidth() == NewWidth || | 
|  | CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) | 
|  | return nullptr; | 
|  |  | 
|  | // This is only really a signed overflow check if the inputs have been | 
|  | // sign-extended; check for that condition. For example, if CI2 is 2^31 and | 
|  | // the operands of the add are 64 bits wide, we need at least 33 sign bits. | 
|  | unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; | 
|  | if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || | 
|  | IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) | 
|  | return nullptr; | 
|  |  | 
|  | // In order to replace the original add with a narrower | 
|  | // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant | 
|  | // and truncates that discard the high bits of the add.  Verify that this is | 
|  | // the case. | 
|  | Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); | 
|  | for (User *U : OrigAdd->users()) { | 
|  | if (U == AddWithCst) | 
|  | continue; | 
|  |  | 
|  | // Only accept truncates for now.  We would really like a nice recursive | 
|  | // predicate like SimplifyDemandedBits, but which goes downwards the use-def | 
|  | // chain to see which bits of a value are actually demanded.  If the | 
|  | // original add had another add which was then immediately truncated, we | 
|  | // could still do the transformation. | 
|  | TruncInst *TI = dyn_cast<TruncInst>(U); | 
|  | if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the pattern matches, truncate the inputs to the narrower type and | 
|  | // use the sadd_with_overflow intrinsic to efficiently compute both the | 
|  | // result and the overflow bit. | 
|  | Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); | 
|  | Value *F = Intrinsic::getDeclaration(I.getModule(), | 
|  | Intrinsic::sadd_with_overflow, NewType); | 
|  |  | 
|  | InstCombiner::BuilderTy &Builder = IC.Builder; | 
|  |  | 
|  | // Put the new code above the original add, in case there are any uses of the | 
|  | // add between the add and the compare. | 
|  | Builder.SetInsertPoint(OrigAdd); | 
|  |  | 
|  | Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); | 
|  | Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); | 
|  | CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); | 
|  | Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); | 
|  | Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); | 
|  |  | 
|  | // The inner add was the result of the narrow add, zero extended to the | 
|  | // wider type.  Replace it with the result computed by the intrinsic. | 
|  | IC.replaceInstUsesWith(*OrigAdd, ZExt); | 
|  |  | 
|  | // The original icmp gets replaced with the overflow value. | 
|  | return ExtractValueInst::Create(Call, 1, "sadd.overflow"); | 
|  | } | 
|  |  | 
|  | // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) | 
|  | Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { | 
|  | CmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *X = Cmp.getOperand(0); | 
|  |  | 
|  | if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { | 
|  | Value *A, *B; | 
|  | SelectPatternResult SPR = matchSelectPattern(X, A, B); | 
|  | if (SPR.Flavor == SPF_SMIN) { | 
|  | if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) | 
|  | return new ICmpInst(Pred, B, Cmp.getOperand(1)); | 
|  | if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) | 
|  | return new ICmpInst(Pred, A, Cmp.getOperand(1)); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp Pred X, C. | 
|  | /// TODO: This code structure does not make sense. The saturating add fold | 
|  | /// should be moved to some other helper and extended as noted below (it is also | 
|  | /// possible that code has been made unnecessary - do we canonicalize IR to | 
|  | /// overflow/saturating intrinsics or not?). | 
|  | Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { | 
|  | // Match the following pattern, which is a common idiom when writing | 
|  | // overflow-safe integer arithmetic functions. The source performs an addition | 
|  | // in wider type and explicitly checks for overflow using comparisons against | 
|  | // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. | 
|  | // | 
|  | // TODO: This could probably be generalized to handle other overflow-safe | 
|  | // operations if we worked out the formulas to compute the appropriate magic | 
|  | // constants. | 
|  | // | 
|  | // sum = a + b | 
|  | // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8 | 
|  | CmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); | 
|  | Value *A, *B; | 
|  | ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI | 
|  | if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && | 
|  | match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) | 
|  | if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) | 
|  | return Res; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Canonicalize icmp instructions based on dominating conditions. | 
|  | Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { | 
|  | // This is a cheap/incomplete check for dominance - just match a single | 
|  | // predecessor with a conditional branch. | 
|  | BasicBlock *CmpBB = Cmp.getParent(); | 
|  | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); | 
|  | if (!DomBB) | 
|  | return nullptr; | 
|  |  | 
|  | Value *DomCond; | 
|  | BasicBlock *TrueBB, *FalseBB; | 
|  | if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) | 
|  | return nullptr; | 
|  |  | 
|  | assert((TrueBB == CmpBB || FalseBB == CmpBB) && | 
|  | "Predecessor block does not point to successor?"); | 
|  |  | 
|  | // The branch should get simplified. Don't bother simplifying this condition. | 
|  | if (TrueBB == FalseBB) | 
|  | return nullptr; | 
|  |  | 
|  | // Try to simplify this compare to T/F based on the dominating condition. | 
|  | Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); | 
|  | if (Imp) | 
|  | return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); | 
|  |  | 
|  | CmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); | 
|  | ICmpInst::Predicate DomPred; | 
|  | const APInt *C, *DomC; | 
|  | if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && | 
|  | match(Y, m_APInt(C))) { | 
|  | // We have 2 compares of a variable with constants. Calculate the constant | 
|  | // ranges of those compares to see if we can transform the 2nd compare: | 
|  | // DomBB: | 
|  | //   DomCond = icmp DomPred X, DomC | 
|  | //   br DomCond, CmpBB, FalseBB | 
|  | // CmpBB: | 
|  | //   Cmp = icmp Pred X, C | 
|  | ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); | 
|  | ConstantRange DominatingCR = | 
|  | (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) | 
|  | : ConstantRange::makeExactICmpRegion( | 
|  | CmpInst::getInversePredicate(DomPred), *DomC); | 
|  | ConstantRange Intersection = DominatingCR.intersectWith(CR); | 
|  | ConstantRange Difference = DominatingCR.difference(CR); | 
|  | if (Intersection.isEmptySet()) | 
|  | return replaceInstUsesWith(Cmp, Builder.getFalse()); | 
|  | if (Difference.isEmptySet()) | 
|  | return replaceInstUsesWith(Cmp, Builder.getTrue()); | 
|  |  | 
|  | // Canonicalizing a sign bit comparison that gets used in a branch, | 
|  | // pessimizes codegen by generating branch on zero instruction instead | 
|  | // of a test and branch. So we avoid canonicalizing in such situations | 
|  | // because test and branch instruction has better branch displacement | 
|  | // than compare and branch instruction. | 
|  | bool UnusedBit; | 
|  | bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); | 
|  | if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) | 
|  | return nullptr; | 
|  |  | 
|  | if (const APInt *EqC = Intersection.getSingleElement()) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); | 
|  | if (const APInt *NeC = Difference.getSingleElement()) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (trunc X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, | 
|  | TruncInst *Trunc, | 
|  | const APInt &C) { | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *X = Trunc->getOperand(0); | 
|  | if (C.isOneValue() && C.getBitWidth() > 1) { | 
|  | // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 | 
|  | Value *V = nullptr; | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, V, | 
|  | ConstantInt::get(V->getType(), 1)); | 
|  | } | 
|  |  | 
|  | if (Cmp.isEquality() && Trunc->hasOneUse()) { | 
|  | // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all | 
|  | // of the high bits truncated out of x are known. | 
|  | unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), | 
|  | SrcBits = X->getType()->getScalarSizeInBits(); | 
|  | KnownBits Known = computeKnownBits(X, 0, &Cmp); | 
|  |  | 
|  | // If all the high bits are known, we can do this xform. | 
|  | if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { | 
|  | // Pull in the high bits from known-ones set. | 
|  | APInt NewRHS = C.zext(SrcBits); | 
|  | NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (xor X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Xor, | 
|  | const APInt &C) { | 
|  | Value *X = Xor->getOperand(0); | 
|  | Value *Y = Xor->getOperand(1); | 
|  | const APInt *XorC; | 
|  | if (!match(Y, m_APInt(XorC))) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a comparison that tests the signbit (X < 0) or (x > -1), | 
|  | // fold the xor. | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | bool TrueIfSigned = false; | 
|  | if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { | 
|  |  | 
|  | // If the sign bit of the XorCst is not set, there is no change to | 
|  | // the operation, just stop using the Xor. | 
|  | if (!XorC->isNegative()) { | 
|  | Cmp.setOperand(0, X); | 
|  | Worklist.Add(Xor); | 
|  | return &Cmp; | 
|  | } | 
|  |  | 
|  | // Emit the opposite comparison. | 
|  | if (TrueIfSigned) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, X, | 
|  | ConstantInt::getAllOnesValue(X->getType())); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, X, | 
|  | ConstantInt::getNullValue(X->getType())); | 
|  | } | 
|  |  | 
|  | if (Xor->hasOneUse()) { | 
|  | // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) | 
|  | if (!Cmp.isEquality() && XorC->isSignMask()) { | 
|  | Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() | 
|  | : Cmp.getSignedPredicate(); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); | 
|  | } | 
|  |  | 
|  | // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) | 
|  | if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { | 
|  | Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() | 
|  | : Cmp.getSignedPredicate(); | 
|  | Pred = Cmp.getSwappedPredicate(Pred); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mask constant magic can eliminate an 'xor' with unsigned compares. | 
|  | if (Pred == ICmpInst::ICMP_UGT) { | 
|  | // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) | 
|  | if (*XorC == ~C && (C + 1).isPowerOf2()) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); | 
|  | // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) | 
|  | if (*XorC == C && (C + 1).isPowerOf2()) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_ULT) { | 
|  | // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) | 
|  | if (*XorC == -C && C.isPowerOf2()) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, X, | 
|  | ConstantInt::get(X->getType(), ~C)); | 
|  | // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) | 
|  | if (*XorC == C && (-C).isPowerOf2()) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, X, | 
|  | ConstantInt::get(X->getType(), ~C)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (and (sh X, Y), C2), C1. | 
|  | Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, | 
|  | const APInt &C1, const APInt &C2) { | 
|  | BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); | 
|  | if (!Shift || !Shift->isShift()) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could | 
|  | // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in | 
|  | // code produced by the clang front-end, for bitfield access. | 
|  | // This seemingly simple opportunity to fold away a shift turns out to be | 
|  | // rather complicated. See PR17827 for details. | 
|  | unsigned ShiftOpcode = Shift->getOpcode(); | 
|  | bool IsShl = ShiftOpcode == Instruction::Shl; | 
|  | const APInt *C3; | 
|  | if (match(Shift->getOperand(1), m_APInt(C3))) { | 
|  | bool CanFold = false; | 
|  | if (ShiftOpcode == Instruction::Shl) { | 
|  | // For a left shift, we can fold if the comparison is not signed. We can | 
|  | // also fold a signed comparison if the mask value and comparison value | 
|  | // are not negative. These constraints may not be obvious, but we can | 
|  | // prove that they are correct using an SMT solver. | 
|  | if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) | 
|  | CanFold = true; | 
|  | } else { | 
|  | bool IsAshr = ShiftOpcode == Instruction::AShr; | 
|  | // For a logical right shift, we can fold if the comparison is not signed. | 
|  | // We can also fold a signed comparison if the shifted mask value and the | 
|  | // shifted comparison value are not negative. These constraints may not be | 
|  | // obvious, but we can prove that they are correct using an SMT solver. | 
|  | // For an arithmetic shift right we can do the same, if we ensure | 
|  | // the And doesn't use any bits being shifted in. Normally these would | 
|  | // be turned into lshr by SimplifyDemandedBits, but not if there is an | 
|  | // additional user. | 
|  | if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { | 
|  | if (!Cmp.isSigned() || | 
|  | (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) | 
|  | CanFold = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); | 
|  | APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); | 
|  | // Check to see if we are shifting out any of the bits being compared. | 
|  | if (SameAsC1 != C1) { | 
|  | // If we shifted bits out, the fold is not going to work out. As a | 
|  | // special case, check to see if this means that the result is always | 
|  | // true or false now. | 
|  | if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); | 
|  | if (Cmp.getPredicate() == ICmpInst::ICMP_NE) | 
|  | return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); | 
|  | } else { | 
|  | Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); | 
|  | APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); | 
|  | And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); | 
|  | And->setOperand(0, Shift->getOperand(0)); | 
|  | Worklist.Add(Shift); // Shift is dead. | 
|  | return &Cmp; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is | 
|  | // preferable because it allows the C2 << Y expression to be hoisted out of a | 
|  | // loop if Y is invariant and X is not. | 
|  | if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && | 
|  | !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { | 
|  | // Compute C2 << Y. | 
|  | Value *NewShift = | 
|  | IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) | 
|  | : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); | 
|  |  | 
|  | // Compute X & (C2 << Y). | 
|  | Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); | 
|  | Cmp.setOperand(0, NewAnd); | 
|  | return &Cmp; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (and X, C2), C1. | 
|  | Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, | 
|  | BinaryOperator *And, | 
|  | const APInt &C1) { | 
|  | // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 | 
|  | // TODO: We canonicalize to the longer form for scalars because we have | 
|  | // better analysis/folds for icmp, and codegen may be better with icmp. | 
|  | if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && | 
|  | C1.isNullValue() && match(And->getOperand(1), m_One())) | 
|  | return new TruncInst(And->getOperand(0), Cmp.getType()); | 
|  |  | 
|  | const APInt *C2; | 
|  | if (!match(And->getOperand(1), m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | if (!And->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the LHS is an 'and' of a truncate and we can widen the and/compare to | 
|  | // the input width without changing the value produced, eliminate the cast: | 
|  | // | 
|  | // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' | 
|  | // | 
|  | // We can do this transformation if the constants do not have their sign bits | 
|  | // set or if it is an equality comparison. Extending a relational comparison | 
|  | // when we're checking the sign bit would not work. | 
|  | Value *W; | 
|  | if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && | 
|  | (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { | 
|  | // TODO: Is this a good transform for vectors? Wider types may reduce | 
|  | // throughput. Should this transform be limited (even for scalars) by using | 
|  | // shouldChangeType()? | 
|  | if (!Cmp.getType()->isVectorTy()) { | 
|  | Type *WideType = W->getType(); | 
|  | unsigned WideScalarBits = WideType->getScalarSizeInBits(); | 
|  | Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); | 
|  | Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); | 
|  | Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); | 
|  | return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) | 
|  | return I; | 
|  |  | 
|  | // (icmp pred (and (or (lshr A, B), A), 1), 0) --> | 
|  | // (icmp pred (and A, (or (shl 1, B), 1), 0)) | 
|  | // | 
|  | // iff pred isn't signed | 
|  | if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && | 
|  | match(And->getOperand(1), m_One())) { | 
|  | Constant *One = cast<Constant>(And->getOperand(1)); | 
|  | Value *Or = And->getOperand(0); | 
|  | Value *A, *B, *LShr; | 
|  | if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && | 
|  | match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { | 
|  | unsigned UsesRemoved = 0; | 
|  | if (And->hasOneUse()) | 
|  | ++UsesRemoved; | 
|  | if (Or->hasOneUse()) | 
|  | ++UsesRemoved; | 
|  | if (LShr->hasOneUse()) | 
|  | ++UsesRemoved; | 
|  |  | 
|  | // Compute A & ((1 << B) | 1) | 
|  | Value *NewOr = nullptr; | 
|  | if (auto *C = dyn_cast<Constant>(B)) { | 
|  | if (UsesRemoved >= 1) | 
|  | NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); | 
|  | } else { | 
|  | if (UsesRemoved >= 3) | 
|  | NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), | 
|  | /*HasNUW=*/true), | 
|  | One, Or->getName()); | 
|  | } | 
|  | if (NewOr) { | 
|  | Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); | 
|  | Cmp.setOperand(0, NewAnd); | 
|  | return &Cmp; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (and X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *And, | 
|  | const APInt &C) { | 
|  | if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) | 
|  | return I; | 
|  |  | 
|  | // TODO: These all require that Y is constant too, so refactor with the above. | 
|  |  | 
|  | // Try to optimize things like "A[i] & 42 == 0" to index computations. | 
|  | Value *X = And->getOperand(0); | 
|  | Value *Y = And->getOperand(1); | 
|  | if (auto *LI = dyn_cast<LoadInst>(X)) | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer() && | 
|  | !LI->isVolatile() && isa<ConstantInt>(Y)) { | 
|  | ConstantInt *C2 = cast<ConstantInt>(Y); | 
|  | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (!Cmp.isEquality()) | 
|  | return nullptr; | 
|  |  | 
|  | // X & -C == -C -> X >  u ~C | 
|  | // X & -C != -C -> X <= u ~C | 
|  | //   iff C is a power of 2 | 
|  | if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { | 
|  | auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT | 
|  | : CmpInst::ICMP_ULE; | 
|  | return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); | 
|  | } | 
|  |  | 
|  | // (X & C2) == 0 -> (trunc X) >= 0 | 
|  | // (X & C2) != 0 -> (trunc X) <  0 | 
