| //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the VirtRegMap class. | 
 | // | 
 | // It also contains implementations of the Spiller interface, which, given a | 
 | // virtual register map and a machine function, eliminates all virtual | 
 | // references by replacing them with physical register references - adding spill | 
 | // code as necessary. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/VirtRegMap.h" | 
 | #include "LiveDebugVariables.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/CodeGen/LiveInterval.h" | 
 | #include "llvm/CodeGen/LiveIntervals.h" | 
 | #include "llvm/CodeGen/LiveStacks.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/SlotIndexes.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetOpcodes.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/MC/LaneBitmask.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cassert> | 
 | #include <iterator> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 |  | 
 | STATISTIC(NumSpillSlots, "Number of spill slots allocated"); | 
 | STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting"); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  VirtRegMap implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | char VirtRegMap::ID = 0; | 
 |  | 
 | INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) | 
 |  | 
 | bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { | 
 |   MRI = &mf.getRegInfo(); | 
 |   TII = mf.getSubtarget().getInstrInfo(); | 
 |   TRI = mf.getSubtarget().getRegisterInfo(); | 
 |   MF = &mf; | 
 |  | 
 |   Virt2PhysMap.clear(); | 
 |   Virt2StackSlotMap.clear(); | 
 |   Virt2SplitMap.clear(); | 
 |  | 
 |   grow(); | 
 |   return false; | 
 | } | 
 |  | 
 | void VirtRegMap::grow() { | 
 |   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); | 
 |   Virt2PhysMap.resize(NumRegs); | 
 |   Virt2StackSlotMap.resize(NumRegs); | 
 |   Virt2SplitMap.resize(NumRegs); | 
 | } | 
 |  | 
 | void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(virtReg) && | 
 |          TargetRegisterInfo::isPhysicalRegister(physReg)); | 
 |   assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && | 
 |          "attempt to assign physical register to already mapped " | 
 |          "virtual register"); | 
 |   assert(!getRegInfo().isReserved(physReg) && | 
 |          "Attempt to map virtReg to a reserved physReg"); | 
 |   Virt2PhysMap[virtReg] = physReg; | 
 | } | 
 |  | 
 | unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { | 
 |   unsigned Size = TRI->getSpillSize(*RC); | 
 |   unsigned Align = TRI->getSpillAlignment(*RC); | 
 |   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align); | 
 |   ++NumSpillSlots; | 
 |   return SS; | 
 | } | 
 |  | 
 | bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { | 
 |   unsigned Hint = MRI->getSimpleHint(VirtReg); | 
 |   if (!Hint) | 
 |     return false; | 
 |   if (TargetRegisterInfo::isVirtualRegister(Hint)) | 
 |     Hint = getPhys(Hint); | 
 |   return getPhys(VirtReg) == Hint; | 
 | } | 
 |  | 
 | bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { | 
 |   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); | 
 |   if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) | 
 |     return true; | 
 |   if (TargetRegisterInfo::isVirtualRegister(Hint.second)) | 
 |     return hasPhys(Hint.second); | 
 |   return false; | 
 | } | 
 |  | 
 | int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign stack slot to already spilled register"); | 
 |   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); | 
 |   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); | 
 | } | 
 |  | 
 | void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign stack slot to already spilled register"); | 
 |   assert((SS >= 0 || | 
 |           (SS >= MF->getFrameInfo().getObjectIndexBegin())) && | 
 |          "illegal fixed frame index"); | 
 |   Virt2StackSlotMap[virtReg] = SS; | 
 | } | 
 |  | 
 | void VirtRegMap::print(raw_ostream &OS, const Module*) const { | 
 |   OS << "********** REGISTER MAP **********\n"; | 
 |   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
 |     unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
 |     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { | 
 |       OS << '[' << printReg(Reg, TRI) << " -> " | 
 |          << printReg(Virt2PhysMap[Reg], TRI) << "] " | 
 |          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
 |     unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
 |     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { | 