|  | //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type. | 
|  | const APInt *C2; | 
|  | if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { | 
|  | int32_t ExactLogBase2 = C2->exactLogBase2(); | 
|  | if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { | 
|  | Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); | 
|  | if (And->getType()->isVectorTy()) | 
|  | NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); | 
|  | Value *Trunc = Builder.CreateTrunc(X, NTy); | 
|  | auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE | 
|  | : CmpInst::ICMP_SLT; | 
|  | return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (or X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, | 
|  | const APInt &C) { | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | if (C.isOneValue()) { | 
|  | // icmp slt signum(V) 1 --> icmp slt V, 1 | 
|  | Value *V = nullptr; | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, V, | 
|  | ConstantInt::get(V->getType(), 1)); | 
|  | } | 
|  |  | 
|  | // X | C == C --> X <=u C | 
|  | // X | C != C --> X  >u C | 
|  | //   iff C+1 is a power of 2 (C is a bitmask of the low bits) | 
|  | if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) && | 
|  | (C + 1).isPowerOf2()) { | 
|  | Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; | 
|  | return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *P, *Q; | 
|  | if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { | 
|  | // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 | 
|  | // -> and (icmp eq P, null), (icmp eq Q, null). | 
|  | Value *CmpP = | 
|  | Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); | 
|  | Value *CmpQ = | 
|  | Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); | 
|  | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; | 
|  | return BinaryOperator::Create(BOpc, CmpP, CmpQ); | 
|  | } | 
|  |  | 
|  | // Are we using xors to bitwise check for a pair of (in)equalities? Convert to | 
|  | // a shorter form that has more potential to be folded even further. | 
|  | Value *X1, *X2, *X3, *X4; | 
|  | if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && | 
|  | match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { | 
|  | // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) | 
|  | // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) | 
|  | Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); | 
|  | Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); | 
|  | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; | 
|  | return BinaryOperator::Create(BOpc, Cmp12, Cmp34); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (mul X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Mul, | 
|  | const APInt &C) { | 
|  | const APInt *MulC; | 
|  | if (!match(Mul->getOperand(1), m_APInt(MulC))) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a test of the sign bit and the multiply is sign-preserving with | 
|  | // a constant operand, use the multiply LHS operand instead. | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { | 
|  | if (MulC->isNegative()) | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | return new ICmpInst(Pred, Mul->getOperand(0), | 
|  | Constant::getNullValue(Mul->getType())); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (shl 1, Y), C. | 
|  | static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, | 
|  | const APInt &C) { | 
|  | Value *Y; | 
|  | if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) | 
|  | return nullptr; | 
|  |  | 
|  | Type *ShiftType = Shl->getType(); | 
|  | unsigned TypeBits = C.getBitWidth(); | 
|  | bool CIsPowerOf2 = C.isPowerOf2(); | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | if (Cmp.isUnsigned()) { | 
|  | // (1 << Y) pred C -> Y pred Log2(C) | 
|  | if (!CIsPowerOf2) { | 
|  | // (1 << Y) <  30 -> Y <= 4 | 
|  | // (1 << Y) <= 30 -> Y <= 4 | 
|  | // (1 << Y) >= 30 -> Y >  4 | 
|  | // (1 << Y) >  30 -> Y >  4 | 
|  | if (Pred == ICmpInst::ICMP_ULT) | 
|  | Pred = ICmpInst::ICMP_ULE; | 
|  | else if (Pred == ICmpInst::ICMP_UGE) | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | } | 
|  |  | 
|  | // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 | 
|  | // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31 | 
|  | unsigned CLog2 = C.logBase2(); | 
|  | if (CLog2 == TypeBits - 1) { | 
|  | if (Pred == ICmpInst::ICMP_UGE) | 
|  | Pred = ICmpInst::ICMP_EQ; | 
|  | else if (Pred == ICmpInst::ICMP_ULT) | 
|  | Pred = ICmpInst::ICMP_NE; | 
|  | } | 
|  | return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); | 
|  | } else if (Cmp.isSigned()) { | 
|  | Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); | 
|  | if (C.isAllOnesValue()) { | 
|  | // (1 << Y) <= -1 -> Y == 31 | 
|  | if (Pred == ICmpInst::ICMP_SLE) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); | 
|  |  | 
|  | // (1 << Y) >  -1 -> Y != 31 | 
|  | if (Pred == ICmpInst::ICMP_SGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); | 
|  | } else if (!C) { | 
|  | // (1 << Y) <  0 -> Y == 31 | 
|  | // (1 << Y) <= 0 -> Y == 31 | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); | 
|  |  | 
|  | // (1 << Y) >= 0 -> Y != 31 | 
|  | // (1 << Y) >  0 -> Y != 31 | 
|  | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); | 
|  | } | 
|  | } else if (Cmp.isEquality() && CIsPowerOf2) { | 
|  | return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (shl X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Shl, | 
|  | const APInt &C) { | 
|  | const APInt *ShiftVal; | 
|  | if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) | 
|  | return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); | 
|  |  | 
|  | const APInt *ShiftAmt; | 
|  | if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) | 
|  | return foldICmpShlOne(Cmp, Shl, C); | 
|  |  | 
|  | // Check that the shift amount is in range. If not, don't perform undefined | 
|  | // shifts. When the shift is visited, it will be simplified. | 
|  | unsigned TypeBits = C.getBitWidth(); | 
|  | if (ShiftAmt->uge(TypeBits)) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *X = Shl->getOperand(0); | 
|  | Type *ShType = Shl->getType(); | 
|  |  | 
|  | // NSW guarantees that we are only shifting out sign bits from the high bits, | 
|  | // so we can ASHR the compare constant without needing a mask and eliminate | 
|  | // the shift. | 
|  | if (Shl->hasNoSignedWrap()) { | 
|  | if (Pred == ICmpInst::ICMP_SGT) { | 
|  | // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) | 
|  | APInt ShiftedC = C.ashr(*ShiftAmt); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && | 
|  | C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { | 
|  | APInt ShiftedC = C.ashr(*ShiftAmt); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_SLT) { | 
|  | // SLE is the same as above, but SLE is canonicalized to SLT, so convert: | 
|  | // (X << S) <=s C is equiv to X <=s (C >> S) for all C | 
|  | // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX | 
|  | // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN | 
|  | assert(!C.isMinSignedValue() && "Unexpected icmp slt"); | 
|  | APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | // If this is a signed comparison to 0 and the shift is sign preserving, | 
|  | // use the shift LHS operand instead; isSignTest may change 'Pred', so only | 
|  | // do that if we're sure to not continue on in this function. | 
|  | if (isSignTest(Pred, C)) | 
|  | return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); | 
|  | } | 
|  |  | 
|  | // NUW guarantees that we are only shifting out zero bits from the high bits, | 
|  | // so we can LSHR the compare constant without needing a mask and eliminate | 
|  | // the shift. | 
|  | if (Shl->hasNoUnsignedWrap()) { | 
|  | if (Pred == ICmpInst::ICMP_UGT) { | 
|  | // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) | 
|  | APInt ShiftedC = C.lshr(*ShiftAmt); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && | 
|  | C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { | 
|  | APInt ShiftedC = C.lshr(*ShiftAmt); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_ULT) { | 
|  | // ULE is the same as above, but ULE is canonicalized to ULT, so convert: | 
|  | // (X << S) <=u C is equiv to X <=u (C >> S) for all C | 
|  | // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u | 
|  | // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 | 
|  | assert(C.ugt(0) && "ult 0 should have been eliminated"); | 
|  | APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cmp.isEquality() && Shl->hasOneUse()) { | 
|  | // Strength-reduce the shift into an 'and'. | 
|  | Constant *Mask = ConstantInt::get( | 
|  | ShType, | 
|  | APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); | 
|  | Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); | 
|  | Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); | 
|  | return new ICmpInst(Pred, And, LShrC); | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is a comparison of the sign bit, simplify to and/test. | 
|  | bool TrueIfSigned = false; | 
|  | if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { | 
|  | // (X << 31) <s 0  --> (X & 1) != 0 | 
|  | Constant *Mask = ConstantInt::get( | 
|  | ShType, | 
|  | APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); | 
|  | Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); | 
|  | return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, | 
|  | And, Constant::getNullValue(ShType)); | 
|  | } | 
|  |  | 
|  | // Transform (icmp pred iM (shl iM %v, N), C) | 
|  | // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) | 
|  | // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. | 
|  | // This enables us to get rid of the shift in favor of a trunc that may be | 
|  | // free on the target. It has the additional benefit of comparing to a | 
|  | // smaller constant that may be more target-friendly. | 
|  | unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); | 
|  | if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && | 
|  | DL.isLegalInteger(TypeBits - Amt)) { | 
|  | Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); | 
|  | if (ShType->isVectorTy()) | 
|  | TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); | 
|  | Constant *NewC = | 
|  | ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); | 
|  | return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp ({al}shr X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Shr, | 
|  | const APInt &C) { | 
|  | // An exact shr only shifts out zero bits, so: | 
|  | // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 | 
|  | Value *X = Shr->getOperand(0); | 
|  | CmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && | 
|  | C.isNullValue()) | 
|  | return new ICmpInst(Pred, X, Cmp.getOperand(1)); | 
|  |  | 
|  | const APInt *ShiftVal; | 
|  | if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) | 
|  | return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); | 
|  |  | 
|  | const APInt *ShiftAmt; | 
|  | if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the shift amount is in range. If not, don't perform undefined | 
|  | // shifts. When the shift is visited it will be simplified. | 
|  | unsigned TypeBits = C.getBitWidth(); | 
|  | unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); | 
|  | if (ShAmtVal >= TypeBits || ShAmtVal == 0) | 
|  | return nullptr; | 
|  |  | 
|  | bool IsAShr = Shr->getOpcode() == Instruction::AShr; | 
|  | bool IsExact = Shr->isExact(); | 
|  | Type *ShrTy = Shr->getType(); | 
|  | // TODO: If we could guarantee that InstSimplify would handle all of the | 
|  | // constant-value-based preconditions in the folds below, then we could assert | 
|  | // those conditions rather than checking them. This is difficult because of | 
|  | // undef/poison (PR34838). | 
|  | if (IsAShr) { | 
|  | if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { | 
|  | // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) | 
|  | // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) | 
|  | APInt ShiftedC = C.shl(ShAmtVal); | 
|  | if (ShiftedC.ashr(ShAmtVal) == C) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); | 
|  | } | 
|  | if (Pred == CmpInst::ICMP_SGT) { | 
|  | // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 | 
|  | APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; | 
|  | if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && | 
|  | (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); | 
|  | } | 
|  | } else { | 
|  | if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { | 
|  | // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) | 
|  | // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) | 
|  | APInt ShiftedC = C.shl(ShAmtVal); | 
|  | if (ShiftedC.lshr(ShAmtVal) == C) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); | 
|  | } | 
|  | if (Pred == CmpInst::ICMP_UGT) { | 
|  | // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 | 
|  | APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; | 
|  | if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Cmp.isEquality()) | 
|  | return nullptr; | 
|  |  | 
|  | // Handle equality comparisons of shift-by-constant. | 
|  |  | 
|  | // If the comparison constant changes with the shift, the comparison cannot | 
|  | // succeed (bits of the comparison constant cannot match the shifted value). | 
|  | // This should be known by InstSimplify and already be folded to true/false. | 
|  | assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || | 
|  | (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && | 
|  | "Expected icmp+shr simplify did not occur."); | 
|  |  | 
|  | // If the bits shifted out are known zero, compare the unshifted value: | 
|  | //  (X & 4) >> 1 == 2  --> (X & 4) == 4. | 
|  | if (Shr->isExact()) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); | 
|  |  | 
|  | if (Shr->hasOneUse()) { | 
|  | // Canonicalize the shift into an 'and': | 
|  | // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) | 
|  | APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); | 
|  | Constant *Mask = ConstantInt::get(ShrTy, Val); | 
|  | Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); | 
|  | return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (udiv X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *UDiv, | 
|  | const APInt &C) { | 
|  | const APInt *C2; | 
|  | if (!match(UDiv->getOperand(0), m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | assert(*C2 != 0 && "udiv 0, X should have been simplified already."); | 
|  |  | 
|  | // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) | 
|  | Value *Y = UDiv->getOperand(1); | 
|  | if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { | 
|  | assert(!C.isMaxValue() && | 
|  | "icmp ugt X, UINT_MAX should have been simplified already."); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULE, Y, | 
|  | ConstantInt::get(Y->getType(), C2->udiv(C + 1))); | 
|  | } | 
|  |  | 
|  | // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) | 
|  | if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { | 
|  | assert(C != 0 && "icmp ult X, 0 should have been simplified already."); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Y, | 
|  | ConstantInt::get(Y->getType(), C2->udiv(C))); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp ({su}div X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Div, | 
|  | const APInt &C) { | 
|  | // Fold: icmp pred ([us]div X, C2), C -> range test | 
|  | // Fold this div into the comparison, producing a range check. | 
|  | // Determine, based on the divide type, what the range is being | 
|  | // checked.  If there is an overflow on the low or high side, remember | 
|  | // it, otherwise compute the range [low, hi) bounding the new value. | 
|  | // See: InsertRangeTest above for the kinds of replacements possible. | 
|  | const APInt *C2; | 
|  | if (!match(Div->getOperand(1), m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | // FIXME: If the operand types don't match the type of the divide | 
|  | // then don't attempt this transform. The code below doesn't have the | 
|  | // logic to deal with a signed divide and an unsigned compare (and | 
|  | // vice versa). This is because (x /s C2) <s C  produces different | 
|  | // results than (x /s C2) <u C or (x /u C2) <s C or even | 
|  | // (x /u C2) <u C.  Simply casting the operands and result won't | 
|  | // work. :(  The if statement below tests that condition and bails | 
|  | // if it finds it. | 
|  | bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; | 
|  | if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) | 
|  | return nullptr; | 
|  |  | 
|  | // The ProdOV computation fails on divide by 0 and divide by -1. Cases with | 
|  | // INT_MIN will also fail if the divisor is 1. Although folds of all these | 
|  | // division-by-constant cases should be present, we can not assert that they | 
|  | // have happened before we reach this icmp instruction. | 
|  | if (C2->isNullValue() || C2->isOneValue() || | 
|  | (DivIsSigned && C2->isAllOnesValue())) | 
|  | return nullptr; | 
|  |  | 
|  | // Compute Prod = C * C2. We are essentially solving an equation of | 
|  | // form X / C2 = C. We solve for X by multiplying C2 and C. | 
|  | // By solving for X, we can turn this into a range check instead of computing | 
|  | // a divide. | 
|  | APInt Prod = C * *C2; | 
|  |  | 
|  | // Determine if the product overflows by seeing if the product is not equal to | 
|  | // the divide. Make sure we do the same kind of divide as in the LHS | 
|  | // instruction that we're folding. | 
|  | bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; | 
|  |  | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  |  | 
|  | // If the division is known to be exact, then there is no remainder from the | 
|  | // divide, so the covered range size is unit, otherwise it is the divisor. | 
|  | APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; | 
|  |  | 
|  | // Figure out the interval that is being checked.  For example, a comparison | 
|  | // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). | 
|  | // Compute this interval based on the constants involved and the signedness of | 
|  | // the compare/divide.  This computes a half-open interval, keeping track of | 
|  | // whether either value in the interval overflows.  After analysis each | 
|  | // overflow variable is set to 0 if it's corresponding bound variable is valid | 
|  | // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. | 
|  | int LoOverflow = 0, HiOverflow = 0; | 
|  | APInt LoBound, HiBound; | 
|  |  | 
|  | if (!DivIsSigned) {  // udiv | 
|  | // e.g. X/5 op 3  --> [15, 20) | 
|  | LoBound = Prod; | 
|  | HiOverflow = LoOverflow = ProdOV; | 
|  | if (!HiOverflow) { | 
|  | // If this is not an exact divide, then many values in the range collapse | 
|  | // to the same result value. | 
|  | HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); | 
|  | } | 
|  | } else if (C2->isStrictlyPositive()) { // Divisor is > 0. | 
|  | if (C.isNullValue()) {       // (X / pos) op 0 | 
|  | // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2) | 
|  | LoBound = -(RangeSize - 1); | 
|  | HiBound = RangeSize; | 
|  | } else if (C.isStrictlyPositive()) {   // (X / pos) op pos | 
|  | LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20) | 
|  | HiOverflow = LoOverflow = ProdOV; | 
|  | if (!HiOverflow) | 
|  | HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); | 
|  | } else {                       // (X / pos) op neg | 
|  | // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14) | 
|  | HiBound = Prod + 1; | 
|  | LoOverflow = HiOverflow = ProdOV ? -1 : 0; | 
|  | if (!LoOverflow) { | 
|  | APInt DivNeg = -RangeSize; | 
|  | LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; | 
|  | } | 
|  | } | 
|  | } else if (C2->isNegative()) { // Divisor is < 0. | 
|  | if (Div->isExact()) | 
|  | RangeSize.negate(); | 
|  | if (C.isNullValue()) { // (X / neg) op 0 | 
|  | // e.g. X/-5 op 0  --> [-4, 5) | 
|  | LoBound = RangeSize + 1; | 
|  | HiBound = -RangeSize; | 
|  | if (HiBound == *C2) {        // -INTMIN = INTMIN | 
|  | HiOverflow = 1;            // [INTMIN+1, overflow) | 
|  | HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN | 
|  | } | 
|  | } else if (C.isStrictlyPositive()) {   // (X / neg) op pos | 
|  | // e.g. X/-5 op 3  --> [-19, -14) | 
|  | HiBound = Prod + 1; | 
|  | HiOverflow = LoOverflow = ProdOV ? -1 : 0; | 
|  | if (!LoOverflow) | 
|  | LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; | 
|  | } else {                       // (X / neg) op neg | 
|  | LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20) | 
|  | LoOverflow = HiOverflow = ProdOV; | 
|  | if (!HiOverflow) | 
|  | HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); | 
|  | } | 
|  |  | 
|  | // Dividing by a negative swaps the condition.  LT <-> GT | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | Value *X = Div->getOperand(0); | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unhandled icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return replaceInstUsesWith(Cmp, Builder.getFalse()); | 
|  | if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, | 
|  | ConstantInt::get(Div->getType(), LoBound)); | 
|  | if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, | 
|  | ConstantInt::get(Div->getType(), HiBound)); | 
|  | return replaceInstUsesWith( | 
|  | Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return replaceInstUsesWith(Cmp, Builder.getTrue()); | 
|  | if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, | 
|  | ConstantInt::get(Div->getType(), LoBound)); | 
|  | if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, | 
|  | ConstantInt::get(Div->getType(), HiBound)); | 
|  | return replaceInstUsesWith(Cmp, | 
|  | insertRangeTest(X, LoBound, HiBound, | 
|  | DivIsSigned, false)); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LoOverflow == +1)   // Low bound is greater than input range. | 
|  | return replaceInstUsesWith(Cmp, Builder.getTrue()); | 
|  | if (LoOverflow == -1)   // Low bound is less than input range. | 
|  | return replaceInstUsesWith(Cmp, Builder.getFalse()); | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (HiOverflow == +1)       // High bound greater than input range. | 
|  | return replaceInstUsesWith(Cmp, Builder.getFalse()); | 
|  | if (HiOverflow == -1)       // High bound less than input range. | 
|  | return replaceInstUsesWith(Cmp, Builder.getTrue()); | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, X, | 
|  | ConstantInt::get(Div->getType(), HiBound)); | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, | 
|  | ConstantInt::get(Div->getType(), HiBound)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (sub X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Sub, | 
|  | const APInt &C) { | 
|  | Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  |  | 
|  | // The following transforms are only worth it if the only user of the subtract | 
|  | // is the icmp. | 
|  | if (!Sub->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Sub->hasNoSignedWrap()) { | 
|  | // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) | 
|  | if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); | 
|  |  | 
|  | // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) | 
|  | if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); | 
|  |  | 
|  | // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) | 
|  | if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); | 
|  |  | 
|  | // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) | 
|  | if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); | 
|  | } | 
|  |  | 
|  | const APInt *C2; | 
|  | if (!match(X, m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | // C2 - Y <u C -> (Y | (C - 1)) == C2 | 
|  | //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2 | 
|  | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && | 
|  | (*C2 & (C - 1)) == (C - 1)) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); | 
|  |  | 
|  | // C2 - Y >u C -> (Y | C) != C2 | 
|  | //   iff C2 & C == C and C + 1 is a power of 2 | 
|  | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp (add X, Y), C. | 
|  | Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *Add, | 
|  | const APInt &C) { | 
|  | Value *Y = Add->getOperand(1); | 
|  | const APInt *C2; | 
|  | if (Cmp.isEquality() || !match(Y, m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | // Fold icmp pred (add X, C2), C. | 
|  | Value *X = Add->getOperand(0); | 
|  | Type *Ty = Add->getType(); | 
|  | CmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  |  | 
|  | if (!Add->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the add does not wrap, we can always adjust the compare by subtracting | 
|  | // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE | 
|  | // are canonicalized to SGT/SLT/UGT/ULT. | 
|  | if ((Add->hasNoSignedWrap() && | 
|  | (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || | 
|  | (Add->hasNoUnsignedWrap() && | 
|  | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { | 
|  | bool Overflow; | 
|  | APInt NewC = | 
|  | Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); | 
|  | // If there is overflow, the result must be true or false. | 
|  | // TODO: Can we assert there is no overflow because InstSimplify always | 
|  | // handles those cases? | 
|  | if (!Overflow) | 
|  | // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); | 
|  | } | 
|  |  | 
|  | auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); | 
|  | const APInt &Upper = CR.getUpper(); | 
|  | const APInt &Lower = CR.getLower(); | 
|  | if (Cmp.isSigned()) { | 
|  | if (Lower.isSignMask()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); | 
|  | if (Upper.isSignMask()) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); | 
|  | } else { | 
|  | if (Lower.isMinValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); | 
|  | if (Upper.isMinValue()) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); | 
|  | } | 
|  |  | 
|  | // X+C <u C2 -> (X & -C2) == C | 
|  | //   iff C & (C2-1) == 0 | 
|  | //       C2 is a power of 2 | 
|  | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), | 
|  | ConstantExpr::getNeg(cast<Constant>(Y))); | 
|  |  | 
|  | // X+C >u C2 -> (X & ~C2) != C | 
|  | //   iff C & C2 == 0 | 
|  | //       C2+1 is a power of 2 | 
|  | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), | 
|  | ConstantExpr::getNeg(cast<Constant>(Y))); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, | 
|  | Value *&RHS, ConstantInt *&Less, | 
|  | ConstantInt *&Equal, | 
|  | ConstantInt *&Greater) { | 
|  | // TODO: Generalize this to work with other comparison idioms or ensure | 
|  | // they get canonicalized into this form. | 
|  |  | 
|  | // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 | 
|  | // Greater), where Equal, Less and Greater are placeholders for any three | 
|  | // constants. | 
|  | ICmpInst::Predicate PredA, PredB; | 
|  | if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && | 
|  | match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && | 
|  | PredA == ICmpInst::ICMP_EQ && | 
|  | match(SI->getFalseValue(), | 
|  | m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), | 
|  | m_ConstantInt(Less), m_ConstantInt(Greater))) && | 
|  | PredB == ICmpInst::ICMP_SLT) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, | 
|  | SelectInst *Select, | 
|  | ConstantInt *C) { | 
|  |  | 
|  | assert(C && "Cmp RHS should be a constant int!"); | 
|  | // If we're testing a constant value against the result of a three way | 
|  | // comparison, the result can be expressed directly in terms of the | 
|  | // original values being compared.  Note: We could possibly be more | 
|  | // aggressive here and remove the hasOneUse test. The original select is | 
|  | // really likely to simplify or sink when we remove a test of the result. | 
|  | Value *OrigLHS, *OrigRHS; | 
|  | ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; | 
|  | if (Cmp.hasOneUse() && | 
|  | matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, | 
|  | C3GreaterThan)) { | 
|  | assert(C1LessThan && C2Equal && C3GreaterThan); | 
|  |  | 
|  | bool TrueWhenLessThan = | 
|  | ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) | 
|  | ->isAllOnesValue(); | 
|  | bool TrueWhenEqual = | 
|  | ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) | 
|  | ->isAllOnesValue(); | 
|  | bool TrueWhenGreaterThan = | 
|  | ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) | 
|  | ->isAllOnesValue(); | 
|  |  | 
|  | // This generates the new instruction that will replace the original Cmp | 
|  | // Instruction. Instead of enumerating the various combinations when | 
|  | // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus | 
|  | // false, we rely on chaining of ORs and future passes of InstCombine to | 
|  | // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). | 
|  |  | 
|  | // When none of the three constants satisfy the predicate for the RHS (C), | 
|  | // the entire original Cmp can be simplified to a false. | 
|  | Value *Cond = Builder.getFalse(); | 
|  | if (TrueWhenLessThan) | 
|  | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); | 
|  | if (TrueWhenEqual) | 
|  | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); | 
|  | if (TrueWhenGreaterThan) | 
|  | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); | 
|  |  | 
|  | return replaceInstUsesWith(Cmp, Cond); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::foldICmpBitCastConstant(ICmpInst &Cmp, | 
|  | BitCastInst *Bitcast, | 
|  | const APInt &C) { | 
|  | // Folding: icmp <pred> iN X, C | 
|  | //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN | 
|  | //    and C is a splat of a K-bit pattern | 
|  | //    and SC is a constant vector = <C', C', C', ..., C'> | 
|  | // Into: | 
|  | //   %E = extractelement <M x iK> %vec, i32 C' | 
|  | //   icmp <pred> iK %E, trunc(C) | 
|  | if (!Bitcast->getType()->isIntegerTy() || | 
|  | !Bitcast->getSrcTy()->isIntOrIntVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *BCIOp = Bitcast->getOperand(0); | 
|  | Value *Vec = nullptr;     // 1st vector arg of the shufflevector | 
|  | Constant *Mask = nullptr; // Mask arg of the shufflevector | 
|  | if (match(BCIOp, | 
|  | m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { | 
|  | // Check whether every element of Mask is the same constant | 
|  | if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { | 
|  | auto *VecTy = cast<VectorType>(BCIOp->getType()); | 
|  | auto *EltTy = cast<IntegerType>(VecTy->getElementType()); | 
|  | auto Pred = Cmp.getPredicate(); | 
|  | if (C.isSplat(EltTy->getBitWidth())) { | 
|  | // Fold the icmp based on the value of C | 
|  | // If C is M copies of an iK sized bit pattern, | 
|  | // then: | 
|  | //   =>  %E = extractelement <N x iK> %vec, i32 Elem | 
|  | //       icmp <pred> iK %SplatVal, <pattern> | 
|  | Value *Extract = Builder.CreateExtractElement(Vec, Elem); | 
|  | Value *NewC = ConstantInt::get(EltTy, C.trunc(EltTy->getBitWidth())); | 
|  | return new ICmpInst(Pred, Extract, NewC); | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to fold integer comparisons with a constant operand: icmp Pred X, C | 
|  | /// where X is some kind of instruction. | 
|  | Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { | 
|  | const APInt *C; | 
|  | if (!match(Cmp.getOperand(1), m_APInt(C))) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::Xor: | 
|  | if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::SDiv: | 
|  | if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | case Instruction::Add: | 
|  | if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | // TODO: These folds could be refactored to be part of the above calls. | 
|  | if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | // Match against CmpInst LHS being instructions other than binary operators. | 
|  |  | 
|  | if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { | 
|  | // For now, we only support constant integers while folding the | 
|  | // ICMP(SELECT)) pattern. We can extend this to support vector of integers | 
|  | // similar to the cases handled by binary ops above. | 
|  | if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) | 
|  | if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { | 
|  | if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (auto *BCI = dyn_cast<BitCastInst>(Cmp.getOperand(0))) { | 
|  | if (Instruction *I = foldICmpBitCastConstant(Cmp, BCI, *C)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C)) | 
|  | return I; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold an icmp equality instruction with binary operator LHS and constant RHS: | 
|  | /// icmp eq/ne BO, C. | 
|  | Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, | 
|  | BinaryOperator *BO, | 
|  | const APInt &C) { | 
|  | // TODO: Some of these folds could work with arbitrary constants, but this | 
|  | // function is limited to scalar and vector splat constants. | 
|  | if (!Cmp.isEquality()) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | bool isICMP_NE = Pred == ICmpInst::ICMP_NE; | 
|  | Constant *RHS = cast<Constant>(Cmp.getOperand(1)); | 
|  | Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); | 
|  |  | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::SRem: | 
|  | // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. | 
|  | if (C.isNullValue() && BO->hasOneUse()) { | 
|  | const APInt *BOC; | 
|  | if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { | 
|  | Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); | 
|  | return new ICmpInst(Pred, NewRem, | 
|  | Constant::getNullValue(BO->getType())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: { | 
|  | // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. | 
|  | const APInt *BOC; | 
|  | if (match(BOp1, m_APInt(BOC))) { | 
|  | if (BO->hasOneUse()) { | 
|  | Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); | 
|  | return new ICmpInst(Pred, BOp0, SubC); | 
|  | } | 
|  | } else if (C.isNullValue()) { | 
|  | // Replace ((add A, B) != 0) with (A != -B) if A or B is | 
|  | // efficiently invertible, or if the add has just this one use. | 
|  | if (Value *NegVal = dyn_castNegVal(BOp1)) | 
|  | return new ICmpInst(Pred, BOp0, NegVal); | 
|  | if (Value *NegVal = dyn_castNegVal(BOp0)) | 
|  | return new ICmpInst(Pred, NegVal, BOp1); | 
|  | if (BO->hasOneUse()) { | 
|  | Value *Neg = Builder.CreateNeg(BOp1); | 
|  | Neg->takeName(BO); | 
|  | return new ICmpInst(Pred, BOp0, Neg); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Xor: | 
|  | if (BO->hasOneUse()) { | 
|  | if (Constant *BOC = dyn_cast<Constant>(BOp1)) { | 
|  | // For the xor case, we can xor two constants together, eliminating | 
|  | // the explicit xor. | 
|  | return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); | 
|  | } else if (C.isNullValue()) { | 
|  | // Replace ((xor A, B) != 0) with (A != B) | 
|  | return new ICmpInst(Pred, BOp0, BOp1); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | if (BO->hasOneUse()) { | 
|  | const APInt *BOC; | 
|  | if (match(BOp0, m_APInt(BOC))) { | 
|  | // Replace ((sub BOC, B) != C) with (B != BOC-C). | 
|  | Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); | 
|  | return new ICmpInst(Pred, BOp1, SubC); | 
|  | } else if (C.isNullValue()) { | 
|  | // Replace ((sub A, B) != 0) with (A != B). | 
|  | return new ICmpInst(Pred, BOp0, BOp1); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: { | 
|  | const APInt *BOC; | 
|  | if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { | 
|  | // Comparing if all bits outside of a constant mask are set? | 
|  | // Replace (X | C) == -1 with (X & ~C) == ~C. | 
|  | // This removes the -1 constant. | 
|  | Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); | 
|  | Value *And = Builder.CreateAnd(BOp0, NotBOC); | 
|  | return new ICmpInst(Pred, And, NotBOC); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::And: { | 
|  | const APInt *BOC; | 
|  | if (match(BOp1, m_APInt(BOC))) { | 
|  | // If we have ((X & C) == C), turn it into ((X & C) != 0). | 
|  | if (C == *BOC && C.isPowerOf2()) | 
|  | return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, | 
|  | BO, Constant::getNullValue(RHS->getType())); | 
|  |  | 
|  | // Don't perform the following transforms if the AND has multiple uses | 
|  | if (!BO->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 | 
|  | if (BOC->isSignMask()) { | 
|  | Constant *Zero = Constant::getNullValue(BOp0->getType()); | 
|  | auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; | 
|  | return new ICmpInst(NewPred, BOp0, Zero); | 
|  | } | 
|  |  | 
|  | // ((X & ~7) == 0) --> X < 8 | 
|  | if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { | 
|  | Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); | 
|  | auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; | 
|  | return new ICmpInst(NewPred, BOp0, NegBOC); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Mul: | 
|  | if (C.isNullValue() && BO->hasNoSignedWrap()) { | 
|  | const APInt *BOC; | 
|  | if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { | 
|  | // The trivial case (mul X, 0) is handled by InstSimplify. | 
|  | // General case : (mul X, C) != 0 iff X != 0 | 
|  | //                (mul X, C) == 0 iff X == 0 | 
|  | return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | if (C.isNullValue()) { | 
|  | // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) | 
|  | auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; | 
|  | return new ICmpInst(NewPred, BOp1, BOp0); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. | 
|  | Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, | 
|  | const APInt &C) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); | 
|  | if (!II || !Cmp.isEquality()) | 
|  | return nullptr; | 
|  |  | 
|  | // Handle icmp {eq|ne} <intrinsic>, Constant. | 
|  | Type *Ty = II->getType(); | 
|  | unsigned BitWidth = C.getBitWidth(); | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::bswap: | 
|  | Worklist.Add(II); | 
|  | Cmp.setOperand(0, II->getArgOperand(0)); | 
|  | Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); | 
|  | return &Cmp; | 
|  |  | 
|  | case Intrinsic::ctlz: | 
|  | case Intrinsic::cttz: { | 
|  | // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for != | 
|  | if (C == BitWidth) { | 
|  | Worklist.Add(II); | 
|  | Cmp.setOperand(0, II->getArgOperand(0)); | 
|  | Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); | 
|  | return &Cmp; | 
|  | } | 
|  |  | 
|  | // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set | 
|  | // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. | 
|  | // Limit to one use to ensure we don't increase instruction count. | 
|  | unsigned Num = C.getLimitedValue(BitWidth); | 
|  | if (Num != BitWidth && II->hasOneUse()) { | 
|  | bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; | 
|  | APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) | 
|  | : APInt::getHighBitsSet(BitWidth, Num + 1); | 
|  | APInt Mask2 = IsTrailing | 
|  | ? APInt::getOneBitSet(BitWidth, Num) | 
|  | : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); | 
|  | Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); | 
|  | Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); | 
|  | Worklist.Add(II); | 
|  | return &Cmp; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::ctpop: { | 
|  | // popcount(A) == 0  ->  A == 0 and likewise for != | 
|  | // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for != | 