 |       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] | 
 |          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; | 
 |     } | 
 |   } | 
 |   OS << '\n'; | 
 | } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | LLVM_DUMP_METHOD void VirtRegMap::dump() const { | 
 |   print(dbgs()); | 
 | } | 
 | #endif | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              VirtRegRewriter | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // The VirtRegRewriter is the last of the register allocator passes. | 
 | // It rewrites virtual registers to physical registers as specified in the | 
 | // VirtRegMap analysis. It also updates live-in information on basic blocks | 
 | // according to LiveIntervals. | 
 | // | 
 | namespace { | 
 |  | 
 | class VirtRegRewriter : public MachineFunctionPass { | 
 |   MachineFunction *MF; | 
 |   const TargetRegisterInfo *TRI; | 
 |   const TargetInstrInfo *TII; | 
 |   MachineRegisterInfo *MRI; | 
 |   SlotIndexes *Indexes; | 
 |   LiveIntervals *LIS; | 
 |   VirtRegMap *VRM; | 
 |  | 
 |   void rewrite(); | 
 |   void addMBBLiveIns(); | 
 |   bool readsUndefSubreg(const MachineOperand &MO) const; | 
 |   void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const; | 
 |   void handleIdentityCopy(MachineInstr &MI) const; | 
 |   void expandCopyBundle(MachineInstr &MI) const; | 
 |   bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const; | 
 |  | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   VirtRegRewriter() : MachineFunctionPass(ID) {} | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override; | 
 |  | 
 |   bool runOnMachineFunction(MachineFunction&) override; | 
 |  | 
 |   MachineFunctionProperties getSetProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |         MachineFunctionProperties::Property::NoVRegs); | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char VirtRegRewriter::ID = 0; | 
 |  | 
 | char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", | 
 |                       "Virtual Register Rewriter", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(SlotIndexes) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveStacks) | 
 | INITIALIZE_PASS_DEPENDENCY(VirtRegMap) | 
 | INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", | 
 |                     "Virtual Register Rewriter", false, false) | 
 |  | 
 | void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesCFG(); | 
 |   AU.addRequired<LiveIntervals>(); | 
 |   AU.addRequired<SlotIndexes>(); | 
 |   AU.addPreserved<SlotIndexes>(); | 
 |   AU.addRequired<LiveDebugVariables>(); | 
 |   AU.addRequired<LiveStacks>(); | 
 |   AU.addPreserved<LiveStacks>(); | 
 |   AU.addRequired<VirtRegMap>(); | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 | } | 
 |  | 
 | bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { | 
 |   MF = &fn; | 
 |   TRI = MF->getSubtarget().getRegisterInfo(); | 
 |   TII = MF->getSubtarget().getInstrInfo(); | 
 |   MRI = &MF->getRegInfo(); | 
 |   Indexes = &getAnalysis<SlotIndexes>(); | 
 |   LIS = &getAnalysis<LiveIntervals>(); | 
 |   VRM = &getAnalysis<VirtRegMap>(); | 
 |   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" | 
 |                     << "********** Function: " << MF->getName() << '\n'); | 
 |   LLVM_DEBUG(VRM->dump()); | 
 |  | 
 |   // Add kill flags while we still have virtual registers. | 
 |   LIS->addKillFlags(VRM); | 
 |  | 
 |   // Live-in lists on basic blocks are required for physregs. | 
 |   addMBBLiveIns(); | 
 |  | 
 |   // Rewrite virtual registers. | 
 |   rewrite(); | 
 |  | 
 |   // Write out new DBG_VALUE instructions. | 
 |   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); | 
 |  | 
 |   // All machine operands and other references to virtual registers have been | 
 |   // replaced. Remove the virtual registers and release all the transient data. | 
 |   VRM->clearAllVirt(); | 
 |   MRI->clearVirtRegs(); | 
 |   return true; | 
 | } | 
 |  | 
 | void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, | 
 |                                              unsigned PhysReg) const { | 
 |   assert(!LI.empty()); | 
 |   assert(LI.hasSubRanges()); | 
 |  | 
 |   using SubRangeIteratorPair = | 
 |       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; | 
 |  | 
 |   SmallVector<SubRangeIteratorPair, 4> SubRanges; | 
 |   SlotIndex First; | 
 |   SlotIndex Last; | 
 |   for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
 |     SubRanges.push_back(std::make_pair(&SR, SR.begin())); | 