|  | bool IsZero = C.isNullValue(); | 
|  | if (IsZero || C == BitWidth) { | 
|  | Worklist.Add(II); | 
|  | Cmp.setOperand(0, II->getArgOperand(0)); | 
|  | auto *NewOp = | 
|  | IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); | 
|  | Cmp.setOperand(1, NewOp); | 
|  | return &Cmp; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Handle icmp with constant (but not simple integer constant) RHS. | 
|  | Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | Constant *RHSC = dyn_cast<Constant>(Op1); | 
|  | Instruction *LHSI = dyn_cast<Instruction>(Op0); | 
|  | if (!RHSC || !LHSI) | 
|  | return nullptr; | 
|  |  | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::GetElementPtr: | 
|  | // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null | 
|  | if (RHSC->isNullValue() && | 
|  | cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) | 
|  | return new ICmpInst( | 
|  | I.getPredicate(), LHSI->getOperand(0), | 
|  | Constant::getNullValue(LHSI->getOperand(0)->getType())); | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | // Only fold icmp into the PHI if the phi and icmp are in the same | 
|  | // block.  If in the same block, we're encouraging jump threading.  If | 
|  | // not, we are just pessimizing the code by making an i1 phi. | 
|  | if (LHSI->getParent() == I.getParent()) | 
|  | if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | // If either operand of the select is a constant, we can fold the | 
|  | // comparison into the select arms, which will cause one to be | 
|  | // constant folded and the select turned into a bitwise or. | 
|  | Value *Op1 = nullptr, *Op2 = nullptr; | 
|  | ConstantInt *CI = nullptr; | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { | 
|  | Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | CI = dyn_cast<ConstantInt>(Op1); | 
|  | } | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { | 
|  | Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | CI = dyn_cast<ConstantInt>(Op2); | 
|  | } | 
|  |  | 
|  | // We only want to perform this transformation if it will not lead to | 
|  | // additional code. This is true if either both sides of the select | 
|  | // fold to a constant (in which case the icmp is replaced with a select | 
|  | // which will usually simplify) or this is the only user of the | 
|  | // select (in which case we are trading a select+icmp for a simpler | 
|  | // select+icmp) or all uses of the select can be replaced based on | 
|  | // dominance information ("Global cases"). | 
|  | bool Transform = false; | 
|  | if (Op1 && Op2) | 
|  | Transform = true; | 
|  | else if (Op1 || Op2) { | 
|  | // Local case | 
|  | if (LHSI->hasOneUse()) | 
|  | Transform = true; | 
|  | // Global cases | 
|  | else if (CI && !CI->isZero()) | 
|  | // When Op1 is constant try replacing select with second operand. | 
|  | // Otherwise Op2 is constant and try replacing select with first | 
|  | // operand. | 
|  | Transform = | 
|  | replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); | 
|  | } | 
|  | if (Transform) { | 
|  | if (!Op1) | 
|  | Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, | 
|  | I.getName()); | 
|  | if (!Op2) | 
|  | Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, | 
|  | I.getName()); | 
|  | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::IntToPtr: | 
|  | // icmp pred inttoptr(X), null -> icmp pred X, 0 | 
|  | if (RHSC->isNullValue() && | 
|  | DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) | 
|  | return new ICmpInst( | 
|  | I.getPredicate(), LHSI->getOperand(0), | 
|  | Constant::getNullValue(LHSI->getOperand(0)->getType())); | 
|  | break; | 
|  |  | 
|  | case Instruction::Load: | 
|  | // Try to optimize things like "A[i] > 4" to index computations. | 
|  | if (GetElementPtrInst *GEP = | 
|  | dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer() && | 
|  | !cast<LoadInst>(LHSI)->isVolatile()) | 
|  | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) | 
|  | return Res; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Some comparisons can be simplified. | 
|  | /// In this case, we are looking for comparisons that look like | 
|  | /// a check for a lossy truncation. | 
|  | /// Folds: | 
|  | ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask | 
|  | /// Where Mask is some pattern that produces all-ones in low bits: | 
|  | ///    (-1 >> y) | 
|  | ///    ((-1 << y) >> y)     <- non-canonical, has extra uses | 
|  | ///   ~(-1 << y) | 
|  | ///    ((1 << y) + (-1))    <- non-canonical, has extra uses | 
|  | /// The Mask can be a constant, too. | 
|  | /// For some predicates, the operands are commutative. | 
|  | /// For others, x can only be on a specific side. | 
|  | static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate SrcPred; | 
|  | Value *X, *M, *Y; | 
|  | auto m_VariableMask = m_CombineOr( | 
|  | m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), | 
|  | m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), | 
|  | m_CombineOr(m_LShr(m_AllOnes(), m_Value()), | 
|  | m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); | 
|  | auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); | 
|  | if (!match(&I, m_c_ICmp(SrcPred, | 
|  | m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), | 
|  | m_Deferred(X)))) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate DstPred; | 
|  | switch (SrcPred) { | 
|  | case ICmpInst::Predicate::ICMP_EQ: | 
|  | //  x & (-1 >> y) == x    ->    x u<= (-1 >> y) | 
|  | DstPred = ICmpInst::Predicate::ICMP_ULE; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_NE: | 
|  | //  x & (-1 >> y) != x    ->    x u> (-1 >> y) | 
|  | DstPred = ICmpInst::Predicate::ICMP_UGT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_UGT: | 
|  | //  x u> x & (-1 >> y)    ->    x u> (-1 >> y) | 
|  | assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); | 
|  | DstPred = ICmpInst::Predicate::ICMP_UGT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_UGE: | 
|  | //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y) | 
|  | assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); | 
|  | DstPred = ICmpInst::Predicate::ICMP_ULE; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_ULT: | 
|  | //  x & (-1 >> y) u< x    ->    x u> (-1 >> y) | 
|  | assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); | 
|  | DstPred = ICmpInst::Predicate::ICMP_UGT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_ULE: | 
|  | //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y) | 
|  | assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); | 
|  | DstPred = ICmpInst::Predicate::ICMP_ULE; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_SGT: | 
|  | //  x s> x & (-1 >> y)    ->    x s> (-1 >> y) | 
|  | if (X != I.getOperand(0)) // X must be on LHS of comparison! | 
|  | return nullptr;         // Ignore the other case. | 
|  | DstPred = ICmpInst::Predicate::ICMP_SGT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_SGE: | 
|  | //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y) | 
|  | if (X != I.getOperand(1)) // X must be on RHS of comparison! | 
|  | return nullptr;         // Ignore the other case. | 
|  | if (!match(M, m_Constant())) // Can not do this fold with non-constant. | 
|  | return nullptr; | 
|  | if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. | 
|  | return nullptr; | 
|  | DstPred = ICmpInst::Predicate::ICMP_SLE; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_SLT: | 
|  | //  x & (-1 >> y) s< x    ->    x s> (-1 >> y) | 
|  | if (X != I.getOperand(1)) // X must be on RHS of comparison! | 
|  | return nullptr;         // Ignore the other case. | 
|  | if (!match(M, m_Constant())) // Can not do this fold with non-constant. | 
|  | return nullptr; | 
|  | if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. | 
|  | return nullptr; | 
|  | DstPred = ICmpInst::Predicate::ICMP_SGT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_SLE: | 
|  | //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y) | 
|  | if (X != I.getOperand(0)) // X must be on LHS of comparison! | 
|  | return nullptr;         // Ignore the other case. | 
|  | DstPred = ICmpInst::Predicate::ICMP_SLE; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("All possible folds are handled."); | 
|  | } | 
|  |  | 
|  | return Builder.CreateICmp(DstPred, X, M); | 
|  | } | 
|  |  | 
|  | /// Some comparisons can be simplified. | 
|  | /// In this case, we are looking for comparisons that look like | 
|  | /// a check for a lossy signed truncation. | 
|  | /// Folds:   (MaskedBits is a constant.) | 
|  | ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x | 
|  | /// Into: | 
|  | ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) | 
|  | /// Where  KeptBits = bitwidth(%x) - MaskedBits | 
|  | static Value * | 
|  | foldICmpWithTruncSignExtendedVal(ICmpInst &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate SrcPred; | 
|  | Value *X; | 
|  | const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. | 
|  | // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. | 
|  | if (!match(&I, m_c_ICmp(SrcPred, | 
|  | m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), | 
|  | m_APInt(C1))), | 
|  | m_Deferred(X)))) | 
|  | return nullptr; | 
|  |  | 
|  | // Potential handling of non-splats: for each element: | 
|  | //  * if both are undef, replace with constant 0. | 
|  | //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. | 
|  | //  * if both are not undef, and are different, bailout. | 
|  | //  * else, only one is undef, then pick the non-undef one. | 
|  |  | 
|  | // The shift amount must be equal. | 
|  | if (*C0 != *C1) | 
|  | return nullptr; | 
|  | const APInt &MaskedBits = *C0; | 
|  | assert(MaskedBits != 0 && "shift by zero should be folded away already."); | 
|  |  | 
|  | ICmpInst::Predicate DstPred; | 
|  | switch (SrcPred) { | 
|  | case ICmpInst::Predicate::ICMP_EQ: | 
|  | // ((%x << MaskedBits) a>> MaskedBits) == %x | 
|  | //   => | 
|  | // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) | 
|  | DstPred = ICmpInst::Predicate::ICMP_ULT; | 
|  | break; | 
|  | case ICmpInst::Predicate::ICMP_NE: | 
|  | // ((%x << MaskedBits) a>> MaskedBits) != %x | 
|  | //   => | 
|  | // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) | 
|  | DstPred = ICmpInst::Predicate::ICMP_UGE; | 
|  | break; | 
|  | // FIXME: are more folds possible? | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *XType = X->getType(); | 
|  | const unsigned XBitWidth = XType->getScalarSizeInBits(); | 
|  | const APInt BitWidth = APInt(XBitWidth, XBitWidth); | 
|  | assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); | 
|  |  | 
|  | // KeptBits = bitwidth(%x) - MaskedBits | 
|  | const APInt KeptBits = BitWidth - MaskedBits; | 
|  | assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); | 
|  | // ICmpCst = (1 << KeptBits) | 
|  | const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); | 
|  | assert(ICmpCst.isPowerOf2()); | 
|  | // AddCst = (1 << (KeptBits-1)) | 
|  | const APInt AddCst = ICmpCst.lshr(1); | 
|  | assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); | 
|  |  | 
|  | // T0 = add %x, AddCst | 
|  | Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); | 
|  | // T1 = T0 DstPred ICmpCst | 
|  | Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); | 
|  |  | 
|  | return T1; | 
|  | } | 
|  |  | 
|  | /// Try to fold icmp (binop), X or icmp X, (binop). | 
|  | /// TODO: A large part of this logic is duplicated in InstSimplify's | 
|  | /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code | 
|  | /// duplication. | 
|  | Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Special logic for binary operators. | 
|  | BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); | 
|  | BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); | 
|  | if (!BO0 && !BO1) | 
|  | return nullptr; | 
|  |  | 
|  | const CmpInst::Predicate Pred = I.getPredicate(); | 
|  | Value *X; | 
|  |  | 
|  | // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. | 
|  | // (Op1 + X) <u Op1 --> ~Op1 <u X | 
|  | // Op0 >u (Op0 + X) --> X >u ~Op0 | 
|  | if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && | 
|  | Pred == ICmpInst::ICMP_ULT) | 
|  | return new ICmpInst(Pred, Builder.CreateNot(Op1), X); | 
|  | if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && | 
|  | Pred == ICmpInst::ICMP_UGT) | 
|  | return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); | 
|  |  | 
|  | bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; | 
|  | if (BO0 && isa<OverflowingBinaryOperator>(BO0)) | 
|  | NoOp0WrapProblem = | 
|  | ICmpInst::isEquality(Pred) || | 
|  | (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || | 
|  | (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); | 
|  | if (BO1 && isa<OverflowingBinaryOperator>(BO1)) | 
|  | NoOp1WrapProblem = | 
|  | ICmpInst::isEquality(Pred) || | 
|  | (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || | 
|  | (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); | 
|  |  | 
|  | // Analyze the case when either Op0 or Op1 is an add instruction. | 
|  | // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). | 
|  | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; | 
|  | if (BO0 && BO0->getOpcode() == Instruction::Add) { | 
|  | A = BO0->getOperand(0); | 
|  | B = BO0->getOperand(1); | 
|  | } | 
|  | if (BO1 && BO1->getOpcode() == Instruction::Add) { | 
|  | C = BO1->getOperand(0); | 
|  | D = BO1->getOperand(1); | 
|  | } | 
|  |  | 
|  | // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. | 
|  | if ((A == Op1 || B == Op1) && NoOp0WrapProblem) | 
|  | return new ICmpInst(Pred, A == Op1 ? B : A, | 
|  | Constant::getNullValue(Op1->getType())); | 
|  |  | 
|  | // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. | 
|  | if ((C == Op0 || D == Op0) && NoOp1WrapProblem) | 
|  | return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), | 
|  | C == Op0 ? D : C); | 
|  |  | 
|  | // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. | 
|  | if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && | 
|  | NoOp1WrapProblem && | 
|  | // Try not to increase register pressure. | 
|  | BO0->hasOneUse() && BO1->hasOneUse()) { | 
|  | // Determine Y and Z in the form icmp (X+Y), (X+Z). | 
|  | Value *Y, *Z; | 
|  | if (A == C) { | 
|  | // C + B == C + D  ->  B == D | 
|  | Y = B; | 
|  | Z = D; | 
|  | } else if (A == D) { | 
|  | // D + B == C + D  ->  B == C | 
|  | Y = B; | 
|  | Z = C; | 
|  | } else if (B == C) { | 
|  | // A + C == C + D  ->  A == D | 
|  | Y = A; | 
|  | Z = D; | 
|  | } else { | 
|  | assert(B == D); | 
|  | // A + D == C + D  ->  A == C | 
|  | Y = A; | 
|  | Z = C; | 
|  | } | 
|  | return new ICmpInst(Pred, Y, Z); | 
|  | } | 
|  |  | 
|  | // icmp slt (X + -1), Y -> icmp sle X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && | 
|  | match(B, m_AllOnes())) | 
|  | return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); | 
|  |  | 
|  | // icmp sge (X + -1), Y -> icmp sgt X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && | 
|  | match(B, m_AllOnes())) | 
|  | return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); | 
|  |  | 
|  | // icmp sle (X + 1), Y -> icmp slt X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); | 
|  |  | 
|  | // icmp sgt (X + 1), Y -> icmp sge X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); | 
|  |  | 
|  | // icmp sgt X, (Y + -1) -> icmp sge X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && | 
|  | match(D, m_AllOnes())) | 
|  | return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); | 
|  |  | 
|  | // icmp sle X, (Y + -1) -> icmp slt X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && | 
|  | match(D, m_AllOnes())) | 
|  | return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); | 
|  |  | 
|  | // icmp sge X, (Y + 1) -> icmp sgt X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); | 
|  |  | 
|  | // icmp slt X, (Y + 1) -> icmp sle X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); | 
|  |  | 
|  | // TODO: The subtraction-related identities shown below also hold, but | 
|  | // canonicalization from (X -nuw 1) to (X + -1) means that the combinations | 
|  | // wouldn't happen even if they were implemented. | 
|  | // | 
|  | // icmp ult (X - 1), Y -> icmp ule X, Y | 
|  | // icmp uge (X - 1), Y -> icmp ugt X, Y | 
|  | // icmp ugt X, (Y - 1) -> icmp uge X, Y | 
|  | // icmp ule X, (Y - 1) -> icmp ult X, Y | 
|  |  | 
|  | // icmp ule (X + 1), Y -> icmp ult X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); | 
|  |  | 
|  | // icmp ugt (X + 1), Y -> icmp uge X, Y | 
|  | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); | 
|  |  | 
|  | // icmp uge X, (Y + 1) -> icmp ugt X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); | 
|  |  | 
|  | // icmp ult X, (Y + 1) -> icmp ule X, Y | 
|  | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) | 
|  | return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); | 
|  |  | 
|  | // if C1 has greater magnitude than C2: | 
|  | //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y | 
|  | //  s.t. C3 = C1 - C2 | 
|  | // | 
|  | // if C2 has greater magnitude than C1: | 
|  | //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) | 
|  | //  s.t. C3 = C2 - C1 | 
|  | if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && | 
|  | (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) | 
|  | if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) | 
|  | if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { | 
|  | const APInt &AP1 = C1->getValue(); | 
|  | const APInt &AP2 = C2->getValue(); | 
|  | if (AP1.isNegative() == AP2.isNegative()) { | 
|  | APInt AP1Abs = C1->getValue().abs(); | 
|  | APInt AP2Abs = C2->getValue().abs(); | 
|  | if (AP1Abs.uge(AP2Abs)) { | 
|  | ConstantInt *C3 = Builder.getInt(AP1 - AP2); | 
|  | Value *NewAdd = Builder.CreateNSWAdd(A, C3); | 
|  | return new ICmpInst(Pred, NewAdd, C); | 
|  | } else { | 
|  | ConstantInt *C3 = Builder.getInt(AP2 - AP1); | 
|  | Value *NewAdd = Builder.CreateNSWAdd(C, C3); | 
|  | return new ICmpInst(Pred, A, NewAdd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyze the case when either Op0 or Op1 is a sub instruction. | 
|  | // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). | 
|  | A = nullptr; | 
|  | B = nullptr; | 
|  | C = nullptr; | 
|  | D = nullptr; | 
|  | if (BO0 && BO0->getOpcode() == Instruction::Sub) { | 
|  | A = BO0->getOperand(0); | 
|  | B = BO0->getOperand(1); | 
|  | } | 
|  | if (BO1 && BO1->getOpcode() == Instruction::Sub) { | 
|  | C = BO1->getOperand(0); | 
|  | D = BO1->getOperand(1); | 
|  | } | 
|  |  | 
|  | // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. | 
|  | if (A == Op1 && NoOp0WrapProblem) | 
|  | return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); | 
|  | // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. | 
|  | if (C == Op0 && NoOp1WrapProblem) | 
|  | return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); | 
|  |  | 
|  | // (A - B) >u A --> A <u B | 
|  | if (A == Op1 && Pred == ICmpInst::ICMP_UGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, A, B); | 
|  | // C <u (C - D) --> C <u D | 
|  | if (C == Op0 && Pred == ICmpInst::ICMP_ULT) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, C, D); | 
|  |  | 
|  | // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. | 
|  | if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && | 
|  | // Try not to increase register pressure. | 
|  | BO0->hasOneUse() && BO1->hasOneUse()) | 
|  | return new ICmpInst(Pred, A, C); | 
|  | // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. | 
|  | if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && | 
|  | // Try not to increase register pressure. | 
|  | BO0->hasOneUse() && BO1->hasOneUse()) | 
|  | return new ICmpInst(Pred, D, B); | 
|  |  | 
|  | // icmp (0-X) < cst --> x > -cst | 
|  | if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { | 
|  | Value *X; | 
|  | if (match(BO0, m_Neg(m_Value(X)))) | 
|  | if (Constant *RHSC = dyn_cast<Constant>(Op1)) | 
|  | if (RHSC->isNotMinSignedValue()) | 
|  | return new ICmpInst(I.getSwappedPredicate(), X, | 
|  | ConstantExpr::getNeg(RHSC)); | 
|  | } | 
|  |  | 
|  | BinaryOperator *SRem = nullptr; | 
|  | // icmp (srem X, Y), Y | 
|  | if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) | 
|  | SRem = BO0; | 
|  | // icmp Y, (srem X, Y) | 
|  | else if (BO1 && BO1->getOpcode() == Instruction::SRem && | 
|  | Op0 == BO1->getOperand(1)) | 
|  | SRem = BO1; | 
|  | if (SRem) { | 
|  | // We don't check hasOneUse to avoid increasing register pressure because | 
|  | // the value we use is the same value this instruction was already using. | 
|  | switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { | 
|  | default: | 
|  | break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | case ICmpInst::ICMP_NE: | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), | 
|  | Constant::getAllOnesValue(SRem->getType())); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), | 
|  | Constant::getNullValue(SRem->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && | 
|  | BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { | 
|  | switch (BO0->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Xor: { | 
|  | if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  |  | 
|  | const APInt *C; | 
|  | if (match(BO0->getOperand(1), m_APInt(C))) { | 
|  | // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b | 
|  | if (C->isSignMask()) { | 
|  | ICmpInst::Predicate NewPred = | 
|  | I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); | 
|  | return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b | 
|  | if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { | 
|  | ICmpInst::Predicate NewPred = | 
|  | I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); | 
|  | NewPred = I.getSwappedPredicate(NewPred); | 
|  | return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Mul: { | 
|  | if (!I.isEquality()) | 
|  | break; | 
|  |  | 
|  | const APInt *C; | 
|  | if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && | 
|  | !C->isOneValue()) { | 
|  | // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) | 
|  | // Mask = -1 >> count-trailing-zeros(C). | 
|  | if (unsigned TZs = C->countTrailingZeros()) { | 
|  | Constant *Mask = ConstantInt::get( | 
|  | BO0->getType(), | 
|  | APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); | 
|  | Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); | 
|  | Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); | 
|  | return new ICmpInst(Pred, And1, And2); | 
|  | } | 
|  | // If there are no trailing zeros in the multiplier, just eliminate | 
|  | // the multiplies (no masking is needed): | 
|  | // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::UDiv: | 
|  | case Instruction::LShr: | 
|  | if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) | 
|  | break; | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  |  | 
|  | case Instruction::SDiv: | 
|  | if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) | 
|  | break; | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  |  | 
|  | case Instruction::AShr: | 
|  | if (!BO0->isExact() || !BO1->isExact()) | 
|  | break; | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); | 
|  | bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); | 
|  | if (!NUW && !NSW) | 
|  | break; | 
|  | if (!NSW && I.isSigned()) | 
|  | break; | 
|  | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BO0) { | 
|  | // Transform  A & (L - 1) `ult` L --> L != 0 | 
|  | auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); | 
|  | auto BitwiseAnd = m_c_And(m_Value(), LSubOne); | 
|  |  | 
|  | if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { | 
|  | auto *Zero = Constant::getNullValue(BO0->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold icmp Pred min|max(X, Y), X. | 
|  | static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *Op0 = Cmp.getOperand(0); | 
|  | Value *X = Cmp.getOperand(1); | 
|  |  | 
|  | // Canonicalize minimum or maximum operand to LHS of the icmp. | 
|  | if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || | 
|  | match(X, m_c_SMax(m_Specific(Op0), m_Value())) || | 
|  | match(X, m_c_UMin(m_Specific(Op0), m_Value())) || | 
|  | match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { | 
|  | std::swap(Op0, X); | 
|  | Pred = Cmp.getSwappedPredicate(); | 
|  | } | 
|  |  | 
|  | Value *Y; | 
|  | if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { | 
|  | // smin(X, Y)  == X --> X s<= Y | 
|  | // smin(X, Y) s>= X --> X s<= Y | 
|  | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); | 
|  |  | 
|  | // smin(X, Y) != X --> X s> Y | 
|  | // smin(X, Y) s< X --> X s> Y | 
|  | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); | 
|  |  | 
|  | // These cases should be handled in InstSimplify: | 
|  | // smin(X, Y) s<= X --> true | 
|  | // smin(X, Y) s> X --> false | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { | 
|  | // smax(X, Y)  == X --> X s>= Y | 
|  | // smax(X, Y) s<= X --> X s>= Y | 
|  | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); | 
|  |  | 
|  | // smax(X, Y) != X --> X s< Y | 
|  | // smax(X, Y) s> X --> X s< Y | 
|  | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); | 
|  |  | 
|  | // These cases should be handled in InstSimplify: | 
|  | // smax(X, Y) s>= X --> true | 
|  | // smax(X, Y) s< X --> false | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { | 
|  | // umin(X, Y)  == X --> X u<= Y | 
|  | // umin(X, Y) u>= X --> X u<= Y | 
|  | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); | 
|  |  | 
|  | // umin(X, Y) != X --> X u> Y | 
|  | // umin(X, Y) u< X --> X u> Y | 
|  | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); | 
|  |  | 
|  | // These cases should be handled in InstSimplify: | 
|  | // umin(X, Y) u<= X --> true | 
|  | // umin(X, Y) u> X --> false | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { | 
|  | // umax(X, Y)  == X --> X u>= Y | 
|  | // umax(X, Y) u<= X --> X u>= Y | 
|  | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); | 
|  |  | 
|  | // umax(X, Y) != X --> X u< Y | 
|  | // umax(X, Y) u> X --> X u< Y | 
|  | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); | 
|  |  | 
|  | // These cases should be handled in InstSimplify: | 
|  | // umax(X, Y) u>= X --> true | 
|  | // umax(X, Y) u< X --> false | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { | 
|  | if (!I.isEquality()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | const CmpInst::Predicate Pred = I.getPredicate(); | 
|  | Value *A, *B, *C, *D; | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0 | 
|  | Value *OtherVal = A == Op1 ? B : A; | 
|  | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { | 
|  | // A^c1 == C^c2 --> A == C^(c1^c2) | 
|  | ConstantInt *C1, *C2; | 
|  | if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && | 
|  | Op1->hasOneUse()) { | 
|  | Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); | 
|  | Value *Xor = Builder.CreateXor(C, NC); | 
|  | return new ICmpInst(Pred, A, Xor); | 
|  | } | 
|  |  | 
|  | // A^B == A^D -> B == D | 
|  | if (A == C) | 
|  | return new ICmpInst(Pred, B, D); | 
|  | if (A == D) | 
|  | return new ICmpInst(Pred, B, C); | 
|  | if (B == C) | 
|  | return new ICmpInst(Pred, A, D); | 
|  | if (B == D) | 
|  | return new ICmpInst(Pred, A, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { | 
|  | // A == (A^B)  ->  B == 0 | 
|  | Value *OtherVal = A == Op0 ? B : A; | 
|  | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); | 
|  | } | 
|  |  | 
|  | // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 | 
|  | if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && | 
|  | match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { | 
|  | Value *X = nullptr, *Y = nullptr, *Z = nullptr; | 
|  |  | 
|  | if (A == C) { | 
|  | X = B; | 
|  | Y = D; | 
|  | Z = A; | 
|  | } else if (A == D) { | 
|  | X = B; | 
|  | Y = C; | 
|  | Z = A; | 
|  | } else if (B == C) { | 
|  | X = A; | 
|  | Y = D; | 
|  | Z = B; | 
|  | } else if (B == D) { | 
|  | X = A; | 
|  | Y = C; | 
|  | Z = B; | 
|  | } | 
|  |  | 
|  | if (X) { // Build (X^Y) & Z | 
|  | Op1 = Builder.CreateXor(X, Y); | 
|  | Op1 = Builder.CreateAnd(Op1, Z); | 
|  | I.setOperand(0, Op1); | 
|  | I.setOperand(1, Constant::getNullValue(Op1->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) | 
|  | // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B) | 
|  | ConstantInt *Cst1; | 
|  | if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && | 
|  | match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || | 
|  | (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && | 
|  | match(Op1, m_ZExt(m_Value(A))))) { | 
|  | APInt Pow2 = Cst1->getValue() + 1; | 
|  | if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && | 
|  | Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) | 
|  | return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); | 
|  | } | 
|  |  | 
|  | // (A >> C) == (B >> C) --> (A^B) u< (1 << C) | 
|  | // For lshr and ashr pairs. | 
|  | if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && | 
|  | match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || | 
|  | (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && | 
|  | match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { | 
|  | unsigned TypeBits = Cst1->getBitWidth(); | 
|  | unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); | 
|  | if (ShAmt < TypeBits && ShAmt != 0) { | 
|  | ICmpInst::Predicate NewPred = | 
|  | Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; | 
|  | Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); | 
|  | APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); | 
|  | return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 | 
|  | if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && | 
|  | match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { | 
|  | unsigned TypeBits = Cst1->getBitWidth(); | 
|  | unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); | 
|  | if (ShAmt < TypeBits && ShAmt != 0) { | 
|  | Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); | 
|  | APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); | 
|  | Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), | 
|  | I.getName() + ".mask"); | 
|  | return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to | 
|  | // "icmp (and X, mask), cst" | 
|  | uint64_t ShAmt = 0; | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && | 
|  | match(Op1, m_ConstantInt(Cst1)) && | 
|  | // Only do this when A has multiple uses.  This is most important to do | 
|  | // when it exposes other optimizations. | 
|  | !A->hasOneUse()) { | 
|  | unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); | 
|  |  | 
|  | if (ShAmt < ASize) { | 
|  | APInt MaskV = | 
|  | APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); | 
|  | MaskV <<= ShAmt; | 
|  |  | 
|  | APInt CmpV = Cst1->getValue().zext(ASize); | 
|  | CmpV <<= ShAmt; | 
|  |  | 
|  | Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); | 
|  | return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If both operands are byte-swapped or bit-reversed, just compare the | 
|  | // original values. | 
|  | // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() | 
|  | // and handle more intrinsics. | 
|  | if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || | 
|  | (match(Op0, m_BitReverse(m_Value(A))) && | 
|  | match(Op1, m_BitReverse(m_Value(B))))) | 
|  | return new ICmpInst(Pred, A, B); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so | 
|  | /// far. | 
|  | Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { | 
|  | const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); | 
|  | Value *LHSCIOp        = LHSCI->getOperand(0); | 
|  | Type *SrcTy     = LHSCIOp->getType(); | 
|  | Type *DestTy    = LHSCI->getType(); | 
|  | Value *RHSCIOp; | 
|  |  | 
|  | // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the | 
|  | // integer type is the same size as the pointer type. | 
|  | const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { | 
|  | if (isa<VectorType>(SrcTy)) { | 
|  | SrcTy = cast<VectorType>(SrcTy)->getElementType(); | 
|  | DestTy = cast<VectorType>(DestTy)->getElementType(); | 
|  | } | 
|  | return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); | 
|  | }; | 
|  | if (LHSCI->getOpcode() == Instruction::PtrToInt && | 
|  | CompatibleSizes(SrcTy, DestTy)) { | 
|  | Value *RHSOp = nullptr; | 
|  | if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { | 
|  | Value *RHSCIOp = RHSC->getOperand(0); | 
|  | if (RHSCIOp->getType()->getPointerAddressSpace() == | 
|  | LHSCIOp->getType()->getPointerAddressSpace()) { | 
|  | RHSOp = RHSC->getOperand(0); | 
|  | // If the pointer types don't match, insert a bitcast. | 
|  | if (LHSCIOp->getType() != RHSOp->getType()) | 
|  | RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); | 
|  | } | 
|  | } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { | 
|  | RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); | 
|  | } | 
|  |  | 
|  | if (RHSOp) | 
|  | return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); | 
|  | } | 
|  |  | 
|  | // The code below only handles extension cast instructions, so far. | 
|  | // Enforce this. | 
|  | if (LHSCI->getOpcode() != Instruction::ZExt && | 
|  | LHSCI->getOpcode() != Instruction::SExt) | 
|  | return nullptr; | 
|  |  | 
|  | bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; | 
|  | bool isSignedCmp = ICmp.isSigned(); | 
|  |  | 
|  | if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { | 
|  | // Not an extension from the same type? | 
|  | RHSCIOp = CI->getOperand(0); | 
|  | if (RHSCIOp->getType() != LHSCIOp->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the signedness of the two casts doesn't agree (i.e. one is a sext | 
|  | // and the other is a zext), then we can't handle this. | 
|  | if (CI->getOpcode() != LHSCI->getOpcode()) | 
|  | return nullptr; | 
|  |  | 
|  | // Deal with equality cases early. | 
|  | if (ICmp.isEquality()) | 
|  | return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); | 
|  |  | 
|  | // A signed comparison of sign extended values simplifies into a | 
|  | // signed comparison. | 
|  | if (isSignedCmp && isSignedExt) | 
|  | return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); | 
|  |  | 
|  | // The other three cases all fold into an unsigned comparison. | 
|  | return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); | 
|  | } | 
|  |  | 
|  | // If we aren't dealing with a constant on the RHS, exit early. | 
|  | auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | // Compute the constant that would happen if we truncated to SrcTy then | 
|  | // re-extended to DestTy. | 
|  | Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); | 
|  | Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); | 
|  |  | 
|  | // If the re-extended constant didn't change... | 
|  | if (Res2 == C) { | 
|  | // Deal with equality cases early. | 
|  | if (ICmp.isEquality()) | 
|  | return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); | 
|  |  | 
|  | // A signed comparison of sign extended values simplifies into a | 
|  | // signed comparison. | 
|  | if (isSignedExt && isSignedCmp) | 
|  | return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); | 
|  |  | 
|  | // The other three cases all fold into an unsigned comparison. | 
|  | return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); | 
|  | } | 
|  |  | 
|  | // The re-extended constant changed, partly changed (in the case of a vector), | 
|  | // or could not be determined to be equal (in the case of a constant | 
|  | // expression), so the constant cannot be represented in the shorter type. | 
|  | // Consequently, we cannot emit a simple comparison. | 
|  | // All the cases that fold to true or false will have already been handled | 
|  | // by SimplifyICmpInst, so only deal with the tricky case. | 
|  |  | 
|  | if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) | 
|  | return nullptr; | 
|  |  | 
|  | // Evaluate the comparison for LT (we invert for GT below). LE and GE cases | 
|  | // should have been folded away previously and not enter in here. | 
|  |  | 
|  | // We're performing an unsigned comp with a sign extended value. | 
|  | // This is true if the input is >= 0. [aka >s -1] | 
|  | Constant *NegOne = Constant::getAllOnesValue(SrcTy); | 
|  | Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); | 
|  |  | 
|  | // Finally, return the value computed. | 
|  | if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) | 
|  | return replaceInstUsesWith(ICmp, Result); | 
|  |  | 
|  | assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); | 
|  | return BinaryOperator::CreateNot(Result); | 
|  | } | 
|  |  | 
|  | bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, | 
|  | Value *RHS, Instruction &OrigI, | 
|  | Value *&Result, Constant *&Overflow) { | 
|  | if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { | 
|  | Result = OpResult; | 
|  | Overflow = OverflowVal; | 
|  | if (ReuseName) | 
|  | Result->takeName(&OrigI); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // If the overflow check was an add followed by a compare, the insertion point | 
|  | // may be pointing to the compare.  We want to insert the new instructions | 
|  | // before the add in case there are uses of the add between the add and the | 
|  | // compare. | 
|  | Builder.SetInsertPoint(&OrigI); | 
|  |  | 
|  | switch (OCF) { | 
|  | case OCF_INVALID: | 
|  | llvm_unreachable("bad overflow check kind!"); | 
|  |  | 
|  | case OCF_UNSIGNED_ADD: { | 
|  | OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); | 
|  | if (OR == OverflowResult::NeverOverflows) | 
|  | return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  |  | 
|  | if (OR == OverflowResult::AlwaysOverflows) | 
|  | return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); | 
|  |  | 
|  | // Fall through uadd into sadd | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case OCF_SIGNED_ADD: { | 
|  | // X + 0 -> {X, false} | 
|  | if (match(RHS, m_Zero())) | 
|  | return SetResult(LHS, Builder.getFalse(), false); | 
|  |  | 
|  | // We can strength reduce this signed add into a regular add if we can prove | 
|  | // that it will never overflow. | 
|  | if (OCF == OCF_SIGNED_ADD) | 
|  | if (willNotOverflowSignedAdd(LHS, RHS, OrigI)) | 
|  | return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OCF_UNSIGNED_SUB: | 
|  | case OCF_SIGNED_SUB: { | 
|  | // X - 0 -> {X, false} | 
|  | if (match(RHS, m_Zero())) | 
|  | return SetResult(LHS, Builder.getFalse(), false); | 
|  |  | 
|  | if (OCF == OCF_SIGNED_SUB) { | 
|  | if (willNotOverflowSignedSub(LHS, RHS, OrigI)) | 
|  | return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  | } else { | 
|  | if (willNotOverflowUnsignedSub(LHS, RHS, OrigI)) | 
|  | return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OCF_UNSIGNED_MUL: { | 
|  | OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); | 
|  | if (OR == OverflowResult::NeverOverflows) | 
|  | return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  | if (OR == OverflowResult::AlwaysOverflows) | 
|  | return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case OCF_SIGNED_MUL: | 
|  | // X * undef -> undef | 
|  | if (isa<UndefValue>(RHS)) | 
|  | return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); | 
|  |  | 
|  | // X * 0 -> {0, false} | 
|  | if (match(RHS, m_Zero())) | 
|  | return SetResult(RHS, Builder.getFalse(), false); | 