 |     if (!First.isValid() || SR.segments.front().start < First) | 
 |       First = SR.segments.front().start; | 
 |     if (!Last.isValid() || SR.segments.back().end > Last) | 
 |       Last = SR.segments.back().end; | 
 |   } | 
 |  | 
 |   // Check all mbb start positions between First and Last while | 
 |   // simulatenously advancing an iterator for each subrange. | 
 |   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First); | 
 |        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { | 
 |     SlotIndex MBBBegin = MBBI->first; | 
 |     // Advance all subrange iterators so that their end position is just | 
 |     // behind MBBBegin (or the iterator is at the end). | 
 |     LaneBitmask LaneMask; | 
 |     for (auto &RangeIterPair : SubRanges) { | 
 |       const LiveInterval::SubRange *SR = RangeIterPair.first; | 
 |       LiveInterval::const_iterator &SRI = RangeIterPair.second; | 
 |       while (SRI != SR->end() && SRI->end <= MBBBegin) | 
 |         ++SRI; | 
 |       if (SRI == SR->end()) | 
 |         continue; | 
 |       if (SRI->start <= MBBBegin) | 
 |         LaneMask |= SR->LaneMask; | 
 |     } | 
 |     if (LaneMask.none()) | 
 |       continue; | 
 |     MachineBasicBlock *MBB = MBBI->second; | 
 |     MBB->addLiveIn(PhysReg, LaneMask); | 
 |   } | 
 | } | 
 |  | 
 | // Compute MBB live-in lists from virtual register live ranges and their | 
 | // assignments. | 
 | void VirtRegRewriter::addMBBLiveIns() { | 
 |   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { | 
 |     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); | 
 |     if (MRI->reg_nodbg_empty(VirtReg)) | 
 |       continue; | 
 |     LiveInterval &LI = LIS->getInterval(VirtReg); | 
 |     if (LI.empty() || LIS->intervalIsInOneMBB(LI)) | 
 |       continue; | 
 |     // This is a virtual register that is live across basic blocks. Its | 
 |     // assigned PhysReg must be marked as live-in to those blocks. | 
 |     unsigned PhysReg = VRM->getPhys(VirtReg); | 
 |     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); | 
 |  | 
 |     if (LI.hasSubRanges()) { | 
 |       addLiveInsForSubRanges(LI, PhysReg); | 
 |     } else { | 
 |       // Go over MBB begin positions and see if we have segments covering them. | 
 |       // The following works because segments and the MBBIndex list are both | 
 |       // sorted by slot indexes. | 
 |       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); | 
 |       for (const auto &Seg : LI) { | 
 |         I = Indexes->advanceMBBIndex(I, Seg.start); | 
 |         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { | 
 |           MachineBasicBlock *MBB = I->second; | 
 |           MBB->addLiveIn(PhysReg); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in | 
 |   // each MBB's LiveIns set before calling addLiveIn on them. | 
 |   for (MachineBasicBlock &MBB : *MF) | 
 |     MBB.sortUniqueLiveIns(); | 
 | } | 
 |  | 
 | /// Returns true if the given machine operand \p MO only reads undefined lanes. | 
 | /// The function only works for use operands with a subregister set. | 
 | bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { | 
 |   // Shortcut if the operand is already marked undef. | 
 |   if (MO.isUndef()) | 
 |     return true; | 
 |  | 
 |   unsigned Reg = MO.getReg(); | 
 |   const LiveInterval &LI = LIS->getInterval(Reg); | 
 |   const MachineInstr &MI = *MO.getParent(); | 
 |   SlotIndex BaseIndex = LIS->getInstructionIndex(MI); | 
 |   // This code is only meant to handle reading undefined subregisters which | 
 |   // we couldn't properly detect before. | 
 |   assert(LI.liveAt(BaseIndex) && | 
 |          "Reads of completely dead register should be marked undef already"); | 
 |   unsigned SubRegIdx = MO.getSubReg(); | 
 |   assert(SubRegIdx != 0 && LI.hasSubRanges()); | 
 |   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); | 
 |   // See if any of the relevant subregister liveranges is defined at this point. | 
 |   for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
 |     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const { | 
 |   if (!MI.isIdentityCopy()) | 
 |     return; | 
 |   LLVM_DEBUG(dbgs() << "Identity copy: " << MI); | 
 |   ++NumIdCopies; | 
 |  | 
 |   // Copies like: | 
 |   //    %r0 = COPY undef %r0 | 
 |   //    %al = COPY %al, implicit-def %eax | 
 |   // give us additional liveness information: The target (super-)register | 
 |   // must not be valid before this point. Replace the COPY with a KILL | 
 |   // instruction to maintain this information. | 