|  |  | 
|  | // X * 1 -> {X, false} | 
|  | if (match(RHS, m_One())) | 
|  | return SetResult(LHS, Builder.getFalse(), false); | 
|  |  | 
|  | if (OCF == OCF_SIGNED_MUL) | 
|  | if (willNotOverflowSignedMul(LHS, RHS, OrigI)) | 
|  | return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), | 
|  | true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Recognize and process idiom involving test for multiplication | 
|  | /// overflow. | 
|  | /// | 
|  | /// The caller has matched a pattern of the form: | 
|  | ///   I = cmp u (mul(zext A, zext B), V | 
|  | /// The function checks if this is a test for overflow and if so replaces | 
|  | /// multiplication with call to 'mul.with.overflow' intrinsic. | 
|  | /// | 
|  | /// \param I Compare instruction. | 
|  | /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of | 
|  | ///               the compare instruction.  Must be of integer type. | 
|  | /// \param OtherVal The other argument of compare instruction. | 
|  | /// \returns Instruction which must replace the compare instruction, NULL if no | 
|  | ///          replacement required. | 
|  | static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, | 
|  | Value *OtherVal, InstCombiner &IC) { | 
|  | // Don't bother doing this transformation for pointers, don't do it for | 
|  | // vectors. | 
|  | if (!isa<IntegerType>(MulVal->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); | 
|  | assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); | 
|  | auto *MulInstr = dyn_cast<Instruction>(MulVal); | 
|  | if (!MulInstr) | 
|  | return nullptr; | 
|  | assert(MulInstr->getOpcode() == Instruction::Mul); | 
|  |  | 
|  | auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), | 
|  | *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); | 
|  | assert(LHS->getOpcode() == Instruction::ZExt); | 
|  | assert(RHS->getOpcode() == Instruction::ZExt); | 
|  | Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); | 
|  |  | 
|  | // Calculate type and width of the result produced by mul.with.overflow. | 
|  | Type *TyA = A->getType(), *TyB = B->getType(); | 
|  | unsigned WidthA = TyA->getPrimitiveSizeInBits(), | 
|  | WidthB = TyB->getPrimitiveSizeInBits(); | 
|  | unsigned MulWidth; | 
|  | Type *MulType; | 
|  | if (WidthB > WidthA) { | 
|  | MulWidth = WidthB; | 
|  | MulType = TyB; | 
|  | } else { | 
|  | MulWidth = WidthA; | 
|  | MulType = TyA; | 
|  | } | 
|  |  | 
|  | // In order to replace the original mul with a narrower mul.with.overflow, | 
|  | // all uses must ignore upper bits of the product.  The number of used low | 
|  | // bits must be not greater than the width of mul.with.overflow. | 
|  | if (MulVal->hasNUsesOrMore(2)) | 
|  | for (User *U : MulVal->users()) { | 
|  | if (U == &I) | 
|  | continue; | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(U)) { | 
|  | // Check if truncation ignores bits above MulWidth. | 
|  | unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); | 
|  | if (TruncWidth > MulWidth) | 
|  | return nullptr; | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { | 
|  | // Check if AND ignores bits above MulWidth. | 
|  | if (BO->getOpcode() != Instruction::And) | 
|  | return nullptr; | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | const APInt &CVal = CI->getValue(); | 
|  | if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) | 
|  | return nullptr; | 
|  | } else { | 
|  | // In this case we could have the operand of the binary operation | 
|  | // being defined in another block, and performing the replacement | 
|  | // could break the dominance relation. | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Other uses prohibit this transformation. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Recognize patterns | 
|  | switch (I.getPredicate()) { | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_NE: | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp eq/neq mulval, zext trunc mulval | 
|  | if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) | 
|  | if (Zext->hasOneUse()) { | 
|  | Value *ZextArg = Zext->getOperand(0); | 
|  | if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) | 
|  | if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) | 
|  | break; //Recognized | 
|  | } | 
|  |  | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. | 
|  | ConstantInt *CI; | 
|  | Value *ValToMask; | 
|  | if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { | 
|  | if (ValToMask != MulVal) | 
|  | return nullptr; | 
|  | const APInt &CVal = CI->getValue() + 1; | 
|  | if (CVal.isPowerOf2()) { | 
|  | unsigned MaskWidth = CVal.logBase2(); | 
|  | if (MaskWidth == MulWidth) | 
|  | break; // Recognized | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp ugt mulval, max | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { | 
|  | APInt MaxVal = APInt::getMaxValue(MulWidth); | 
|  | MaxVal = MaxVal.zext(CI->getBitWidth()); | 
|  | if (MaxVal.eq(CI->getValue())) | 
|  | break; // Recognized | 
|  | } | 
|  | return nullptr; | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp uge mulval, max+1 | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { | 
|  | APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); | 
|  | if (MaxVal.eq(CI->getValue())) | 
|  | break; // Recognized | 
|  | } | 
|  | return nullptr; | 
|  |  | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp ule mulval, max | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { | 
|  | APInt MaxVal = APInt::getMaxValue(MulWidth); | 
|  | MaxVal = MaxVal.zext(CI->getBitWidth()); | 
|  | if (MaxVal.eq(CI->getValue())) | 
|  | break; // Recognized | 
|  | } | 
|  | return nullptr; | 
|  |  | 
|  | case ICmpInst::ICMP_ULT: | 
|  | // Recognize pattern: | 
|  | //   mulval = mul(zext A, zext B) | 
|  | //   cmp ule mulval, max + 1 | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { | 
|  | APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); | 
|  | if (MaxVal.eq(CI->getValue())) | 
|  | break; // Recognized | 
|  | } | 
|  | return nullptr; | 
|  |  | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InstCombiner::BuilderTy &Builder = IC.Builder; | 
|  | Builder.SetInsertPoint(MulInstr); | 
|  |  | 
|  | // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) | 
|  | Value *MulA = A, *MulB = B; | 
|  | if (WidthA < MulWidth) | 
|  | MulA = Builder.CreateZExt(A, MulType); | 
|  | if (WidthB < MulWidth) | 
|  | MulB = Builder.CreateZExt(B, MulType); | 
|  | Value *F = Intrinsic::getDeclaration(I.getModule(), | 
|  | Intrinsic::umul_with_overflow, MulType); | 
|  | CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); | 
|  | IC.Worklist.Add(MulInstr); | 
|  |  | 
|  | // If there are uses of mul result other than the comparison, we know that | 
|  | // they are truncation or binary AND. Change them to use result of | 
|  | // mul.with.overflow and adjust properly mask/size. | 
|  | if (MulVal->hasNUsesOrMore(2)) { | 
|  | Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); | 
|  | for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { | 
|  | User *U = *UI++; | 
|  | if (U == &I || U == OtherVal) | 
|  | continue; | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(U)) { | 
|  | if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) | 
|  | IC.replaceInstUsesWith(*TI, Mul); | 
|  | else | 
|  | TI->setOperand(0, Mul); | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { | 
|  | assert(BO->getOpcode() == Instruction::And); | 
|  | // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) | 
|  | ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); | 
|  | APInt ShortMask = CI->getValue().trunc(MulWidth); | 
|  | Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); | 
|  | Instruction *Zext = | 
|  | cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); | 
|  | IC.Worklist.Add(Zext); | 
|  | IC.replaceInstUsesWith(*BO, Zext); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected Binary operation"); | 
|  | } | 
|  | IC.Worklist.Add(cast<Instruction>(U)); | 
|  | } | 
|  | } | 
|  | if (isa<Instruction>(OtherVal)) | 
|  | IC.Worklist.Add(cast<Instruction>(OtherVal)); | 
|  |  | 
|  | // The original icmp gets replaced with the overflow value, maybe inverted | 
|  | // depending on predicate. | 
|  | bool Inverse = false; | 
|  | switch (I.getPredicate()) { | 
|  | case ICmpInst::ICMP_NE: | 
|  | break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | Inverse = true; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (I.getOperand(0) == MulVal) | 
|  | break; | 
|  | Inverse = true; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (I.getOperand(1) == MulVal) | 
|  | break; | 
|  | Inverse = true; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected predicate"); | 
|  | } | 
|  | if (Inverse) { | 
|  | Value *Res = Builder.CreateExtractValue(Call, 1); | 
|  | return BinaryOperator::CreateNot(Res); | 
|  | } | 
|  |  | 
|  | return ExtractValueInst::Create(Call, 1); | 
|  | } | 
|  |  | 
|  | /// When performing a comparison against a constant, it is possible that not all | 
|  | /// the bits in the LHS are demanded. This helper method computes the mask that | 
|  | /// IS demanded. | 
|  | static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { | 
|  | const APInt *RHS; | 
|  | if (!match(I.getOperand(1), m_APInt(RHS))) | 
|  | return APInt::getAllOnesValue(BitWidth); | 
|  |  | 
|  | // If this is a normal comparison, it demands all bits. If it is a sign bit | 
|  | // comparison, it only demands the sign bit. | 
|  | bool UnusedBit; | 
|  | if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) | 
|  | return APInt::getSignMask(BitWidth); | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | // For a UGT comparison, we don't care about any bits that | 
|  | // correspond to the trailing ones of the comparand.  The value of these | 
|  | // bits doesn't impact the outcome of the comparison, because any value | 
|  | // greater than the RHS must differ in a bit higher than these due to carry. | 
|  | case ICmpInst::ICMP_UGT: | 
|  | return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); | 
|  |  | 
|  | // Similarly, for a ULT comparison, we don't care about the trailing zeros. | 
|  | // Any value less than the RHS must differ in a higher bit because of carries. | 
|  | case ICmpInst::ICMP_ULT: | 
|  | return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); | 
|  |  | 
|  | default: | 
|  | return APInt::getAllOnesValue(BitWidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst | 
|  | /// should be swapped. | 
|  | /// The decision is based on how many times these two operands are reused | 
|  | /// as subtract operands and their positions in those instructions. | 
|  | /// The rationale is that several architectures use the same instruction for | 
|  | /// both subtract and cmp. Thus, it is better if the order of those operands | 
|  | /// match. | 
|  | /// \return true if Op0 and Op1 should be swapped. | 
|  | static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { | 
|  | // Filter out pointer values as those cannot appear directly in subtract. | 
|  | // FIXME: we may want to go through inttoptrs or bitcasts. | 
|  | if (Op0->getType()->isPointerTy()) | 
|  | return false; | 
|  | // If a subtract already has the same operands as a compare, swapping would be | 
|  | // bad. If a subtract has the same operands as a compare but in reverse order, | 
|  | // then swapping is good. | 
|  | int GoodToSwap = 0; | 
|  | for (const User *U : Op0->users()) { | 
|  | if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) | 
|  | GoodToSwap++; | 
|  | else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) | 
|  | GoodToSwap--; | 
|  | } | 
|  | return GoodToSwap > 0; | 
|  | } | 
|  |  | 
|  | /// Check that one use is in the same block as the definition and all | 
|  | /// other uses are in blocks dominated by a given block. | 
|  | /// | 
|  | /// \param DI Definition | 
|  | /// \param UI Use | 
|  | /// \param DB Block that must dominate all uses of \p DI outside | 
|  | ///           the parent block | 
|  | /// \return true when \p UI is the only use of \p DI in the parent block | 
|  | /// and all other uses of \p DI are in blocks dominated by \p DB. | 
|  | /// | 
|  | bool InstCombiner::dominatesAllUses(const Instruction *DI, | 
|  | const Instruction *UI, | 
|  | const BasicBlock *DB) const { | 
|  | assert(DI && UI && "Instruction not defined\n"); | 
|  | // Ignore incomplete definitions. | 
|  | if (!DI->getParent()) | 
|  | return false; | 
|  | // DI and UI must be in the same block. | 
|  | if (DI->getParent() != UI->getParent()) | 
|  | return false; | 
|  | // Protect from self-referencing blocks. | 
|  | if (DI->getParent() == DB) | 
|  | return false; | 
|  | for (const User *U : DI->users()) { | 
|  | auto *Usr = cast<Instruction>(U); | 
|  | if (Usr != UI && !DT.dominates(DB, Usr->getParent())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true when the instruction sequence within a block is select-cmp-br. | 
|  | static bool isChainSelectCmpBranch(const SelectInst *SI) { | 
|  | const BasicBlock *BB = SI->getParent(); | 
|  | if (!BB) | 
|  | return false; | 
|  | auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || BI->getNumSuccessors() != 2) | 
|  | return false; | 
|  | auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// True when a select result is replaced by one of its operands | 
|  | /// in select-icmp sequence. This will eventually result in the elimination | 
|  | /// of the select. | 
|  | /// | 
|  | /// \param SI    Select instruction | 
|  | /// \param Icmp  Compare instruction | 
|  | /// \param SIOpd Operand that replaces the select | 
|  | /// | 
|  | /// Notes: | 
|  | /// - The replacement is global and requires dominator information | 
|  | /// - The caller is responsible for the actual replacement | 
|  | /// | 
|  | /// Example: | 
|  | /// | 
|  | /// entry: | 
|  | ///  %4 = select i1 %3, %C* %0, %C* null | 
|  | ///  %5 = icmp eq %C* %4, null | 
|  | ///  br i1 %5, label %9, label %7 | 
|  | ///  ... | 
|  | ///  ; <label>:7                                       ; preds = %entry | 
|  | ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0 | 
|  | ///  ... | 
|  | /// | 
|  | /// can be transformed to | 
|  | /// | 
|  | ///  %5 = icmp eq %C* %0, null | 
|  | ///  %6 = select i1 %3, i1 %5, i1 true | 
|  | ///  br i1 %6, label %9, label %7 | 
|  | ///  ... | 
|  | ///  ; <label>:7                                       ; preds = %entry | 
|  | ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0! | 
|  | /// | 
|  | /// Similar when the first operand of the select is a constant or/and | 
|  | /// the compare is for not equal rather than equal. | 
|  | /// | 
|  | /// NOTE: The function is only called when the select and compare constants | 
|  | /// are equal, the optimization can work only for EQ predicates. This is not a | 
|  | /// major restriction since a NE compare should be 'normalized' to an equal | 
|  | /// compare, which usually happens in the combiner and test case | 
|  | /// select-cmp-br.ll checks for it. | 
|  | bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, | 
|  | const ICmpInst *Icmp, | 
|  | const unsigned SIOpd) { | 
|  | assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); | 
|  | if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { | 
|  | BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); | 
|  | // The check for the single predecessor is not the best that can be | 
|  | // done. But it protects efficiently against cases like when SI's | 
|  | // home block has two successors, Succ and Succ1, and Succ1 predecessor | 
|  | // of Succ. Then SI can't be replaced by SIOpd because the use that gets | 
|  | // replaced can be reached on either path. So the uniqueness check | 
|  | // guarantees that the path all uses of SI (outside SI's parent) are on | 
|  | // is disjoint from all other paths out of SI. But that information | 
|  | // is more expensive to compute, and the trade-off here is in favor | 
|  | // of compile-time. It should also be noticed that we check for a single | 
|  | // predecessor and not only uniqueness. This to handle the situation when | 
|  | // Succ and Succ1 points to the same basic block. | 
|  | if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { | 
|  | NumSel++; | 
|  | SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to fold the comparison based on range information we can get by checking | 
|  | /// whether bits are known to be zero or one in the inputs. | 
|  | Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | Type *Ty = Op0->getType(); | 
|  | ICmpInst::Predicate Pred = I.getPredicate(); | 
|  |  | 
|  | // Get scalar or pointer size. | 
|  | unsigned BitWidth = Ty->isIntOrIntVectorTy() | 
|  | ? Ty->getScalarSizeInBits() | 
|  | : DL.getIndexTypeSizeInBits(Ty->getScalarType()); | 
|  |  | 
|  | if (!BitWidth) | 
|  | return nullptr; | 
|  |  | 
|  | KnownBits Op0Known(BitWidth); | 
|  | KnownBits Op1Known(BitWidth); | 
|  |  | 
|  | if (SimplifyDemandedBits(&I, 0, | 
|  | getDemandedBitsLHSMask(I, BitWidth), | 
|  | Op0Known, 0)) | 
|  | return &I; | 
|  |  | 
|  | if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), | 
|  | Op1Known, 0)) | 
|  | return &I; | 
|  |  | 
|  | // Given the known and unknown bits, compute a range that the LHS could be | 
|  | // in.  Compute the Min, Max and RHS values based on the known bits. For the | 
|  | // EQ and NE we use unsigned values. | 
|  | APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); | 
|  | APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); | 
|  | if (I.isSigned()) { | 
|  | computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); | 
|  | computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); | 
|  | } else { | 
|  | computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); | 
|  | computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); | 
|  | } | 
|  |  | 
|  | // If Min and Max are known to be the same, then SimplifyDemandedBits figured | 
|  | // out that the LHS or RHS is a constant. Constant fold this now, so that | 
|  | // code below can assume that Min != Max. | 
|  | if (!isa<Constant>(Op0) && Op0Min == Op0Max) | 
|  | return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); | 
|  | if (!isa<Constant>(Op1) && Op1Min == Op1Max) | 
|  | return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); | 
|  |  | 
|  | // Based on the range information we know about the LHS, see if we can | 
|  | // simplify this comparison.  For example, (x&4) < 8 is always true. | 
|  | switch (Pred) { | 
|  | default: | 
|  | llvm_unreachable("Unknown icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_NE: { | 
|  | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { | 
|  | return Pred == CmpInst::ICMP_EQ | 
|  | ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) | 
|  | : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | } | 
|  |  | 
|  | // If all bits are known zero except for one, then we know at most one bit | 
|  | // is set. If the comparison is against zero, then this is a check to see if | 
|  | // *that* bit is set. | 
|  | APInt Op0KnownZeroInverted = ~Op0Known.Zero; | 
|  | if (Op1Known.isZero()) { | 
|  | // If the LHS is an AND with the same constant, look through it. | 
|  | Value *LHS = nullptr; | 
|  | const APInt *LHSC; | 
|  | if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || | 
|  | *LHSC != Op0KnownZeroInverted) | 
|  | LHS = Op0; | 
|  |  | 
|  | Value *X; | 
|  | if (match(LHS, m_Shl(m_One(), m_Value(X)))) { | 
|  | APInt ValToCheck = Op0KnownZeroInverted; | 
|  | Type *XTy = X->getType(); | 
|  | if (ValToCheck.isPowerOf2()) { | 
|  | // ((1 << X) & 8) == 0 -> X != 3 | 
|  | // ((1 << X) & 8) != 0 -> X == 3 | 
|  | auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); | 
|  | auto NewPred = ICmpInst::getInversePredicate(Pred); | 
|  | return new ICmpInst(NewPred, X, CmpC); | 
|  | } else if ((++ValToCheck).isPowerOf2()) { | 
|  | // ((1 << X) & 7) == 0 -> X >= 3 | 
|  | // ((1 << X) & 7) != 0 -> X  < 3 | 
|  | auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); | 
|  | auto NewPred = | 
|  | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; | 
|  | return new ICmpInst(NewPred, X, CmpC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. | 
|  | const APInt *CI; | 
|  | if (Op0KnownZeroInverted.isOneValue() && | 
|  | match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { | 
|  | // ((8 >>u X) & 1) == 0 -> X != 3 | 
|  | // ((8 >>u X) & 1) != 0 -> X == 3 | 
|  | unsigned CmpVal = CI->countTrailingZeros(); | 
|  | auto NewPred = ICmpInst::getInversePredicate(Pred); | 
|  | return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_ULT: { | 
|  | if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  |  | 
|  | const APInt *CmpC; | 
|  | if (match(Op1, m_APInt(CmpC))) { | 
|  | // A <u C -> A == C-1 if min(A)+1 == C | 
|  | if (*CmpC == Op0Min + 1) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | ConstantInt::get(Op1->getType(), *CmpC - 1)); | 
|  | // X <u C --> X == 0, if the number of zero bits in the bottom of X | 
|  | // exceeds the log2 of C. | 
|  | if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | Constant::getNullValue(Op1->getType())); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_UGT: { | 
|  | if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  |  | 
|  | const APInt *CmpC; | 
|  | if (match(Op1, m_APInt(CmpC))) { | 
|  | // A >u C -> A == C+1 if max(a)-1 == C | 
|  | if (*CmpC == Op0Max - 1) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | ConstantInt::get(Op1->getType(), *CmpC + 1)); | 
|  | // X >u C --> X != 0, if the number of zero bits in the bottom of X | 
|  | // exceeds the log2 of C. | 
|  | if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, | 
|  | Constant::getNullValue(Op1->getType())); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SLT: { | 
|  | if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | const APInt *CmpC; | 
|  | if (match(Op1, m_APInt(CmpC))) { | 
|  | if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | ConstantInt::get(Op1->getType(), *CmpC - 1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SGT: { | 
|  | if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | const APInt *CmpC; | 
|  | if (match(Op1, m_APInt(CmpC))) { | 
|  | if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | ConstantInt::get(Op1->getType(), *CmpC + 1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SGE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); | 
|  | if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); | 
|  | if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); | 
|  | if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); | 
|  | if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); | 
|  | if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) | 
|  | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); | 
|  | if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn a signed comparison into an unsigned one if both operands are known to | 
|  | // have the same sign. | 
|  | if (I.isSigned() && | 
|  | ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || | 
|  | (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) | 
|  | return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If we have an icmp le or icmp ge instruction with a constant operand, turn | 
|  | /// it into the appropriate icmp lt or icmp gt instruction. This transform | 
|  | /// allows them to be folded in visitICmpInst. | 
|  | static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { | 
|  | ICmpInst::Predicate Pred = I.getPredicate(); | 
|  | if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && | 
|  | Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  | auto *Op1C = dyn_cast<Constant>(Op1); | 
|  | if (!Op1C) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if the constant operand can be safely incremented/decremented without | 
|  | // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled | 
|  | // the edge cases for us, so we just assert on them. For vectors, we must | 
|  | // handle the edge cases. | 
|  | Type *Op1Type = Op1->getType(); | 
|  | bool IsSigned = I.isSigned(); | 
|  | bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); | 
|  | auto *CI = dyn_cast<ConstantInt>(Op1C); | 
|  | if (CI) { | 
|  | // A <= MAX -> TRUE ; A >= MIN -> TRUE | 
|  | assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); | 
|  | } else if (Op1Type->isVectorTy()) { | 
|  | // TODO? If the edge cases for vectors were guaranteed to be handled as they | 
|  | // are for scalar, we could remove the min/max checks. However, to do that, | 
|  | // we would have to use insertelement/shufflevector to replace edge values. | 
|  | unsigned NumElts = Op1Type->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Elt = Op1C->getAggregateElement(i); | 
|  | if (!Elt) | 
|  | return nullptr; | 
|  |  | 
|  | if (isa<UndefValue>(Elt)) | 
|  | continue; | 
|  |  | 
|  | // Bail out if we can't determine if this constant is min/max or if we | 
|  | // know that this constant is min/max. | 
|  | auto *CI = dyn_cast<ConstantInt>(Elt); | 
|  | if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // ConstantExpr? | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Increment or decrement the constant and set the new comparison predicate: | 
|  | // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT | 
|  | Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); | 
|  | CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; | 
|  | NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; | 
|  | return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); | 
|  | } | 
|  |  | 
|  | /// Integer compare with boolean values can always be turned into bitwise ops. | 
|  | static Instruction *canonicalizeICmpBool(ICmpInst &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *A = I.getOperand(0), *B = I.getOperand(1); | 
|  | assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); | 
|  |  | 
|  | // A boolean compared to true/false can be simplified to Op0/true/false in | 
|  | // 14 out of the 20 (10 predicates * 2 constants) possible combinations. | 
|  | // Cases not handled by InstSimplify are always 'not' of Op0. | 
|  | if (match(B, m_Zero())) { | 
|  | switch (I.getPredicate()) { | 
|  | case CmpInst::ICMP_EQ:  // A ==   0 -> !A | 
|  | case CmpInst::ICMP_ULE: // A <=u  0 -> !A | 
|  | case CmpInst::ICMP_SGE: // A >=s  0 -> !A | 
|  | return BinaryOperator::CreateNot(A); | 
|  | default: | 
|  | llvm_unreachable("ICmp i1 X, C not simplified as expected."); | 
|  | } | 
|  | } else if (match(B, m_One())) { | 
|  | switch (I.getPredicate()) { | 
|  | case CmpInst::ICMP_NE:  // A !=  1 -> !A | 
|  | case CmpInst::ICMP_ULT: // A <u  1 -> !A | 
|  | case CmpInst::ICMP_SGT: // A >s -1 -> !A | 
|  | return BinaryOperator::CreateNot(A); | 
|  | default: | 
|  | llvm_unreachable("ICmp i1 X, C not simplified as expected."); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid icmp instruction!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | // icmp eq i1 A, B -> ~(A ^ B) | 
|  | return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); | 
|  |  | 
|  | case ICmpInst::ICMP_NE: | 
|  | // icmp ne i1 A, B -> A ^ B | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // icmp ugt -> icmp ult | 
|  | std::swap(A, B); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | // icmp ult i1 A, B -> ~A & B | 
|  | return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | // icmp sgt -> icmp slt | 
|  | std::swap(A, B); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // icmp slt i1 A, B -> A & ~B | 
|  | return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // icmp uge -> icmp ule | 
|  | std::swap(A, B); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // icmp ule i1 A, B -> ~A | B | 
|  | return BinaryOperator::CreateOr(Builder.CreateNot(A), B); | 
|  |  | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // icmp sge -> icmp sle | 
|  | std::swap(A, B); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // icmp sle i1 A, B -> A | ~B | 
|  | return BinaryOperator::CreateOr(Builder.CreateNot(B), A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform pattern like: | 
|  | //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X | 
|  | //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X | 
|  | // Into: | 
|  | //   (X l>> Y) != 0 | 
|  | //   (X l>> Y) == 0 | 
|  | static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate Pred, NewPred; | 
|  | Value *X, *Y; | 
|  | if (match(&Cmp, | 
|  | m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { | 
|  | // We want X to be the icmp's second operand, so swap predicate if it isn't. | 
|  | if (Cmp.getOperand(0) == X) | 
|  | Pred = Cmp.getSwappedPredicate(); | 
|  |  | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_ULE: | 
|  | NewPred = ICmpInst::ICMP_NE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | NewPred = ICmpInst::ICMP_EQ; | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } else if (match(&Cmp, m_c_ICmp(Pred, | 
|  | m_OneUse(m_CombineOr( | 
|  | m_Not(m_Shl(m_AllOnes(), m_Value(Y))), | 
|  | m_Add(m_Shl(m_One(), m_Value(Y)), | 
|  | m_AllOnes()))), | 
|  | m_Value(X)))) { | 
|  | // The variant with 'add' is not canonical, (the variant with 'not' is) | 
|  | // we only get it because it has extra uses, and can't be canonicalized, | 
|  |  | 
|  | // We want X to be the icmp's second operand, so swap predicate if it isn't. | 
|  | if (Cmp.getOperand(0) == X) | 
|  | Pred = Cmp.getSwappedPredicate(); | 
|  |  | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_ULT: | 
|  | NewPred = ICmpInst::ICMP_NE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | NewPred = ICmpInst::ICMP_EQ; | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } else | 
|  | return nullptr; | 
|  |  | 
|  | Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); | 
|  | Constant *Zero = Constant::getNullValue(NewX->getType()); | 
|  | return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); | 
|  | } | 
|  |  | 
|  | static Instruction *foldVectorCmp(CmpInst &Cmp, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // If both arguments of the cmp are shuffles that use the same mask and | 
|  | // shuffle within a single vector, move the shuffle after the cmp. | 
|  | Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); | 
|  | Value *V1, *V2; | 
|  | Constant *M; | 
|  | if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && | 
|  | match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && | 
|  | V1->getType() == V2->getType() && | 
|  | (LHS->hasOneUse() || RHS->hasOneUse())) { | 
|  | // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M | 
|  | CmpInst::Predicate P = Cmp.getPredicate(); | 
|  | Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) | 
|  | : Builder.CreateFCmp(P, V1, V2); | 
|  | return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { | 
|  | bool Changed = false; | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | unsigned Op0Cplxity = getComplexity(Op0); | 
|  | unsigned Op1Cplxity = getComplexity(Op1); | 
|  |  | 
|  | /// Orders the operands of the compare so that they are listed from most | 
|  | /// complex to least complex.  This puts constants before unary operators, | 
|  | /// before binary operators. | 
|  | if (Op0Cplxity < Op1Cplxity || | 
|  | (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { | 
|  | I.swapOperands(); | 
|  | std::swap(Op0, Op1); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // Comparing -val or val with non-zero is the same as just comparing val | 
|  | // ie, abs(val) != 0 -> val != 0 | 
|  | if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { | 
|  | Value *Cond, *SelectTrue, *SelectFalse; | 
|  | if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), | 
|  | m_Value(SelectFalse)))) { | 
|  | if (Value *V = dyn_castNegVal(SelectTrue)) { | 
|  | if (V == SelectFalse) | 
|  | return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); | 
|  | } | 
|  | else if (Value *V = dyn_castNegVal(SelectFalse)) { | 
|  | if (V == SelectTrue) | 
|  | return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op0->getType()->isIntOrIntVectorTy(1)) | 
|  | if (Instruction *Res = canonicalizeICmpBool(I, Builder)) | 
|  | return Res; | 
|  |  | 
|  | if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) | 
|  | return NewICmp; | 
|  |  | 
|  | if (Instruction *Res = foldICmpWithConstant(I)) | 
|  | return Res; | 
|  |  | 
|  | if (Instruction *Res = foldICmpWithDominatingICmp(I)) | 
|  | return Res; | 
|  |  | 
|  | if (Instruction *Res = foldICmpUsingKnownBits(I)) | 
|  | return Res; | 
|  |  | 
|  | // Test if the ICmpInst instruction is used exclusively by a select as | 
|  | // part of a minimum or maximum operation. If so, refrain from doing | 
|  | // any other folding. This helps out other analyses which understand | 
|  | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution | 
|  | // and CodeGen. And in this case, at least one of the comparison | 
|  | // operands has at least one user besides the compare (the select), | 
|  | // which would often largely negate the benefit of folding anyway. | 
|  | // | 
|  | // Do the same for the other patterns recognized by matchSelectPattern. | 
|  | if (I.hasOneUse()) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { | 
|  | Value *A, *B; | 
|  | SelectPatternResult SPR = matchSelectPattern(SI, A, B); | 
|  | if (SPR.Flavor != SPF_UNKNOWN) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Do this after checking for min/max to prevent infinite looping. | 
|  | if (Instruction *Res = foldICmpWithZero(I)) | 
|  | return Res; | 
|  |  | 
|  | // FIXME: We only do this after checking for min/max to prevent infinite | 
|  | // looping caused by a reverse canonicalization of these patterns for min/max. | 
|  | // FIXME: The organization of folds is a mess. These would naturally go into | 
|  | // canonicalizeCmpWithConstant(), but we can't move all of the above folds | 
|  | // down here after the min/max restriction. | 
|  | ICmpInst::Predicate Pred = I.getPredicate(); | 
|  | const APInt *C; | 
|  | if (match(Op1, m_APInt(C))) { | 
|  | // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set | 
|  | if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { | 
|  | Constant *Zero = Constant::getNullValue(Op0->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); | 
|  | } | 
|  |  | 
|  | // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear | 
|  | if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { | 
|  | Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *Res = foldICmpInstWithConstant(I)) | 
|  | return Res; | 
|  |  | 
|  | if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) | 
|  | return Res; | 
|  |  | 
|  | // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) | 
|  | if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) | 
|  | return NI; | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) | 
|  | if (Instruction *NI = foldGEPICmp(GEP, Op0, | 
|  | ICmpInst::getSwappedPredicate(I.getPredicate()), I)) | 
|  | return NI; | 
|  |  | 
|  | // Try to optimize equality comparisons against alloca-based pointers. | 
|  | if (Op0->getType()->isPointerTy() && I.isEquality()) { | 
|  | assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); | 
|  | if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) | 
|  | if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) | 
|  | return New; | 
|  | if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) | 
|  | if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. | 
|  | Value *X; | 
|  | if (match(Op0, m_BitCast(m_SIToFP(m_Value(X))))) { | 
|  | // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0 | 
|  | // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0 | 
|  | // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 | 
|  | // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 | 
|  | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || | 
|  | Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && | 
|  | match(Op1, m_Zero())) | 
|  | return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); | 
|  |  | 
|  | // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) | 
|  | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); | 
|  |  | 
|  | // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 | 
|  | if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) | 
|  | return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType())); | 
|  | } | 
|  |  | 
|  | // Zero-equality checks are preserved through unsigned floating-point casts: | 
|  | // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 | 
|  | // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 | 
|  | if (match(Op0, m_BitCast(m_UIToFP(m_Value(X))))) | 
|  | if (I.isEquality() && match(Op1, m_Zero())) | 
|  | return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); | 
|  |  | 
|  | // Test to see if the operands of the icmp are casted versions of other | 
|  | // values.  If the ptr->ptr cast can be stripped off both arguments, we do so | 
|  | // now. | 
|  | if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { | 
|  | if (Op0->getType()->isPointerTy() && | 
|  | (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { | 
|  | // We keep moving the cast from the left operand over to the right | 
|  | // operand, where it can often be eliminated completely. | 
|  | Op0 = CI->getOperand(0); | 
|  |  | 
|  | // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast | 
|  | // so eliminate it as well. | 
|  | if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) | 
|  | Op1 = CI2->getOperand(0); | 
|  |  | 
|  | // If Op1 is a constant, we can fold the cast into the constant. | 
|  | if (Op0->getType() != Op1->getType()) { | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); | 
|  | } else { | 
|  | // Otherwise, cast the RHS right before the icmp | 
|  | Op1 = Builder.CreateBitCast(Op1, Op0->getType()); | 
|  | } | 
|  | } | 
|  | return new ICmpInst(I.getPredicate(), Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<CastInst>(Op0)) { | 
|  | // Handle the special case of: icmp (cast bool to X), <cst> | 
|  | // This comes up when you have code like | 
|  | //   int X = A < B; | 
|  | //   if (X) ... | 
|  | // For generality, we handle any zero-extension of any operand comparison | 
|  | // with a constant or another cast from the same type. | 
|  | if (isa<Constant>(Op1) || isa<CastInst>(Op1)) | 
|  | if (Instruction *R = foldICmpWithCastAndCast(I)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (Instruction *Res = foldICmpBinOp(I)) | 
|  | return Res; | 
|  |  | 
|  | if (Instruction *Res = foldICmpWithMinMax(I)) | 
|  | return Res; | 
|  |  | 
|  | { | 
|  | Value *A, *B; | 
|  | // Transform (A & ~B) == 0 --> (A & B) != 0 | 
|  | // and       (A & ~B) != 0 --> (A & B) == 0 | 
|  | // if A is a power of 2. | 
|  | if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_Zero()) && | 
|  | isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) | 
|  | return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), | 
|  | Op1); | 
|  |  | 
|  | // ~X < ~Y --> Y < X | 
|  | // ~X < C -->  X > ~C | 
|  | if (match(Op0, m_Not(m_Value(A)))) { | 
|  | if (match(Op1, m_Not(m_Value(B)))) | 
|  | return new ICmpInst(I.getPredicate(), B, A); | 
|  |  | 
|  | const APInt *C; | 
|  | if (match(Op1, m_APInt(C))) | 
|  | return new ICmpInst(I.getSwappedPredicate(), A, | 
|  | ConstantInt::get(Op1->getType(), ~(*C))); | 
|  | } | 
|  |  | 
|  | Instruction *AddI = nullptr; | 