 |   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { | 
 |     MI.setDesc(TII->get(TargetOpcode::KILL)); | 
 |     LLVM_DEBUG(dbgs() << "  replace by: " << MI); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Indexes) | 
 |     Indexes->removeSingleMachineInstrFromMaps(MI); | 
 |   MI.eraseFromBundle(); | 
 |   LLVM_DEBUG(dbgs() << "  deleted.\n"); | 
 | } | 
 |  | 
 | /// The liverange splitting logic sometimes produces bundles of copies when | 
 | /// subregisters are involved. Expand these into a sequence of copy instructions | 
 | /// after processing the last in the bundle. Does not update LiveIntervals | 
 | /// which we shouldn't need for this instruction anymore. | 
 | void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { | 
 |   if (!MI.isCopy()) | 
 |     return; | 
 |  | 
 |   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { | 
 |     SmallVector<MachineInstr *, 2> MIs({&MI}); | 
 |  | 
 |     // Only do this when the complete bundle is made out of COPYs. | 
 |     MachineBasicBlock &MBB = *MI.getParent(); | 
 |     for (MachineBasicBlock::reverse_instr_iterator I = | 
 |          std::next(MI.getReverseIterator()), E = MBB.instr_rend(); | 
 |          I != E && I->isBundledWithSucc(); ++I) { | 
 |       if (!I->isCopy()) | 
 |         return; | 
 |       MIs.push_back(&*I); | 
 |     } | 
 |     MachineInstr *FirstMI = MIs.back(); | 
 |  | 
 |     auto anyRegsAlias = [](const MachineInstr *Dst, | 
 |                            ArrayRef<MachineInstr *> Srcs, | 
 |                            const TargetRegisterInfo *TRI) { | 
 |       for (const MachineInstr *Src : Srcs) | 
 |         if (Src != Dst) | 
 |           if (TRI->regsOverlap(Dst->getOperand(0).getReg(), | 
 |                                Src->getOperand(1).getReg())) | 
 |             return true; | 
 |       return false; | 
 |     }; | 
 |  | 
 |     // If any of the destination registers in the bundle of copies alias any of | 
 |     // the source registers, try to schedule the instructions to avoid any | 
 |     // clobbering. | 
 |     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { | 
 |       for (int I = E; I--; ) | 
 |         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) { | 
 |           if (I + 1 != E) | 
 |             std::swap(MIs[I], MIs[E - 1]); | 
 |           --E; | 
 |         } | 
 |       if (PrevE == E) { | 
 |         MF->getFunction().getContext().emitError( | 
 |             "register rewriting failed: cycle in copy bundle"); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     MachineInstr *BundleStart = FirstMI; | 
 |     for (MachineInstr *BundledMI : llvm::reverse(MIs)) { | 
 |       // If instruction is in the middle of the bundle, move it before the | 
 |       // bundle starts, otherwise, just unbundle it. When we get to the last | 
 |       // instruction, the bundle will have been completely undone. | 
 |       if (BundledMI != BundleStart) { | 
 |         BundledMI->removeFromBundle(); | 
 |         MBB.insert(FirstMI, BundledMI); | 
 |       } else if (BundledMI->isBundledWithSucc()) { | 
 |         BundledMI->unbundleFromSucc(); | 
 |         BundleStart = &*std::next(BundledMI->getIterator()); | 
 |       } | 
 |  | 
 |       if (Indexes && BundledMI != FirstMI) | 
 |         Indexes->insertMachineInstrInMaps(*BundledMI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Check whether (part of) \p SuperPhysReg is live through \p MI. | 
 | /// \pre \p MI defines a subregister of a virtual register that | 
 | /// has been assigned to \p SuperPhysReg. | 
 | bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, | 
 |                                         unsigned SuperPhysReg) const { | 
 |   SlotIndex MIIndex = LIS->getInstructionIndex(MI); | 
 |   SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); | 
 |   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); | 
 |   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) { | 
 |     const LiveRange &UnitRange = LIS->getRegUnit(*Unit); | 
 |     // If the regunit is live both before and after MI, | 
 |     // we assume it is live through. | 
 |     // Generally speaking, this is not true, because something like | 
 |     // "RU = op RU" would match that description. | 
 |     // However, we know that we are trying to assess whether | 
 |     // a def of a virtual reg, vreg, is live at the same time of RU. | 
 |     // If we are in the "RU = op RU" situation, that means that vreg | 
 |     // is defined at the same time as RU (i.e., "vreg, RU = op RU"). | 
 |     // Thus, vreg and RU interferes and vreg cannot be assigned to | 
 |     // SuperPhysReg. Therefore, this situation cannot happen. | 
 |     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void VirtRegRewriter::rewrite() { | 
 |   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); | 
 |   SmallVector<unsigned, 8> SuperDeads; | 
 |   SmallVector<unsigned, 8> SuperDefs; | 
 |   SmallVector<unsigned, 8> SuperKills; | 
 |  | 
 |   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); | 
 |        MBBI != MBBE; ++MBBI) { | 
 |     LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); | 
 |     for (MachineBasicBlock::instr_iterator | 
 |            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { | 
 |       MachineInstr *MI = &*MII; | 
 |       ++MII; | 
 |  | 
 |       for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
 |            MOE = MI->operands_end(); MOI != MOE; ++MOI) { | 
 |         MachineOperand &MO = *MOI; | 
 |  | 
 |         // Make sure MRI knows about registers clobbered by regmasks. | 
 |         if (MO.isRegMask()) | 
 |           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); | 
 |  | 
 |         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
 |           continue; | 
 |         unsigned VirtReg = MO.getReg(); | 
 |         unsigned PhysReg = VRM->getPhys(VirtReg); | 
 |         assert(PhysReg != VirtRegMap::NO_PHYS_REG && | 
 |                "Instruction uses unmapped VirtReg"); | 
 |         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); | 
 |  | 
 |         // Preserve semantics of sub-register operands. | 
 |         unsigned SubReg = MO.getSubReg(); | 
 |         if (SubReg != 0) { | 
 |           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { | 
 |             // A virtual register kill refers to the whole register, so we may | 
 |             // have to add implicit killed operands for the super-register.  A | 
 |             // partial redef always kills and redefines the super-register. | 
 |             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || | 
 |                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg))) | 
 |               SuperKills.push_back(PhysReg); | 
 |  | 
 |             if (MO.isDef()) { | 
 |               // Also add implicit defs for the super-register. | 
 |               if (MO.isDead()) | 
 |                 SuperDeads.push_back(PhysReg); | 
 |               else | 
 |                 SuperDefs.push_back(PhysReg); | 
 |             } | 
 |           } else { | 
 |             if (MO.isUse()) { | 
 |               if (readsUndefSubreg(MO)) | 
 |                 // We need to add an <undef> flag if the subregister is | 
 |                 // completely undefined (and we are not adding super-register | 
 |                 // defs). | 
 |                 MO.setIsUndef(true); | 
 |             } else if (!MO.isDead()) { | 
 |               assert(MO.isDef()); | 
 |             } | 
 |           } | 
 |  | 
 |           // The def undef and def internal flags only make sense for | 
 |           // sub-register defs, and we are substituting a full physreg.  An | 
 |           // implicit killed operand from the SuperKills list will represent the | 
 |           // partial read of the super-register. | 
 |           if (MO.isDef()) { | 
 |             MO.setIsUndef(false); | 
 |             MO.setIsInternalRead(false); | 
 |           } | 
 |  | 
 |           // PhysReg operands cannot have subregister indexes. | 
 |           PhysReg = TRI->getSubReg(PhysReg, SubReg); | 
 |           assert(PhysReg && "Invalid SubReg for physical register"); | 
 |           MO.setSubReg(0); | 
 |         } | 
 |         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but | 
 |         // we need the inlining here. | 
 |         MO.setReg(PhysReg); | 
 |         MO.setIsRenamable(true); | 
 |       } | 
 |  | 
 |       // Add any missing super-register kills after rewriting the whole | 
 |       // instruction. | 
 |       while (!SuperKills.empty()) | 
 |         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); | 
 |  | 
 |       while (!SuperDeads.empty()) | 
 |         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); | 
 |  | 
 |       while (!SuperDefs.empty()) | 
 |         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "> " << *MI); | 
 |  | 
 |       expandCopyBundle(*MI); | 
 |  | 
 |       // We can remove identity copies right now. | 
 |       handleIdentityCopy(*MI); | 
 |     } | 
 |   } | 
 | } |