|  | if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), | 
|  | m_Instruction(AddI))) && | 
|  | isa<IntegerType>(A->getType())) { | 
|  | Value *Result; | 
|  | Constant *Overflow; | 
|  | if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, | 
|  | Overflow)) { | 
|  | replaceInstUsesWith(*AddI, Result); | 
|  | return replaceInstUsesWith(I, Overflow); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (zext a) * (zext b)  --> llvm.umul.with.overflow. | 
|  | if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { | 
|  | if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) | 
|  | return R; | 
|  | } | 
|  | if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { | 
|  | if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) | 
|  | return R; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *Res = foldICmpEquality(I)) | 
|  | return Res; | 
|  |  | 
|  | // The 'cmpxchg' instruction returns an aggregate containing the old value and | 
|  | // an i1 which indicates whether or not we successfully did the swap. | 
|  | // | 
|  | // Replace comparisons between the old value and the expected value with the | 
|  | // indicator that 'cmpxchg' returns. | 
|  | // | 
|  | // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to | 
|  | // spuriously fail.  In those cases, the old value may equal the expected | 
|  | // value but it is possible for the swap to not occur. | 
|  | if (I.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) | 
|  | if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) | 
|  | if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && | 
|  | !ACXI->isWeak()) | 
|  | return ExtractValueInst::Create(ACXI, 1); | 
|  |  | 
|  | { | 
|  | Value *X; | 
|  | const APInt *C; | 
|  | // icmp X+Cst, X | 
|  | if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) | 
|  | return foldICmpAddOpConst(X, *C, I.getPredicate()); | 
|  |  | 
|  | // icmp X, X+Cst | 
|  | if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) | 
|  | return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); | 
|  | } | 
|  |  | 
|  | if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) | 
|  | return Res; | 
|  |  | 
|  | if (I.getType()->isVectorTy()) | 
|  | if (Instruction *Res = foldVectorCmp(I, Builder)) | 
|  | return Res; | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold fcmp ([us]itofp x, cst) if possible. | 
|  | Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, | 
|  | Constant *RHSC) { | 
|  | if (!isa<ConstantFP>(RHSC)) return nullptr; | 
|  | const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); | 
|  |  | 
|  | // Get the width of the mantissa.  We don't want to hack on conversions that | 
|  | // might lose information from the integer, e.g. "i64 -> float" | 
|  | int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); | 
|  | if (MantissaWidth == -1) return nullptr;  // Unknown. | 
|  |  | 
|  | IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); | 
|  |  | 
|  | bool LHSUnsigned = isa<UIToFPInst>(LHSI); | 
|  |  | 
|  | if (I.isEquality()) { | 
|  | FCmpInst::Predicate P = I.getPredicate(); | 
|  | bool IsExact = false; | 
|  | APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); | 
|  | RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); | 
|  |  | 
|  | // If the floating point constant isn't an integer value, we know if we will | 
|  | // ever compare equal / not equal to it. | 
|  | if (!IsExact) { | 
|  | // TODO: Can never be -0.0 and other non-representable values | 
|  | APFloat RHSRoundInt(RHS); | 
|  | RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); | 
|  | if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { | 
|  | if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  |  | 
|  | assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: If the constant is exactly representable, is it always OK to do | 
|  | // equality compares as integer? | 
|  | } | 
|  |  | 
|  | // Check to see that the input is converted from an integer type that is small | 
|  | // enough that preserves all bits.  TODO: check here for "known" sign bits. | 
|  | // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. | 
|  | unsigned InputSize = IntTy->getScalarSizeInBits(); | 
|  |  | 
|  | // Following test does NOT adjust InputSize downwards for signed inputs, | 
|  | // because the most negative value still requires all the mantissa bits | 
|  | // to distinguish it from one less than that value. | 
|  | if ((int)InputSize > MantissaWidth) { | 
|  | // Conversion would lose accuracy. Check if loss can impact comparison. | 
|  | int Exp = ilogb(RHS); | 
|  | if (Exp == APFloat::IEK_Inf) { | 
|  | int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); | 
|  | if (MaxExponent < (int)InputSize - !LHSUnsigned) | 
|  | // Conversion could create infinity. | 
|  | return nullptr; | 
|  | } else { | 
|  | // Note that if RHS is zero or NaN, then Exp is negative | 
|  | // and first condition is trivially false. | 
|  | if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) | 
|  | // Conversion could affect comparison. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can potentially simplify the comparison.  We know that it | 
|  | // will always come through as an integer value and we know the constant is | 
|  | // not a NAN (it would have been previously simplified). | 
|  | assert(!RHS.isNaN() && "NaN comparison not already folded!"); | 
|  |  | 
|  | ICmpInst::Predicate Pred; | 
|  | switch (I.getPredicate()) { | 
|  | default: llvm_unreachable("Unexpected predicate!"); | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | Pred = ICmpInst::ICMP_EQ; | 
|  | break; | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_OGT: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; | 
|  | break; | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_OGE: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; | 
|  | break; | 
|  | case FCmpInst::FCMP_ULT: | 
|  | case FCmpInst::FCMP_OLT: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; | 
|  | break; | 
|  | case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_OLE: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; | 
|  | break; | 
|  | case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_ONE: | 
|  | Pred = ICmpInst::ICMP_NE; | 
|  | break; | 
|  | case FCmpInst::FCMP_ORD: | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | } | 
|  |  | 
|  | // Now we know that the APFloat is a normal number, zero or inf. | 
|  |  | 
|  | // See if the FP constant is too large for the integer.  For example, | 
|  | // comparing an i8 to 300.0. | 
|  | unsigned IntWidth = IntTy->getScalarSizeInBits(); | 
|  |  | 
|  | if (!LHSUnsigned) { | 
|  | // If the RHS value is > SignedMax, fold the comparison.  This handles +INF | 
|  | // and large values. | 
|  | APFloat SMax(RHS.getSemantics()); | 
|  | SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0 | 
|  | if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT || | 
|  | Pred == ICmpInst::ICMP_SLE) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | } | 
|  | } else { | 
|  | // If the RHS value is > UnsignedMax, fold the comparison. This handles | 
|  | // +INF and large values. | 
|  | APFloat UMax(RHS.getSemantics()); | 
|  | UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0 | 
|  | if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT || | 
|  | Pred == ICmpInst::ICMP_ULE) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LHSUnsigned) { | 
|  | // See if the RHS value is < SignedMin. | 
|  | APFloat SMin(RHS.getSemantics()); | 
|  | SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 | 
|  | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || | 
|  | Pred == ICmpInst::ICMP_SGE) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | } | 
|  | } else { | 
|  | // See if the RHS value is < UnsignedMin. | 
|  | APFloat SMin(RHS.getSemantics()); | 
|  | SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 | 
|  | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || | 
|  | Pred == ICmpInst::ICMP_UGE) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or | 
|  | // [0, UMAX], but it may still be fractional.  See if it is fractional by | 
|  | // casting the FP value to the integer value and back, checking for equality. | 
|  | // Don't do this for zero, because -0.0 is not fractional. | 
|  | Constant *RHSInt = LHSUnsigned | 
|  | ? ConstantExpr::getFPToUI(RHSC, IntTy) | 
|  | : ConstantExpr::getFPToSI(RHSC, IntTy); | 
|  | if (!RHS.isZero()) { | 
|  | bool Equal = LHSUnsigned | 
|  | ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC | 
|  | : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; | 
|  | if (!Equal) { | 
|  | // If we had a comparison against a fractional value, we have to adjust | 
|  | // the compare predicate and sometimes the value.  RHSC is rounded towards | 
|  | // zero at this point. | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unexpected integer comparison!"); | 
|  | case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // (float)int <= 4.4   --> int <= 4 | 
|  | // (float)int <= -4.4  --> false | 
|  | if (RHS.isNegative()) | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // (float)int <= 4.4   --> int <= 4 | 
|  | // (float)int <= -4.4  --> int < -4 | 
|  | if (RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | // (float)int < -4.4   --> false | 
|  | // (float)int < 4.4    --> int <= 4 | 
|  | if (RHS.isNegative()) | 
|  | return replaceInstUsesWith(I, Builder.getFalse()); | 
|  | Pred = ICmpInst::ICMP_ULE; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // (float)int < -4.4   --> int < -4 | 
|  | // (float)int < 4.4    --> int <= 4 | 
|  | if (!RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SLE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // (float)int > 4.4    --> int > 4 | 
|  | // (float)int > -4.4   --> true | 
|  | if (RHS.isNegative()) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | // (float)int > 4.4    --> int > 4 | 
|  | // (float)int > -4.4   --> int >= -4 | 
|  | if (RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SGE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // (float)int >= -4.4   --> true | 
|  | // (float)int >= 4.4    --> int > 4 | 
|  | if (RHS.isNegative()) | 
|  | return replaceInstUsesWith(I, Builder.getTrue()); | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // (float)int >= -4.4   --> int >= -4 | 
|  | // (float)int >= 4.4    --> int > 4 | 
|  | if (!RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lower this FP comparison into an appropriate integer version of the | 
|  | // comparison. | 
|  | return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); | 
|  | } | 
|  |  | 
|  | /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. | 
|  | static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, | 
|  | Constant *RHSC) { | 
|  | // When C is not 0.0 and infinities are not allowed: | 
|  | // (C / X) < 0.0 is a sign-bit test of X | 
|  | // (C / X) < 0.0 --> X < 0.0 (if C is positive) | 
|  | // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) | 
|  | // | 
|  | // Proof: | 
|  | // Multiply (C / X) < 0.0 by X * X / C. | 
|  | // - X is non zero, if it is the flag 'ninf' is violated. | 
|  | // - C defines the sign of X * X * C. Thus it also defines whether to swap | 
|  | //   the predicate. C is also non zero by definition. | 
|  | // | 
|  | // Thus X * X / C is non zero and the transformation is valid. [qed] | 
|  |  | 
|  | FCmpInst::Predicate Pred = I.getPredicate(); | 
|  |  | 
|  | // Check that predicates are valid. | 
|  | if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && | 
|  | (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that RHS operand is zero. | 
|  | if (!match(RHSC, m_AnyZeroFP())) | 
|  | return nullptr; | 
|  |  | 
|  | // Check fastmath flags ('ninf'). | 
|  | if (!LHSI->hasNoInfs() || !I.hasNoInfs()) | 
|  | return nullptr; | 
|  |  | 
|  | // Check the properties of the dividend. It must not be zero to avoid a | 
|  | // division by zero (see Proof). | 
|  | const APFloat *C; | 
|  | if (!match(LHSI->getOperand(0), m_APFloat(C))) | 
|  | return nullptr; | 
|  |  | 
|  | if (C->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | // Get swapped predicate if necessary. | 
|  | if (C->isNegative()) | 
|  | Pred = I.getSwappedPredicate(); | 
|  |  | 
|  | return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); | 
|  | } | 
|  |  | 
|  | /// Optimize fabs(X) compared with zero. | 
|  | static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { | 
|  | Value *X; | 
|  | if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || | 
|  | !match(I.getOperand(1), m_PosZeroFP())) | 
|  | return nullptr; | 
|  |  | 
|  | auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { | 
|  | I->setPredicate(P); | 
|  | I->setOperand(0, X); | 
|  | return I; | 
|  | }; | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_OLT: | 
|  | // fabs(X) >= 0.0 --> true | 
|  | // fabs(X) <  0.0 --> false | 
|  | llvm_unreachable("fcmp should have simplified"); | 
|  |  | 
|  | case FCmpInst::FCMP_OGT: | 
|  | // fabs(X) > 0.0 --> X != 0.0 | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); | 
|  |  | 
|  | case FCmpInst::FCMP_UGT: | 
|  | // fabs(X) u> 0.0 --> X u!= 0.0 | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); | 
|  |  | 
|  | case FCmpInst::FCMP_OLE: | 
|  | // fabs(X) <= 0.0 --> X == 0.0 | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); | 
|  |  | 
|  | case FCmpInst::FCMP_ULE: | 
|  | // fabs(X) u<= 0.0 --> X u== 0.0 | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); | 
|  |  | 
|  | case FCmpInst::FCMP_OGE: | 
|  | // fabs(X) >= 0.0 --> !isnan(X) | 
|  | assert(!I.hasNoNaNs() && "fcmp should have simplified"); | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); | 
|  |  | 
|  | case FCmpInst::FCMP_ULT: | 
|  | // fabs(X) u< 0.0 --> isnan(X) | 
|  | assert(!I.hasNoNaNs() && "fcmp should have simplified"); | 
|  | return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); | 
|  |  | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | case FCmpInst::FCMP_ONE: | 
|  | case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_ORD: | 
|  | case FCmpInst::FCMP_UNO: | 
|  | // Look through the fabs() because it doesn't change anything but the sign. | 
|  | // fabs(X) == 0.0 --> X == 0.0, | 
|  | // fabs(X) != 0.0 --> X != 0.0 | 
|  | // isnan(fabs(X)) --> isnan(X) | 
|  | // !isnan(fabs(X) --> !isnan(X) | 
|  | return replacePredAndOp0(&I, I.getPredicate(), X); | 
|  |  | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | /// Orders the operands of the compare so that they are listed from most | 
|  | /// complex to least complex.  This puts constants before unary operators, | 
|  | /// before binary operators. | 
|  | if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { | 
|  | I.swapOperands(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | const CmpInst::Predicate Pred = I.getPredicate(); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // Simplify 'fcmp pred X, X' | 
|  | if (Op0 == Op1) { | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y) | 
|  | case FCmpInst::FCMP_ULT:    // True if unordered or less than | 
|  | case FCmpInst::FCMP_UGT:    // True if unordered or greater than | 
|  | case FCmpInst::FCMP_UNE:    // True if unordered or not equal | 
|  | // Canonicalize these to be 'fcmp uno %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_UNO); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  |  | 
|  | case FCmpInst::FCMP_ORD:    // True if ordered (no nans) | 
|  | case FCmpInst::FCMP_OEQ:    // True if ordered and equal | 
|  | case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal | 
|  | case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal | 
|  | // Canonicalize these to be 'fcmp ord %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_ORD); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, | 
|  | // then canonicalize the operand to 0.0. | 
|  | if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { | 
|  | if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { | 
|  | I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  | } | 
|  | if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { | 
|  | I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test if the FCmpInst instruction is used exclusively by a select as | 
|  | // part of a minimum or maximum operation. If so, refrain from doing | 
|  | // any other folding. This helps out other analyses which understand | 
|  | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution | 
|  | // and CodeGen. And in this case, at least one of the comparison | 
|  | // operands has at least one user besides the compare (the select), | 
|  | // which would often largely negate the benefit of folding anyway. | 
|  | if (I.hasOneUse()) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { | 
|  | Value *A, *B; | 
|  | SelectPatternResult SPR = matchSelectPattern(SI, A, B); | 
|  | if (SPR.Flavor != SPF_UNKNOWN) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: | 
|  | // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 | 
|  | if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { | 
|  | I.setOperand(1, ConstantFP::getNullValue(Op1->getType())); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle fcmp with instruction LHS and constant RHS. | 
|  | Instruction *LHSI; | 
|  | Constant *RHSC; | 
|  | if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | // Only fold fcmp into the PHI if the phi and fcmp are in the same | 
|  | // block.  If in the same block, we're encouraging jump threading.  If | 
|  | // not, we are just pessimizing the code by making an i1 phi. | 
|  | if (LHSI->getParent() == I.getParent()) | 
|  | if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::UIToFP: | 
|  | if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Load: | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer() && | 
|  | !cast<LoadInst>(LHSI)->isVolatile()) | 
|  | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) | 
|  | return Res; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *R = foldFabsWithFcmpZero(I)) | 
|  | return R; | 
|  |  | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_FNeg(m_Value(X)))) { | 
|  | // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y | 
|  | if (match(Op1, m_FNeg(m_Value(Y)))) | 
|  | return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); | 
|  |  | 
|  | // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C | 
|  | Constant *C; | 
|  | if (match(Op1, m_Constant(C))) { | 
|  | Constant *NegC = ConstantExpr::getFNeg(C); | 
|  | return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_FPExt(m_Value(X)))) { | 
|  | // fcmp (fpext X), (fpext Y) -> fcmp X, Y | 
|  | if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) | 
|  | return new FCmpInst(Pred, X, Y, "", &I); | 
|  |  | 
|  | // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless | 
|  | const APFloat *C; | 
|  | if (match(Op1, m_APFloat(C))) { | 
|  | const fltSemantics &FPSem = | 
|  | X->getType()->getScalarType()->getFltSemantics(); | 
|  | bool Lossy; | 
|  | APFloat TruncC = *C; | 
|  | TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); | 
|  |  | 
|  | // Avoid lossy conversions and denormals. | 
|  | // Zero is a special case that's OK to convert. | 
|  | APFloat Fabs = TruncC; | 
|  | Fabs.clearSign(); | 
|  | if (!Lossy && | 
|  | ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != | 
|  | APFloat::cmpLessThan) || Fabs.isZero())) { | 
|  | Constant *NewC = ConstantFP::get(X->getType(), TruncC); | 
|  | return new FCmpInst(Pred, X, NewC, "", &I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.getType()->isVectorTy()) | 
|  | if (Instruction *Res = foldVectorCmp(I, Builder)) | 
|  | return Res; | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } |