| //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the RAGreedy function pass for register allocation in | 
 | // optimized builds. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "AllocationOrder.h" | 
 | #include "InterferenceCache.h" | 
 | #include "LiveDebugVariables.h" | 
 | #include "RegAllocBase.h" | 
 | #include "SpillPlacement.h" | 
 | #include "Spiller.h" | 
 | #include "SplitKit.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/IndexedMap.h" | 
 | #include "llvm/ADT/MapVector.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
 | #include "llvm/CodeGen/CalcSpillWeights.h" | 
 | #include "llvm/CodeGen/EdgeBundles.h" | 
 | #include "llvm/CodeGen/LiveInterval.h" | 
 | #include "llvm/CodeGen/LiveIntervalUnion.h" | 
 | #include "llvm/CodeGen/LiveIntervals.h" | 
 | #include "llvm/CodeGen/LiveRangeEdit.h" | 
 | #include "llvm/CodeGen/LiveRegMatrix.h" | 
 | #include "llvm/CodeGen/LiveStacks.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/CodeGen/RegisterClassInfo.h" | 
 | #include "llvm/CodeGen/SlotIndexes.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/CodeGen/VirtRegMap.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/MC/MCRegisterInfo.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/BlockFrequency.h" | 
 | #include "llvm/Support/BranchProbability.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/Timer.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <memory> | 
 | #include <queue> | 
 | #include <tuple> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 |  | 
 | STATISTIC(NumGlobalSplits, "Number of split global live ranges"); | 
 | STATISTIC(NumLocalSplits,  "Number of split local live ranges"); | 
 | STATISTIC(NumEvicted,      "Number of interferences evicted"); | 
 |  | 
 | static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( | 
 |     "split-spill-mode", cl::Hidden, | 
 |     cl::desc("Spill mode for splitting live ranges"), | 
 |     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), | 
 |                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), | 
 |                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), | 
 |     cl::init(SplitEditor::SM_Speed)); | 
 |  | 
 | static cl::opt<unsigned> | 
 | LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, | 
 |                              cl::desc("Last chance recoloring max depth"), | 
 |                              cl::init(5)); | 
 |  | 
 | static cl::opt<unsigned> LastChanceRecoloringMaxInterference( | 
 |     "lcr-max-interf", cl::Hidden, | 
 |     cl::desc("Last chance recoloring maximum number of considered" | 
 |              " interference at a time"), | 
 |     cl::init(8)); | 
 |  | 
 | static cl::opt<bool> ExhaustiveSearch( | 
 |     "exhaustive-register-search", cl::NotHidden, | 
 |     cl::desc("Exhaustive Search for registers bypassing the depth " | 
 |              "and interference cutoffs of last chance recoloring"), | 
 |     cl::Hidden); | 
 |  | 
 | static cl::opt<bool> EnableLocalReassignment( | 
 |     "enable-local-reassign", cl::Hidden, | 
 |     cl::desc("Local reassignment can yield better allocation decisions, but " | 
 |              "may be compile time intensive"), | 
 |     cl::init(false)); | 
 |  | 
 | static cl::opt<bool> EnableDeferredSpilling( | 
 |     "enable-deferred-spilling", cl::Hidden, | 
 |     cl::desc("Instead of spilling a variable right away, defer the actual " | 
 |              "code insertion to the end of the allocation. That way the " | 
 |              "allocator might still find a suitable coloring for this " | 
 |              "variable because of other evicted variables."), | 
 |     cl::init(false)); | 
 |  | 
 | static cl::opt<unsigned> | 
 |     HugeSizeForSplit("huge-size-for-split", cl::Hidden, | 
 |                      cl::desc("A threshold of live range size which may cause " | 
 |                               "high compile time cost in global splitting."), | 
 |                      cl::init(5000)); | 
 |  | 
 | // FIXME: Find a good default for this flag and remove the flag. | 
 | static cl::opt<unsigned> | 
 | CSRFirstTimeCost("regalloc-csr-first-time-cost", | 
 |               cl::desc("Cost for first time use of callee-saved register."), | 
 |               cl::init(0), cl::Hidden); | 
 |  | 
 | static cl::opt<bool> ConsiderLocalIntervalCost( | 
 |     "consider-local-interval-cost", cl::Hidden, | 
 |     cl::desc("Consider the cost of local intervals created by a split " | 
 |              "candidate when choosing the best split candidate."), | 
 |     cl::init(false)); | 
 |  | 
 | static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", | 
 |                                        createGreedyRegisterAllocator); | 
 |  | 
 | namespace { | 
 |  | 
 | class RAGreedy : public MachineFunctionPass, | 
 |                  public RegAllocBase, | 
 |                  private LiveRangeEdit::Delegate { | 
 |   // Convenient shortcuts. | 
 |   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; | 
 |   using SmallLISet = SmallPtrSet<LiveInterval *, 4>; | 
 |   using SmallVirtRegSet = SmallSet<unsigned, 16>; | 
 |  | 
 |   // context | 
 |   MachineFunction *MF; | 
 |  | 
 |   // Shortcuts to some useful interface. | 
 |   const TargetInstrInfo *TII; | 
 |   const TargetRegisterInfo *TRI; | 
 |   RegisterClassInfo RCI; | 
 |  | 
 |   // analyses | 
 |   SlotIndexes *Indexes; | 
 |   MachineBlockFrequencyInfo *MBFI; | 
 |   MachineDominatorTree *DomTree; | 
 |   MachineLoopInfo *Loops; | 
 |   MachineOptimizationRemarkEmitter *ORE; | 
 |   EdgeBundles *Bundles; | 
 |   SpillPlacement *SpillPlacer; | 
 |   LiveDebugVariables *DebugVars; | 
 |   AliasAnalysis *AA; | 
 |  | 
 |   // state | 
 |   std::unique_ptr<Spiller> SpillerInstance; | 
 |   PQueue Queue; | 
 |   unsigned NextCascade; | 
 |  | 
 |   // Live ranges pass through a number of stages as we try to allocate them. | 
 |   // Some of the stages may also create new live ranges: | 
 |   // | 
 |   // - Region splitting. | 
 |   // - Per-block splitting. | 
 |   // - Local splitting. | 
 |   // - Spilling. | 
 |   // | 
 |   // Ranges produced by one of the stages skip the previous stages when they are | 
 |   // dequeued. This improves performance because we can skip interference checks | 
 |   // that are unlikely to give any results. It also guarantees that the live | 
 |   // range splitting algorithm terminates, something that is otherwise hard to | 
 |   // ensure. | 
 |   enum LiveRangeStage { | 
 |     /// Newly created live range that has never been queued. | 
 |     RS_New, | 
 |  | 
 |     /// Only attempt assignment and eviction. Then requeue as RS_Split. | 
 |     RS_Assign, | 
 |  | 
 |     /// Attempt live range splitting if assignment is impossible. | 
 |     RS_Split, | 
 |  | 
 |     /// Attempt more aggressive live range splitting that is guaranteed to make | 
 |     /// progress.  This is used for split products that may not be making | 
 |     /// progress. | 
 |     RS_Split2, | 
 |  | 
 |     /// Live range will be spilled.  No more splitting will be attempted. | 
 |     RS_Spill, | 
 |  | 
 |  | 
 |     /// Live range is in memory. Because of other evictions, it might get moved | 
 |     /// in a register in the end. | 
 |     RS_Memory, | 
 |  | 
 |     /// There is nothing more we can do to this live range.  Abort compilation | 
 |     /// if it can't be assigned. | 
 |     RS_Done | 
 |   }; | 
 |  | 
 |   // Enum CutOffStage to keep a track whether the register allocation failed | 
 |   // because of the cutoffs encountered in last chance recoloring. | 
 |   // Note: This is used as bitmask. New value should be next power of 2. | 
 |   enum CutOffStage { | 
 |     // No cutoffs encountered | 
 |     CO_None = 0, | 
 |  | 
 |     // lcr-max-depth cutoff encountered | 
 |     CO_Depth = 1, | 
 |  | 
 |     // lcr-max-interf cutoff encountered | 
 |     CO_Interf = 2 | 
 |   }; | 
 |  | 
 |   uint8_t CutOffInfo; | 
 |  | 
 | #ifndef NDEBUG | 
 |   static const char *const StageName[]; | 
 | #endif | 
 |  | 
 |   // RegInfo - Keep additional information about each live range. | 
 |   struct RegInfo { | 
 |     LiveRangeStage Stage = RS_New; | 
 |  | 
 |     // Cascade - Eviction loop prevention. See canEvictInterference(). | 
 |     unsigned Cascade = 0; | 
 |  | 
 |     RegInfo() = default; | 
 |   }; | 
 |  | 
 |   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; | 
 |  | 
 |   LiveRangeStage getStage(const LiveInterval &VirtReg) const { | 
 |     return ExtraRegInfo[VirtReg.reg].Stage; | 
 |   } | 
 |  | 
 |   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { | 
 |     ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |     ExtraRegInfo[VirtReg.reg].Stage = Stage; | 
 |   } | 
 |  | 
 |   template<typename Iterator> | 
 |   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { | 
 |     ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |     for (;Begin != End; ++Begin) { | 
 |       unsigned Reg = *Begin; | 
 |       if (ExtraRegInfo[Reg].Stage == RS_New) | 
 |         ExtraRegInfo[Reg].Stage = NewStage; | 
 |     } | 
 |   } | 
 |  | 
 |   /// Cost of evicting interference. | 
 |   struct EvictionCost { | 
 |     unsigned BrokenHints = 0; ///< Total number of broken hints. | 
 |     float MaxWeight = 0;      ///< Maximum spill weight evicted. | 
 |  | 
 |     EvictionCost() = default; | 
 |  | 
 |     bool isMax() const { return BrokenHints == ~0u; } | 
 |  | 
 |     void setMax() { BrokenHints = ~0u; } | 
 |  | 
 |     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } | 
 |  | 
 |     bool operator<(const EvictionCost &O) const { | 
 |       return std::tie(BrokenHints, MaxWeight) < | 
 |              std::tie(O.BrokenHints, O.MaxWeight); | 
 |     } | 
 |   }; | 
 |  | 
 |   /// EvictionTrack - Keeps track of past evictions in order to optimize region | 
 |   /// split decision. | 
 |   class EvictionTrack { | 
 |  | 
 |   public: | 
 |     using EvictorInfo = | 
 |         std::pair<unsigned /* evictor */, unsigned /* physreg */>; | 
 |     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; | 
 |  | 
 |   private: | 
 |     /// Each Vreg that has been evicted in the last stage of selectOrSplit will | 
 |     /// be mapped to the evictor Vreg and the PhysReg it was evicted from. | 
 |     EvicteeInfo Evictees; | 
 |  | 
 |   public: | 
 |     /// Clear all eviction information. | 
 |     void clear() { Evictees.clear(); } | 
 |  | 
 |     ///  Clear eviction information for the given evictee Vreg. | 
 |     /// E.g. when Vreg get's a new allocation, the old eviction info is no | 
 |     /// longer relevant. | 
 |     /// \param Evictee The evictee Vreg for whom we want to clear collected | 
 |     /// eviction info. | 
 |     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } | 
 |  | 
 |     /// Track new eviction. | 
 |     /// The Evictor vreg has evicted the Evictee vreg from Physreg. | 
 |     /// \param PhysReg The physical register Evictee was evicted from. | 
 |     /// \param Evictor The evictor Vreg that evicted Evictee. | 
 |     /// \param Evictee The evictee Vreg. | 
 |     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { | 
 |       Evictees[Evictee].first = Evictor; | 
 |       Evictees[Evictee].second = PhysReg; | 
 |     } | 
 |  | 
 |     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. | 
 |     /// \param Evictee The evictee vreg. | 
 |     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if | 
 |     /// nobody has evicted Evictee from PhysReg. | 
 |     EvictorInfo getEvictor(unsigned Evictee) { | 
 |       if (Evictees.count(Evictee)) { | 
 |         return Evictees[Evictee]; | 
 |       } | 
 |  | 
 |       return EvictorInfo(0, 0); | 
 |     } | 
 |   }; | 
 |  | 
 |   // Keeps track of past evictions in order to optimize region split decision. | 
 |   EvictionTrack LastEvicted; | 
 |  | 
 |   // splitting state. | 
 |   std::unique_ptr<SplitAnalysis> SA; | 
 |   std::unique_ptr<SplitEditor> SE; | 
 |  | 
 |   /// Cached per-block interference maps | 
 |   InterferenceCache IntfCache; | 
 |  | 
 |   /// All basic blocks where the current register has uses. | 
 |   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; | 
 |  | 
 |   /// Global live range splitting candidate info. | 
 |   struct GlobalSplitCandidate { | 
 |     // Register intended for assignment, or 0. | 
 |     unsigned PhysReg; | 
 |  | 
 |     // SplitKit interval index for this candidate. | 
 |     unsigned IntvIdx; | 
 |  | 
 |     // Interference for PhysReg. | 
 |     InterferenceCache::Cursor Intf; | 
 |  | 
 |     // Bundles where this candidate should be live. | 
 |     BitVector LiveBundles; | 
 |     SmallVector<unsigned, 8> ActiveBlocks; | 
 |  | 
 |     void reset(InterferenceCache &Cache, unsigned Reg) { | 
 |       PhysReg = Reg; | 
 |       IntvIdx = 0; | 
 |       Intf.setPhysReg(Cache, Reg); | 
 |       LiveBundles.clear(); | 
 |       ActiveBlocks.clear(); | 
 |     } | 
 |  | 
 |     // Set B[i] = C for every live bundle where B[i] was NoCand. | 
 |     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { | 
 |       unsigned Count = 0; | 
 |       for (unsigned i : LiveBundles.set_bits()) | 
 |         if (B[i] == NoCand) { | 
 |           B[i] = C; | 
 |           Count++; | 
 |         } | 
 |       return Count; | 
 |     } | 
 |   }; | 
 |  | 
 |   /// Candidate info for each PhysReg in AllocationOrder. | 
 |   /// This vector never shrinks, but grows to the size of the largest register | 
 |   /// class. | 
 |   SmallVector<GlobalSplitCandidate, 32> GlobalCand; | 
 |  | 
 |   enum : unsigned { NoCand = ~0u }; | 
 |  | 
 |   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to | 
 |   /// NoCand which indicates the stack interval. | 
 |   SmallVector<unsigned, 32> BundleCand; | 
 |  | 
 |   /// Callee-save register cost, calculated once per machine function. | 
 |   BlockFrequency CSRCost; | 
 |  | 
 |   /// Run or not the local reassignment heuristic. This information is | 
 |   /// obtained from the TargetSubtargetInfo. | 
 |   bool EnableLocalReassign; | 
 |  | 
 |   /// Enable or not the consideration of the cost of local intervals created | 
 |   /// by a split candidate when choosing the best split candidate. | 
 |   bool EnableAdvancedRASplitCost; | 
 |  | 
 |   /// Set of broken hints that may be reconciled later because of eviction. | 
 |   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; | 
 |  | 
 | public: | 
 |   RAGreedy(); | 
 |  | 
 |   /// Return the pass name. | 
 |   StringRef getPassName() const override { return "Greedy Register Allocator"; } | 
 |  | 
 |   /// RAGreedy analysis usage. | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override; | 
 |   void releaseMemory() override; | 
 |   Spiller &spiller() override { return *SpillerInstance; } | 
 |   void enqueue(LiveInterval *LI) override; | 
 |   LiveInterval *dequeue() override; | 
 |   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; | 
 |   void aboutToRemoveInterval(LiveInterval &) override; | 
 |  | 
 |   /// Perform register allocation. | 
 |   bool runOnMachineFunction(MachineFunction &mf) override; | 
 |  | 
 |   MachineFunctionProperties getRequiredProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |         MachineFunctionProperties::Property::NoPHIs); | 
 |   } | 
 |  | 
 |   static char ID; | 
 |  | 
 | private: | 
 |   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, | 
 |                              SmallVirtRegSet &, unsigned = 0); | 
 |  | 
 |   bool LRE_CanEraseVirtReg(unsigned) override; | 
 |   void LRE_WillShrinkVirtReg(unsigned) override; | 
 |   void LRE_DidCloneVirtReg(unsigned, unsigned) override; | 
 |   void enqueue(PQueue &CurQueue, LiveInterval *LI); | 
 |   LiveInterval *dequeue(PQueue &CurQueue); | 
 |  | 
 |   BlockFrequency calcSpillCost(); | 
 |   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); | 
 |   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); | 
 |   bool growRegion(GlobalSplitCandidate &Cand); | 
 |   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, | 
 |                                   unsigned BBNumber, | 
 |                                   const AllocationOrder &Order); | 
 |   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, | 
 |                                GlobalSplitCandidate &Cand, unsigned BBNumber, | 
 |                                const AllocationOrder &Order); | 
 |   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, | 
 |                                      const AllocationOrder &Order, | 
 |                                      bool *CanCauseEvictionChain); | 
 |   bool calcCompactRegion(GlobalSplitCandidate&); | 
 |   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); | 
 |   void calcGapWeights(unsigned, SmallVectorImpl<float>&); | 
 |   unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg); | 
 |   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); | 
 |   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&, | 
 |                             const SmallVirtRegSet&); | 
 |   bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, | 
 |                                    SlotIndex Start, SlotIndex End, | 
 |                                    EvictionCost &MaxCost); | 
 |   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, | 
 |                                     LiveInterval &VirtReg, SlotIndex Start, | 
 |                                     SlotIndex End, float *BestEvictWeight); | 
 |   void evictInterference(LiveInterval&, unsigned, | 
 |                          SmallVectorImpl<unsigned>&); | 
 |   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, | 
 |                                   SmallLISet &RecoloringCandidates, | 
 |                                   const SmallVirtRegSet &FixedRegisters); | 
 |  | 
 |   unsigned tryAssign(LiveInterval&, AllocationOrder&, | 
 |                      SmallVectorImpl<unsigned>&, | 
 |                      const SmallVirtRegSet&); | 
 |   unsigned tryEvict(LiveInterval&, AllocationOrder&, | 
 |                     SmallVectorImpl<unsigned>&, unsigned, | 
 |                     const SmallVirtRegSet&); | 
 |   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, | 
 |                           SmallVectorImpl<unsigned>&); | 
 |   unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg); | 
 |   /// Calculate cost of region splitting. | 
 |   unsigned calculateRegionSplitCost(LiveInterval &VirtReg, | 
 |                                     AllocationOrder &Order, | 
 |                                     BlockFrequency &BestCost, | 
 |                                     unsigned &NumCands, bool IgnoreCSR, | 
 |                                     bool *CanCauseEvictionChain = nullptr); | 
 |   /// Perform region splitting. | 
 |   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, | 
 |                          bool HasCompact, | 
 |                          SmallVectorImpl<unsigned> &NewVRegs); | 
 |   /// Check other options before using a callee-saved register for the first | 
 |   /// time. | 
 |   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                                  unsigned PhysReg, unsigned &CostPerUseLimit, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs); | 
 |   void initializeCSRCost(); | 
 |   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, | 
 |                          SmallVectorImpl<unsigned>&); | 
 |   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, | 
 |                                SmallVectorImpl<unsigned>&); | 
 |   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, | 
 |     SmallVectorImpl<unsigned>&); | 
 |   unsigned trySplit(LiveInterval&, AllocationOrder&, | 
 |                     SmallVectorImpl<unsigned>&, | 
 |                     const SmallVirtRegSet&); | 
 |   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, | 
 |                                    SmallVectorImpl<unsigned> &, | 
 |                                    SmallVirtRegSet &, unsigned); | 
 |   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, | 
 |                                SmallVirtRegSet &, unsigned); | 
 |   void tryHintRecoloring(LiveInterval &); | 
 |   void tryHintsRecoloring(); | 
 |  | 
 |   /// Model the information carried by one end of a copy. | 
 |   struct HintInfo { | 
 |     /// The frequency of the copy. | 
 |     BlockFrequency Freq; | 
 |     /// The virtual register or physical register. | 
 |     unsigned Reg; | 
 |     /// Its currently assigned register. | 
 |     /// In case of a physical register Reg == PhysReg. | 
 |     unsigned PhysReg; | 
 |  | 
 |     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) | 
 |         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} | 
 |   }; | 
 |   using HintsInfo = SmallVector<HintInfo, 4>; | 
 |  | 
 |   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); | 
 |   void collectHintInfo(unsigned, HintsInfo &); | 
 |  | 
 |   bool isUnusedCalleeSavedReg(unsigned PhysReg) const; | 
 |  | 
 |   /// Compute and report the number of spills and reloads for a loop. | 
 |   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, | 
 |                                     unsigned &FoldedReloads, unsigned &Spills, | 
 |                                     unsigned &FoldedSpills); | 
 |  | 
 |   /// Report the number of spills and reloads for each loop. | 
 |   void reportNumberOfSplillsReloads() { | 
 |     for (MachineLoop *L : *Loops) { | 
 |       unsigned Reloads, FoldedReloads, Spills, FoldedSpills; | 
 |       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, | 
 |                                    FoldedSpills); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char RAGreedy::ID = 0; | 
 | char &llvm::RAGreedyID = RAGreedy::ID; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", | 
 |                 "Greedy Register Allocator", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) | 
 | INITIALIZE_PASS_DEPENDENCY(SlotIndexes) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
 | INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineScheduler) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveStacks) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
 | INITIALIZE_PASS_DEPENDENCY(VirtRegMap) | 
 | INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) | 
 | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) | 
 | INITIALIZE_PASS_DEPENDENCY(SpillPlacement) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) | 
 | INITIALIZE_PASS_END(RAGreedy, "greedy", | 
 |                 "Greedy Register Allocator", false, false) | 
 |  | 
 | #ifndef NDEBUG | 
 | const char *const RAGreedy::StageName[] = { | 
 |     "RS_New", | 
 |     "RS_Assign", | 
 |     "RS_Split", | 
 |     "RS_Split2", | 
 |     "RS_Spill", | 
 |     "RS_Memory", | 
 |     "RS_Done" | 
 | }; | 
 | #endif | 
 |  | 
 | // Hysteresis to use when comparing floats. | 
 | // This helps stabilize decisions based on float comparisons. | 
 | const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 | 
 |  | 
 | FunctionPass* llvm::createGreedyRegisterAllocator() { | 
 |   return new RAGreedy(); | 
 | } | 
 |  | 
 | RAGreedy::RAGreedy(): MachineFunctionPass(ID) { | 
 | } | 
 |  | 
 | void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesCFG(); | 
 |   AU.addRequired<MachineBlockFrequencyInfo>(); | 
 |   AU.addPreserved<MachineBlockFrequencyInfo>(); | 
 |   AU.addRequired<AAResultsWrapperPass>(); | 
 |   AU.addPreserved<AAResultsWrapperPass>(); | 
 |   AU.addRequired<LiveIntervals>(); | 
 |   AU.addPreserved<LiveIntervals>(); | 
 |   AU.addRequired<SlotIndexes>(); | 
 |   AU.addPreserved<SlotIndexes>(); | 
 |   AU.addRequired<LiveDebugVariables>(); | 
 |   AU.addPreserved<LiveDebugVariables>(); | 
 |   AU.addRequired<LiveStacks>(); | 
 |   AU.addPreserved<LiveStacks>(); | 
 |   AU.addRequired<MachineDominatorTree>(); | 
 |   AU.addPreserved<MachineDominatorTree>(); | 
 |   AU.addRequired<MachineLoopInfo>(); | 
 |   AU.addPreserved<MachineLoopInfo>(); | 
 |   AU.addRequired<VirtRegMap>(); | 
 |   AU.addPreserved<VirtRegMap>(); | 
 |   AU.addRequired<LiveRegMatrix>(); | 
 |   AU.addPreserved<LiveRegMatrix>(); | 
 |   AU.addRequired<EdgeBundles>(); | 
 |   AU.addRequired<SpillPlacement>(); | 
 |   AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                     LiveRangeEdit delegate methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { | 
 |   LiveInterval &LI = LIS->getInterval(VirtReg); | 
 |   if (VRM->hasPhys(VirtReg)) { | 
 |     Matrix->unassign(LI); | 
 |     aboutToRemoveInterval(LI); | 
 |     return true; | 
 |   } | 
 |   // Unassigned virtreg is probably in the priority queue. | 
 |   // RegAllocBase will erase it after dequeueing. | 
 |   // Nonetheless, clear the live-range so that the debug | 
 |   // dump will show the right state for that VirtReg. | 
 |   LI.clear(); | 
 |   return false; | 
 | } | 
 |  | 
 | void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { | 
 |   if (!VRM->hasPhys(VirtReg)) | 
 |     return; | 
 |  | 
 |   // Register is assigned, put it back on the queue for reassignment. | 
 |   LiveInterval &LI = LIS->getInterval(VirtReg); | 
 |   Matrix->unassign(LI); | 
 |   enqueue(&LI); | 
 | } | 
 |  | 
 | void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { | 
 |   // Cloning a register we haven't even heard about yet?  Just ignore it. | 
 |   if (!ExtraRegInfo.inBounds(Old)) | 
 |     return; | 
 |  | 
 |   // LRE may clone a virtual register because dead code elimination causes it to | 
 |   // be split into connected components. The new components are much smaller | 
 |   // than the original, so they should get a new chance at being assigned. | 
 |   // same stage as the parent. | 
 |   ExtraRegInfo[Old].Stage = RS_Assign; | 
 |   ExtraRegInfo.grow(New); | 
 |   ExtraRegInfo[New] = ExtraRegInfo[Old]; | 
 | } | 
 |  | 
 | void RAGreedy::releaseMemory() { | 
 |   SpillerInstance.reset(); | 
 |   ExtraRegInfo.clear(); | 
 |   GlobalCand.clear(); | 
 | } | 
 |  | 
 | void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } | 
 |  | 
 | void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { | 
 |   // Prioritize live ranges by size, assigning larger ranges first. | 
 |   // The queue holds (size, reg) pairs. | 
 |   const unsigned Size = LI->getSize(); | 
 |   const unsigned Reg = LI->reg; | 
 |   assert(TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |          "Can only enqueue virtual registers"); | 
 |   unsigned Prio; | 
 |  | 
 |   ExtraRegInfo.grow(Reg); | 
 |   if (ExtraRegInfo[Reg].Stage == RS_New) | 
 |     ExtraRegInfo[Reg].Stage = RS_Assign; | 
 |  | 
 |   if (ExtraRegInfo[Reg].Stage == RS_Split) { | 
 |     // Unsplit ranges that couldn't be allocated immediately are deferred until | 
 |     // everything else has been allocated. | 
 |     Prio = Size; | 
 |   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { | 
 |     // Memory operand should be considered last. | 
 |     // Change the priority such that Memory operand are assigned in | 
 |     // the reverse order that they came in. | 
 |     // TODO: Make this a member variable and probably do something about hints. | 
 |     static unsigned MemOp = 0; | 
 |     Prio = MemOp++; | 
 |   } else { | 
 |     // Giant live ranges fall back to the global assignment heuristic, which | 
 |     // prevents excessive spilling in pathological cases. | 
 |     bool ReverseLocal = TRI->reverseLocalAssignment(); | 
 |     const TargetRegisterClass &RC = *MRI->getRegClass(Reg); | 
 |     bool ForceGlobal = !ReverseLocal && | 
 |       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); | 
 |  | 
 |     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && | 
 |         LIS->intervalIsInOneMBB(*LI)) { | 
 |       // Allocate original local ranges in linear instruction order. Since they | 
 |       // are singly defined, this produces optimal coloring in the absence of | 
 |       // global interference and other constraints. | 
 |       if (!ReverseLocal) | 
 |         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); | 
 |       else { | 
 |         // Allocating bottom up may allow many short LRGs to be assigned first | 
 |         // to one of the cheap registers. This could be much faster for very | 
 |         // large blocks on targets with many physical registers. | 
 |         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); | 
 |       } | 
 |       Prio |= RC.AllocationPriority << 24; | 
 |     } else { | 
 |       // Allocate global and split ranges in long->short order. Long ranges that | 
 |       // don't fit should be spilled (or split) ASAP so they don't create | 
 |       // interference.  Mark a bit to prioritize global above local ranges. | 
 |       Prio = (1u << 29) + Size; | 
 |     } | 
 |     // Mark a higher bit to prioritize global and local above RS_Split. | 
 |     Prio |= (1u << 31); | 
 |  | 
 |     // Boost ranges that have a physical register hint. | 
 |     if (VRM->hasKnownPreference(Reg)) | 
 |       Prio |= (1u << 30); | 
 |   } | 
 |   // The virtual register number is a tie breaker for same-sized ranges. | 
 |   // Give lower vreg numbers higher priority to assign them first. | 
 |   CurQueue.push(std::make_pair(Prio, ~Reg)); | 
 | } | 
 |  | 
 | LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } | 
 |  | 
 | LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { | 
 |   if (CurQueue.empty()) | 
 |     return nullptr; | 
 |   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); | 
 |   CurQueue.pop(); | 
 |   return LI; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Direct Assignment | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// tryAssign - Try to assign VirtReg to an available register. | 
 | unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, | 
 |                              AllocationOrder &Order, | 
 |                              SmallVectorImpl<unsigned> &NewVRegs, | 
 |                              const SmallVirtRegSet &FixedRegisters) { | 
 |   Order.rewind(); | 
 |   unsigned PhysReg; | 
 |   while ((PhysReg = Order.next())) | 
 |     if (!Matrix->checkInterference(VirtReg, PhysReg)) | 
 |       break; | 
 |   if (!PhysReg || Order.isHint()) | 
 |     return PhysReg; | 
 |  | 
 |   // PhysReg is available, but there may be a better choice. | 
 |  | 
 |   // If we missed a simple hint, try to cheaply evict interference from the | 
 |   // preferred register. | 
 |   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) | 
 |     if (Order.isHint(Hint)) { | 
 |       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); | 
 |       EvictionCost MaxCost; | 
 |       MaxCost.setBrokenHints(1); | 
 |       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) { | 
 |         evictInterference(VirtReg, Hint, NewVRegs); | 
 |         return Hint; | 
 |       } | 
 |       // Record the missed hint, we may be able to recover | 
 |       // at the end if the surrounding allocation changed. | 
 |       SetOfBrokenHints.insert(&VirtReg); | 
 |     } | 
 |  | 
 |   // Try to evict interference from a cheaper alternative. | 
 |   unsigned Cost = TRI->getCostPerUse(PhysReg); | 
 |  | 
 |   // Most registers have 0 additional cost. | 
 |   if (!Cost) | 
 |     return PhysReg; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " | 
 |                     << Cost << '\n'); | 
 |   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); | 
 |   return CheapReg ? CheapReg : PhysReg; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Interference eviction | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { | 
 |   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); | 
 |   unsigned PhysReg; | 
 |   while ((PhysReg = Order.next())) { | 
 |     if (PhysReg == PrevReg) | 
 |       continue; | 
 |  | 
 |     MCRegUnitIterator Units(PhysReg, TRI); | 
 |     for (; Units.isValid(); ++Units) { | 
 |       // Instantiate a "subquery", not to be confused with the Queries array. | 
 |       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); | 
 |       if (subQ.checkInterference()) | 
 |         break; | 
 |     } | 
 |     // If no units have interference, break out with the current PhysReg. | 
 |     if (!Units.isValid()) | 
 |       break; | 
 |   } | 
 |   if (PhysReg) | 
 |     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " | 
 |                       << printReg(PrevReg, TRI) << " to " | 
 |                       << printReg(PhysReg, TRI) << '\n'); | 
 |   return PhysReg; | 
 | } | 
 |  | 
 | /// shouldEvict - determine if A should evict the assigned live range B. The | 
 | /// eviction policy defined by this function together with the allocation order | 
 | /// defined by enqueue() decides which registers ultimately end up being split | 
 | /// and spilled. | 
 | /// | 
 | /// Cascade numbers are used to prevent infinite loops if this function is a | 
 | /// cyclic relation. | 
 | /// | 
 | /// @param A          The live range to be assigned. | 
 | /// @param IsHint     True when A is about to be assigned to its preferred | 
 | ///                   register. | 
 | /// @param B          The live range to be evicted. | 
 | /// @param BreaksHint True when B is already assigned to its preferred register. | 
 | bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, | 
 |                            LiveInterval &B, bool BreaksHint) { | 
 |   bool CanSplit = getStage(B) < RS_Spill; | 
 |  | 
 |   // Be fairly aggressive about following hints as long as the evictee can be | 
 |   // split. | 
 |   if (CanSplit && IsHint && !BreaksHint) | 
 |     return true; | 
 |  | 
 |   if (A.weight > B.weight) { | 
 |     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// canEvictInterference - Return true if all interferences between VirtReg and | 
 | /// PhysReg can be evicted. | 
 | /// | 
 | /// @param VirtReg Live range that is about to be assigned. | 
 | /// @param PhysReg Desired register for assignment. | 
 | /// @param IsHint  True when PhysReg is VirtReg's preferred register. | 
 | /// @param MaxCost Only look for cheaper candidates and update with new cost | 
 | ///                when returning true. | 
 | /// @returns True when interference can be evicted cheaper than MaxCost. | 
 | bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, | 
 |                                     bool IsHint, EvictionCost &MaxCost, | 
 |                                     const SmallVirtRegSet &FixedRegisters) { | 
 |   // It is only possible to evict virtual register interference. | 
 |   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) | 
 |     return false; | 
 |  | 
 |   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); | 
 |  | 
 |   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never | 
 |   // involved in an eviction before. If a cascade number was assigned, deny | 
 |   // evicting anything with the same or a newer cascade number. This prevents | 
 |   // infinite eviction loops. | 
 |   // | 
 |   // This works out so a register without a cascade number is allowed to evict | 
 |   // anything, and it can be evicted by anything. | 
 |   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; | 
 |   if (!Cascade) | 
 |     Cascade = NextCascade; | 
 |  | 
 |   EvictionCost Cost; | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); | 
 |     // If there is 10 or more interferences, chances are one is heavier. | 
 |     if (Q.collectInterferingVRegs(10) >= 10) | 
 |       return false; | 
 |  | 
 |     // Check if any interfering live range is heavier than MaxWeight. | 
 |     for (unsigned i = Q.interferingVRegs().size(); i; --i) { | 
 |       LiveInterval *Intf = Q.interferingVRegs()[i - 1]; | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && | 
 |              "Only expecting virtual register interference from query"); | 
 |  | 
 |       // Do not allow eviction of a virtual register if we are in the middle | 
 |       // of last-chance recoloring and this virtual register is one that we | 
 |       // have scavenged a physical register for. | 
 |       if (FixedRegisters.count(Intf->reg)) | 
 |         return false; | 
 |  | 
 |       // Never evict spill products. They cannot split or spill. | 
 |       if (getStage(*Intf) == RS_Done) | 
 |         return false; | 
 |       // Once a live range becomes small enough, it is urgent that we find a | 
 |       // register for it. This is indicated by an infinite spill weight. These | 
 |       // urgent live ranges get to evict almost anything. | 
 |       // | 
 |       // Also allow urgent evictions of unspillable ranges from a strictly | 
 |       // larger allocation order. | 
 |       bool Urgent = !VirtReg.isSpillable() && | 
 |         (Intf->isSpillable() || | 
 |          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < | 
 |          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); | 
 |       // Only evict older cascades or live ranges without a cascade. | 
 |       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; | 
 |       if (Cascade <= IntfCascade) { | 
 |         if (!Urgent) | 
 |           return false; | 
 |         // We permit breaking cascades for urgent evictions. It should be the | 
 |         // last resort, though, so make it really expensive. | 
 |         Cost.BrokenHints += 10; | 
 |       } | 
 |       // Would this break a satisfied hint? | 
 |       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); | 
 |       // Update eviction cost. | 
 |       Cost.BrokenHints += BreaksHint; | 
 |       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); | 
 |       // Abort if this would be too expensive. | 
 |       if (!(Cost < MaxCost)) | 
 |         return false; | 
 |       if (Urgent) | 
 |         continue; | 
 |       // Apply the eviction policy for non-urgent evictions. | 
 |       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) | 
 |         return false; | 
 |       // If !MaxCost.isMax(), then we're just looking for a cheap register. | 
 |       // Evicting another local live range in this case could lead to suboptimal | 
 |       // coloring. | 
 |       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && | 
 |           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |   MaxCost = Cost; | 
 |   return true; | 
 | } | 
 |  | 
 | /// Return true if all interferences between VirtReg and PhysReg between | 
 | /// Start and End can be evicted. | 
 | /// | 
 | /// \param VirtReg Live range that is about to be assigned. | 
 | /// \param PhysReg Desired register for assignment. | 
 | /// \param Start   Start of range to look for interferences. | 
 | /// \param End     End of range to look for interferences. | 
 | /// \param MaxCost Only look for cheaper candidates and update with new cost | 
 | ///                when returning true. | 
 | /// \return True when interference can be evicted cheaper than MaxCost. | 
 | bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, | 
 |                                            unsigned PhysReg, SlotIndex Start, | 
 |                                            SlotIndex End, | 
 |                                            EvictionCost &MaxCost) { | 
 |   EvictionCost Cost; | 
 |  | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); | 
 |  | 
 |     // Check if any interfering live range is heavier than MaxWeight. | 
 |     for (unsigned i = Q.interferingVRegs().size(); i; --i) { | 
 |       LiveInterval *Intf = Q.interferingVRegs()[i - 1]; | 
 |  | 
 |       // Check if interference overlast the segment in interest. | 
 |       if (!Intf->overlaps(Start, End)) | 
 |         continue; | 
 |  | 
 |       // Cannot evict non virtual reg interference. | 
 |       if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) | 
 |         return false; | 
 |       // Never evict spill products. They cannot split or spill. | 
 |       if (getStage(*Intf) == RS_Done) | 
 |         return false; | 
 |  | 
 |       // Would this break a satisfied hint? | 
 |       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); | 
 |       // Update eviction cost. | 
 |       Cost.BrokenHints += BreaksHint; | 
 |       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); | 
 |       // Abort if this would be too expensive. | 
 |       if (!(Cost < MaxCost)) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Cost.MaxWeight == 0) | 
 |     return false; | 
 |  | 
 |   MaxCost = Cost; | 
 |   return true; | 
 | } | 
 |  | 
 | /// Return the physical register that will be best | 
 | /// candidate for eviction by a local split interval that will be created | 
 | /// between Start and End. | 
 | /// | 
 | /// \param Order            The allocation order | 
 | /// \param VirtReg          Live range that is about to be assigned. | 
 | /// \param Start            Start of range to look for interferences | 
 | /// \param End              End of range to look for interferences | 
 | /// \param BestEvictweight  The eviction cost of that eviction | 
 | /// \return The PhysReg which is the best candidate for eviction and the | 
 | /// eviction cost in BestEvictweight | 
 | unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, | 
 |                                             LiveInterval &VirtReg, | 
 |                                             SlotIndex Start, SlotIndex End, | 
 |                                             float *BestEvictweight) { | 
 |   EvictionCost BestEvictCost; | 
 |   BestEvictCost.setMax(); | 
 |   BestEvictCost.MaxWeight = VirtReg.weight; | 
 |   unsigned BestEvicteePhys = 0; | 
 |  | 
 |   // Go over all physical registers and find the best candidate for eviction | 
 |   for (auto PhysReg : Order.getOrder()) { | 
 |  | 
 |     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, | 
 |                                      BestEvictCost)) | 
 |       continue; | 
 |  | 
 |     // Best so far. | 
 |     BestEvicteePhys = PhysReg; | 
 |   } | 
 |   *BestEvictweight = BestEvictCost.MaxWeight; | 
 |   return BestEvicteePhys; | 
 | } | 
 |  | 
 | /// evictInterference - Evict any interferring registers that prevent VirtReg | 
 | /// from being assigned to Physreg. This assumes that canEvictInterference | 
 | /// returned true. | 
 | void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   // Make sure that VirtReg has a cascade number, and assign that cascade | 
 |   // number to every evicted register. These live ranges than then only be | 
 |   // evicted by a newer cascade, preventing infinite loops. | 
 |   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; | 
 |   if (!Cascade) | 
 |     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) | 
 |                     << " interference: Cascade " << Cascade << '\n'); | 
 |  | 
 |   // Collect all interfering virtregs first. | 
 |   SmallVector<LiveInterval*, 8> Intfs; | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); | 
 |     // We usually have the interfering VRegs cached so collectInterferingVRegs() | 
 |     // should be fast, we may need to recalculate if when different physregs | 
 |     // overlap the same register unit so we had different SubRanges queried | 
 |     // against it. | 
 |     Q.collectInterferingVRegs(); | 
 |     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); | 
 |     Intfs.append(IVR.begin(), IVR.end()); | 
 |   } | 
 |  | 
 |   // Evict them second. This will invalidate the queries. | 
 |   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { | 
 |     LiveInterval *Intf = Intfs[i]; | 
 |     // The same VirtReg may be present in multiple RegUnits. Skip duplicates. | 
 |     if (!VRM->hasPhys(Intf->reg)) | 
 |       continue; | 
 |  | 
 |     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); | 
 |  | 
 |     Matrix->unassign(*Intf); | 
 |     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || | 
 |             VirtReg.isSpillable() < Intf->isSpillable()) && | 
 |            "Cannot decrease cascade number, illegal eviction"); | 
 |     ExtraRegInfo[Intf->reg].Cascade = Cascade; | 
 |     ++NumEvicted; | 
 |     NewVRegs.push_back(Intf->reg); | 
 |   } | 
 | } | 
 |  | 
 | /// Returns true if the given \p PhysReg is a callee saved register and has not | 
 | /// been used for allocation yet. | 
 | bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { | 
 |   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); | 
 |   if (CSR == 0) | 
 |     return false; | 
 |  | 
 |   return !Matrix->isPhysRegUsed(PhysReg); | 
 | } | 
 |  | 
 | /// tryEvict - Try to evict all interferences for a physreg. | 
 | /// @param  VirtReg Currently unassigned virtual register. | 
 | /// @param  Order   Physregs to try. | 
 | /// @return         Physreg to assign VirtReg, or 0. | 
 | unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, | 
 |                             AllocationOrder &Order, | 
 |                             SmallVectorImpl<unsigned> &NewVRegs, | 
 |                             unsigned CostPerUseLimit, | 
 |                             const SmallVirtRegSet &FixedRegisters) { | 
 |   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, | 
 |                      TimePassesIsEnabled); | 
 |  | 
 |   // Keep track of the cheapest interference seen so far. | 
 |   EvictionCost BestCost; | 
 |   BestCost.setMax(); | 
 |   unsigned BestPhys = 0; | 
 |   unsigned OrderLimit = Order.getOrder().size(); | 
 |  | 
 |   // When we are just looking for a reduced cost per use, don't break any | 
 |   // hints, and only evict smaller spill weights. | 
 |   if (CostPerUseLimit < ~0u) { | 
 |     BestCost.BrokenHints = 0; | 
 |     BestCost.MaxWeight = VirtReg.weight; | 
 |  | 
 |     // Check of any registers in RC are below CostPerUseLimit. | 
 |     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); | 
 |     unsigned MinCost = RegClassInfo.getMinCost(RC); | 
 |     if (MinCost >= CostPerUseLimit) { | 
 |       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " | 
 |                         << MinCost << ", no cheaper registers to be found.\n"); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // It is normal for register classes to have a long tail of registers with | 
 |     // the same cost. We don't need to look at them if they're too expensive. | 
 |     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { | 
 |       OrderLimit = RegClassInfo.getLastCostChange(RC); | 
 |       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit | 
 |                         << " regs.\n"); | 
 |     } | 
 |   } | 
 |  | 
 |   Order.rewind(); | 
 |   while (unsigned PhysReg = Order.next(OrderLimit)) { | 
 |     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) | 
 |       continue; | 
 |     // The first use of a callee-saved register in a function has cost 1. | 
 |     // Don't start using a CSR when the CostPerUseLimit is low. | 
 |     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { | 
 |       LLVM_DEBUG( | 
 |           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " | 
 |                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) | 
 |                  << '\n'); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, | 
 |                               FixedRegisters)) | 
 |       continue; | 
 |  | 
 |     // Best so far. | 
 |     BestPhys = PhysReg; | 
 |  | 
 |     // Stop if the hint can be used. | 
 |     if (Order.isHint()) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (!BestPhys) | 
 |     return 0; | 
 |  | 
 |   evictInterference(VirtReg, BestPhys, NewVRegs); | 
 |   return BestPhys; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Region Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// addSplitConstraints - Fill out the SplitConstraints vector based on the | 
 | /// interference pattern in Physreg and its aliases. Add the constraints to | 
 | /// SpillPlacement and return the static cost of this split in Cost, assuming | 
 | /// that all preferences in SplitConstraints are met. | 
 | /// Return false if there are no bundles with positive bias. | 
 | bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, | 
 |                                    BlockFrequency &Cost) { | 
 |   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
 |  | 
 |   // Reset interference dependent info. | 
 |   SplitConstraints.resize(UseBlocks.size()); | 
 |   BlockFrequency StaticCost = 0; | 
 |   for (unsigned i = 0; i != UseBlocks.size(); ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; | 
 |     SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; | 
 |  | 
 |     BC.Number = BI.MBB->getNumber(); | 
 |     Intf.moveToBlock(BC.Number); | 
 |     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; | 
 |     BC.Exit = (BI.LiveOut && | 
 |                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) | 
 |                   ? SpillPlacement::PrefReg | 
 |                   : SpillPlacement::DontCare; | 
 |     BC.ChangesValue = BI.FirstDef.isValid(); | 
 |  | 
 |     if (!Intf.hasInterference()) | 
 |       continue; | 
 |  | 
 |     // Number of spill code instructions to insert. | 
 |     unsigned Ins = 0; | 
 |  | 
 |     // Interference for the live-in value. | 
 |     if (BI.LiveIn) { | 
 |       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { | 
 |         BC.Entry = SpillPlacement::MustSpill; | 
 |         ++Ins; | 
 |       } else if (Intf.first() < BI.FirstInstr) { | 
 |         BC.Entry = SpillPlacement::PrefSpill; | 
 |         ++Ins; | 
 |       } else if (Intf.first() < BI.LastInstr) { | 
 |         ++Ins; | 
 |       } | 
 |  | 
 |       // Abort if the spill cannot be inserted at the MBB' start | 
 |       if (((BC.Entry == SpillPlacement::MustSpill) || | 
 |            (BC.Entry == SpillPlacement::PrefSpill)) && | 
 |           SlotIndex::isEarlierInstr(BI.FirstInstr, | 
 |                                     SA->getFirstSplitPoint(BC.Number))) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Interference for the live-out value. | 
 |     if (BI.LiveOut) { | 
 |       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { | 
 |         BC.Exit = SpillPlacement::MustSpill; | 
 |         ++Ins; | 
 |       } else if (Intf.last() > BI.LastInstr) { | 
 |         BC.Exit = SpillPlacement::PrefSpill; | 
 |         ++Ins; | 
 |       } else if (Intf.last() > BI.FirstInstr) { | 
 |         ++Ins; | 
 |       } | 
 |     } | 
 |  | 
 |     // Accumulate the total frequency of inserted spill code. | 
 |     while (Ins--) | 
 |       StaticCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |   } | 
 |   Cost = StaticCost; | 
 |  | 
 |   // Add constraints for use-blocks. Note that these are the only constraints | 
 |   // that may add a positive bias, it is downhill from here. | 
 |   SpillPlacer->addConstraints(SplitConstraints); | 
 |   return SpillPlacer->scanActiveBundles(); | 
 | } | 
 |  | 
 | /// addThroughConstraints - Add constraints and links to SpillPlacer from the | 
 | /// live-through blocks in Blocks. | 
 | bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, | 
 |                                      ArrayRef<unsigned> Blocks) { | 
 |   const unsigned GroupSize = 8; | 
 |   SpillPlacement::BlockConstraint BCS[GroupSize]; | 
 |   unsigned TBS[GroupSize]; | 
 |   unsigned B = 0, T = 0; | 
 |  | 
 |   for (unsigned i = 0; i != Blocks.size(); ++i) { | 
 |     unsigned Number = Blocks[i]; | 
 |     Intf.moveToBlock(Number); | 
 |  | 
 |     if (!Intf.hasInterference()) { | 
 |       assert(T < GroupSize && "Array overflow"); | 
 |       TBS[T] = Number; | 
 |       if (++T == GroupSize) { | 
 |         SpillPlacer->addLinks(makeArrayRef(TBS, T)); | 
 |         T = 0; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     assert(B < GroupSize && "Array overflow"); | 
 |     BCS[B].Number = Number; | 
 |  | 
 |     // Abort if the spill cannot be inserted at the MBB' start | 
 |     MachineBasicBlock *MBB = MF->getBlockNumbered(Number); | 
 |     if (!MBB->empty() && | 
 |         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), | 
 |                                   SA->getFirstSplitPoint(Number))) | 
 |       return false; | 
 |     // Interference for the live-in value. | 
 |     if (Intf.first() <= Indexes->getMBBStartIdx(Number)) | 
 |       BCS[B].Entry = SpillPlacement::MustSpill; | 
 |     else | 
 |       BCS[B].Entry = SpillPlacement::PrefSpill; | 
 |  | 
 |     // Interference for the live-out value. | 
 |     if (Intf.last() >= SA->getLastSplitPoint(Number)) | 
 |       BCS[B].Exit = SpillPlacement::MustSpill; | 
 |     else | 
 |       BCS[B].Exit = SpillPlacement::PrefSpill; | 
 |  | 
 |     if (++B == GroupSize) { | 
 |       SpillPlacer->addConstraints(makeArrayRef(BCS, B)); | 
 |       B = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   SpillPlacer->addConstraints(makeArrayRef(BCS, B)); | 
 |   SpillPlacer->addLinks(makeArrayRef(TBS, T)); | 
 |   return true; | 
 | } | 
 |  | 
 | bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { | 
 |   // Keep track of through blocks that have not been added to SpillPlacer. | 
 |   BitVector Todo = SA->getThroughBlocks(); | 
 |   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; | 
 |   unsigned AddedTo = 0; | 
 | #ifndef NDEBUG | 
 |   unsigned Visited = 0; | 
 | #endif | 
 |  | 
 |   while (true) { | 
 |     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); | 
 |     // Find new through blocks in the periphery of PrefRegBundles. | 
 |     for (int i = 0, e = NewBundles.size(); i != e; ++i) { | 
 |       unsigned Bundle = NewBundles[i]; | 
 |       // Look at all blocks connected to Bundle in the full graph. | 
 |       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); | 
 |       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); | 
 |            I != E; ++I) { | 
 |         unsigned Block = *I; | 
 |         if (!Todo.test(Block)) | 
 |           continue; | 
 |         Todo.reset(Block); | 
 |         // This is a new through block. Add it to SpillPlacer later. | 
 |         ActiveBlocks.push_back(Block); | 
 | #ifndef NDEBUG | 
 |         ++Visited; | 
 | #endif | 
 |       } | 
 |     } | 
 |     // Any new blocks to add? | 
 |     if (ActiveBlocks.size() == AddedTo) | 
 |       break; | 
 |  | 
 |     // Compute through constraints from the interference, or assume that all | 
 |     // through blocks prefer spilling when forming compact regions. | 
 |     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); | 
 |     if (Cand.PhysReg) { | 
 |       if (!addThroughConstraints(Cand.Intf, NewBlocks)) | 
 |         return false; | 
 |     } else | 
 |       // Provide a strong negative bias on through blocks to prevent unwanted | 
 |       // liveness on loop backedges. | 
 |       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); | 
 |     AddedTo = ActiveBlocks.size(); | 
 |  | 
 |     // Perhaps iterating can enable more bundles? | 
 |     SpillPlacer->iterate(); | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << ", v=" << Visited); | 
 |   return true; | 
 | } | 
 |  | 
 | /// calcCompactRegion - Compute the set of edge bundles that should be live | 
 | /// when splitting the current live range into compact regions.  Compact | 
 | /// regions can be computed without looking at interference.  They are the | 
 | /// regions formed by removing all the live-through blocks from the live range. | 
 | /// | 
 | /// Returns false if the current live range is already compact, or if the | 
 | /// compact regions would form single block regions anyway. | 
 | bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { | 
 |   // Without any through blocks, the live range is already compact. | 
 |   if (!SA->getNumThroughBlocks()) | 
 |     return false; | 
 |  | 
 |   // Compact regions don't correspond to any physreg. | 
 |   Cand.reset(IntfCache, 0); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Compact region bundles"); | 
 |  | 
 |   // Use the spill placer to determine the live bundles. GrowRegion pretends | 
 |   // that all the through blocks have interference when PhysReg is unset. | 
 |   SpillPlacer->prepare(Cand.LiveBundles); | 
 |  | 
 |   // The static split cost will be zero since Cand.Intf reports no interference. | 
 |   BlockFrequency Cost; | 
 |   if (!addSplitConstraints(Cand.Intf, Cost)) { | 
 |     LLVM_DEBUG(dbgs() << ", none.\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!growRegion(Cand)) { | 
 |     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   SpillPlacer->finish(); | 
 |  | 
 |   if (!Cand.LiveBundles.any()) { | 
 |     LLVM_DEBUG(dbgs() << ", none.\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     for (int i : Cand.LiveBundles.set_bits()) | 
 |       dbgs() << " EB#" << i; | 
 |     dbgs() << ".\n"; | 
 |   }); | 
 |   return true; | 
 | } | 
 |  | 
 | /// calcSpillCost - Compute how expensive it would be to split the live range in | 
 | /// SA around all use blocks instead of forming bundle regions. | 
 | BlockFrequency RAGreedy::calcSpillCost() { | 
 |   BlockFrequency Cost = 0; | 
 |   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
 |   for (unsigned i = 0; i != UseBlocks.size(); ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; | 
 |     unsigned Number = BI.MBB->getNumber(); | 
 |     // We normally only need one spill instruction - a load or a store. | 
 |     Cost += SpillPlacer->getBlockFrequency(Number); | 
 |  | 
 |     // Unless the value is redefined in the block. | 
 |     if (BI.LiveIn && BI.LiveOut && BI.FirstDef) | 
 |       Cost += SpillPlacer->getBlockFrequency(Number); | 
 |   } | 
 |   return Cost; | 
 | } | 
 |  | 
 | /// Check if splitting Evictee will create a local split interval in | 
 | /// basic block number BBNumber that may cause a bad eviction chain. This is | 
 | /// intended to prevent bad eviction sequences like: | 
 | /// movl	%ebp, 8(%esp)           # 4-byte Spill | 
 | /// movl	%ecx, %ebp | 
 | /// movl	%ebx, %ecx | 
 | /// movl	%edi, %ebx | 
 | /// movl	%edx, %edi | 
 | /// cltd | 
 | /// idivl	%esi | 
 | /// movl	%edi, %edx | 
 | /// movl	%ebx, %edi | 
 | /// movl	%ecx, %ebx | 
 | /// movl	%ebp, %ecx | 
 | /// movl	16(%esp), %ebp          # 4 - byte Reload | 
 | /// | 
 | /// Such sequences are created in 2 scenarios: | 
 | /// | 
 | /// Scenario #1: | 
 | /// %0 is evicted from physreg0 by %1. | 
 | /// Evictee %0 is intended for region splitting with split candidate | 
 | /// physreg0 (the reg %0 was evicted from). | 
 | /// Region splitting creates a local interval because of interference with the | 
 | /// evictor %1 (normally region splitting creates 2 interval, the "by reg" | 
 | /// and "by stack" intervals and local interval created when interference | 
 | /// occurs). | 
 | /// One of the split intervals ends up evicting %2 from physreg1. | 
 | /// Evictee %2 is intended for region splitting with split candidate | 
 | /// physreg1. | 
 | /// One of the split intervals ends up evicting %3 from physreg2, etc. | 
 | /// | 
 | /// Scenario #2 | 
 | /// %0 is evicted from physreg0 by %1. | 
 | /// %2 is evicted from physreg2 by %3 etc. | 
 | /// Evictee %0 is intended for region splitting with split candidate | 
 | /// physreg1. | 
 | /// Region splitting creates a local interval because of interference with the | 
 | /// evictor %1. | 
 | /// One of the split intervals ends up evicting back original evictor %1 | 
 | /// from physreg0 (the reg %0 was evicted from). | 
 | /// Another evictee %2 is intended for region splitting with split candidate | 
 | /// physreg1. | 
 | /// One of the split intervals ends up evicting %3 from physreg2, etc. | 
 | /// | 
 | /// \param Evictee  The register considered to be split. | 
 | /// \param Cand     The split candidate that determines the physical register | 
 | ///                 we are splitting for and the interferences. | 
 | /// \param BBNumber The number of a BB for which the region split process will | 
 | ///                 create a local split interval. | 
 | /// \param Order    The physical registers that may get evicted by a split | 
 | ///                 artifact of Evictee. | 
 | /// \return True if splitting Evictee may cause a bad eviction chain, false | 
 | /// otherwise. | 
 | bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, | 
 |                                           GlobalSplitCandidate &Cand, | 
 |                                           unsigned BBNumber, | 
 |                                           const AllocationOrder &Order) { | 
 |   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); | 
 |   unsigned Evictor = VregEvictorInfo.first; | 
 |   unsigned PhysReg = VregEvictorInfo.second; | 
 |  | 
 |   // No actual evictor. | 
 |   if (!Evictor || !PhysReg) | 
 |     return false; | 
 |  | 
 |   float MaxWeight = 0; | 
 |   unsigned FutureEvictedPhysReg = | 
 |       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), | 
 |                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); | 
 |  | 
 |   // The bad eviction chain occurs when either the split candidate is the | 
 |   // evicting reg or one of the split artifact will evict the evicting reg. | 
 |   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) | 
 |     return false; | 
 |  | 
 |   Cand.Intf.moveToBlock(BBNumber); | 
 |  | 
 |   // Check to see if the Evictor contains interference (with Evictee) in the | 
 |   // given BB. If so, this interference caused the eviction of Evictee from | 
 |   // PhysReg. This suggest that we will create a local interval during the | 
 |   // region split to avoid this interference This local interval may cause a bad | 
 |   // eviction chain. | 
 |   if (!LIS->hasInterval(Evictor)) | 
 |     return false; | 
 |   LiveInterval &EvictorLI = LIS->getInterval(Evictor); | 
 |   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) | 
 |     return false; | 
 |  | 
 |   // Now, check to see if the local interval we will create is going to be | 
 |   // expensive enough to evict somebody If so, this may cause a bad eviction | 
 |   // chain. | 
 |   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); | 
 |   float splitArtifactWeight = | 
 |       VRAI.futureWeight(LIS->getInterval(Evictee), | 
 |                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); | 
 |   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check if splitting VirtRegToSplit will create a local split interval | 
 | /// in basic block number BBNumber that may cause a spill. | 
 | /// | 
 | /// \param VirtRegToSplit The register considered to be split. | 
 | /// \param Cand           The split candidate that determines the physical | 
 | ///                       register we are splitting for and the interferences. | 
 | /// \param BBNumber       The number of a BB for which the region split process | 
 | ///                       will create a local split interval. | 
 | /// \param Order          The physical registers that may get evicted by a | 
 | ///                       split artifact of VirtRegToSplit. | 
 | /// \return True if splitting VirtRegToSplit may cause a spill, false | 
 | /// otherwise. | 
 | bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, | 
 |                                        GlobalSplitCandidate &Cand, | 
 |                                        unsigned BBNumber, | 
 |                                        const AllocationOrder &Order) { | 
 |   Cand.Intf.moveToBlock(BBNumber); | 
 |  | 
 |   // Check if the local interval will find a non interfereing assignment. | 
 |   for (auto PhysReg : Order.getOrder()) { | 
 |     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), | 
 |                                    Cand.Intf.last(), PhysReg)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Check if the local interval will evict a cheaper interval. | 
 |   float CheapestEvictWeight = 0; | 
 |   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( | 
 |       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), | 
 |       Cand.Intf.last(), &CheapestEvictWeight); | 
 |  | 
 |   // Have we found an interval that can be evicted? | 
 |   if (FutureEvictedPhysReg) { | 
 |     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); | 
 |     float splitArtifactWeight = | 
 |         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), | 
 |                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); | 
 |     // Will the weight of the local interval be higher than the cheapest evictee | 
 |     // weight? If so it will evict it and will not cause a spill. | 
 |     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // The local interval is not able to find non interferencing assignment and | 
 |   // not able to evict a less worthy interval, therfore, it can cause a spill. | 
 |   return true; | 
 | } | 
 |  | 
 | /// calcGlobalSplitCost - Return the global split cost of following the split | 
 | /// pattern in LiveBundles. This cost should be added to the local cost of the | 
 | /// interference pattern in SplitConstraints. | 
 | /// | 
 | BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, | 
 |                                              const AllocationOrder &Order, | 
 |                                              bool *CanCauseEvictionChain) { | 
 |   BlockFrequency GlobalCost = 0; | 
 |   const BitVector &LiveBundles = Cand.LiveBundles; | 
 |   unsigned VirtRegToSplit = SA->getParent().reg; | 
 |   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
 |   for (unsigned i = 0; i != UseBlocks.size(); ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; | 
 |     SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; | 
 |     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)]; | 
 |     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; | 
 |     unsigned Ins = 0; | 
 |  | 
 |     Cand.Intf.moveToBlock(BC.Number); | 
 |     // Check wheather a local interval is going to be created during the region | 
 |     // split. Calculate adavanced spilt cost (cost of local intervals) if option | 
 |     // is enabled. | 
 |     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && | 
 |         BI.LiveOut && RegIn && RegOut) { | 
 |  | 
 |       if (CanCauseEvictionChain && | 
 |           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { | 
 |         // This interference causes our eviction from this assignment, we might | 
 |         // evict somebody else and eventually someone will spill, add that cost. | 
 |         // See splitCanCauseEvictionChain for detailed description of scenarios. | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |  | 
 |         *CanCauseEvictionChain = true; | 
 |  | 
 |       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, | 
 |                                          Order)) { | 
 |         // This interference causes local interval to spill, add that cost. | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |       } | 
 |     } | 
 |  | 
 |     if (BI.LiveIn) | 
 |       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); | 
 |     if (BI.LiveOut) | 
 |       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); | 
 |     while (Ins--) | 
 |       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { | 
 |     unsigned Number = Cand.ActiveBlocks[i]; | 
 |     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)]; | 
 |     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; | 
 |     if (!RegIn && !RegOut) | 
 |       continue; | 
 |     if (RegIn && RegOut) { | 
 |       // We need double spill code if this block has interference. | 
 |       Cand.Intf.moveToBlock(Number); | 
 |       if (Cand.Intf.hasInterference()) { | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
 |         GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
 |  | 
 |         // Check wheather a local interval is going to be created during the | 
 |         // region split. | 
 |         if (EnableAdvancedRASplitCost && CanCauseEvictionChain && | 
 |             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { | 
 |           // This interference cause our eviction from this assignment, we might | 
 |           // evict somebody else, add that cost. | 
 |           // See splitCanCauseEvictionChain for detailed description of | 
 |           // scenarios. | 
 |           GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
 |           GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
 |  | 
 |           *CanCauseEvictionChain = true; | 
 |         } | 
 |       } | 
 |       continue; | 
 |     } | 
 |     // live-in / stack-out or stack-in live-out. | 
 |     GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
 |   } | 
 |   return GlobalCost; | 
 | } | 
 |  | 
 | /// splitAroundRegion - Split the current live range around the regions | 
 | /// determined by BundleCand and GlobalCand. | 
 | /// | 
 | /// Before calling this function, GlobalCand and BundleCand must be initialized | 
 | /// so each bundle is assigned to a valid candidate, or NoCand for the | 
 | /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor | 
 | /// objects must be initialized for the current live range, and intervals | 
 | /// created for the used candidates. | 
 | /// | 
 | /// @param LREdit    The LiveRangeEdit object handling the current split. | 
 | /// @param UsedCands List of used GlobalCand entries. Every BundleCand value | 
 | ///                  must appear in this list. | 
 | void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, | 
 |                                  ArrayRef<unsigned> UsedCands) { | 
 |   // These are the intervals created for new global ranges. We may create more | 
 |   // intervals for local ranges. | 
 |   const unsigned NumGlobalIntvs = LREdit.size(); | 
 |   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs | 
 |                     << " globals.\n"); | 
 |   assert(NumGlobalIntvs && "No global intervals configured"); | 
 |  | 
 |   // Isolate even single instructions when dealing with a proper sub-class. | 
 |   // That guarantees register class inflation for the stack interval because it | 
 |   // is all copies. | 
 |   unsigned Reg = SA->getParent().reg; | 
 |   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); | 
 |  | 
 |   // First handle all the blocks with uses. | 
 |   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
 |   for (unsigned i = 0; i != UseBlocks.size(); ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; | 
 |     unsigned Number = BI.MBB->getNumber(); | 
 |     unsigned IntvIn = 0, IntvOut = 0; | 
 |     SlotIndex IntfIn, IntfOut; | 
 |     if (BI.LiveIn) { | 
 |       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; | 
 |       if (CandIn != NoCand) { | 
 |         GlobalSplitCandidate &Cand = GlobalCand[CandIn]; | 
 |         IntvIn = Cand.IntvIdx; | 
 |         Cand.Intf.moveToBlock(Number); | 
 |         IntfIn = Cand.Intf.first(); | 
 |       } | 
 |     } | 
 |     if (BI.LiveOut) { | 
 |       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; | 
 |       if (CandOut != NoCand) { | 
 |         GlobalSplitCandidate &Cand = GlobalCand[CandOut]; | 
 |         IntvOut = Cand.IntvIdx; | 
 |         Cand.Intf.moveToBlock(Number); | 
 |         IntfOut = Cand.Intf.last(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Create separate intervals for isolated blocks with multiple uses. | 
 |     if (!IntvIn && !IntvOut) { | 
 |       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); | 
 |       if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) | 
 |         SE->splitSingleBlock(BI); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (IntvIn && IntvOut) | 
 |       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); | 
 |     else if (IntvIn) | 
 |       SE->splitRegInBlock(BI, IntvIn, IntfIn); | 
 |     else | 
 |       SE->splitRegOutBlock(BI, IntvOut, IntfOut); | 
 |   } | 
 |  | 
 |   // Handle live-through blocks. The relevant live-through blocks are stored in | 
 |   // the ActiveBlocks list with each candidate. We need to filter out | 
 |   // duplicates. | 
 |   BitVector Todo = SA->getThroughBlocks(); | 
 |   for (unsigned c = 0; c != UsedCands.size(); ++c) { | 
 |     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; | 
 |     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { | 
 |       unsigned Number = Blocks[i]; | 
 |       if (!Todo.test(Number)) | 
 |         continue; | 
 |       Todo.reset(Number); | 
 |  | 
 |       unsigned IntvIn = 0, IntvOut = 0; | 
 |       SlotIndex IntfIn, IntfOut; | 
 |  | 
 |       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; | 
 |       if (CandIn != NoCand) { | 
 |         GlobalSplitCandidate &Cand = GlobalCand[CandIn]; | 
 |         IntvIn = Cand.IntvIdx; | 
 |         Cand.Intf.moveToBlock(Number); | 
 |         IntfIn = Cand.Intf.first(); | 
 |       } | 
 |  | 
 |       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; | 
 |       if (CandOut != NoCand) { | 
 |         GlobalSplitCandidate &Cand = GlobalCand[CandOut]; | 
 |         IntvOut = Cand.IntvIdx; | 
 |         Cand.Intf.moveToBlock(Number); | 
 |         IntfOut = Cand.Intf.last(); | 
 |       } | 
 |       if (!IntvIn && !IntvOut) | 
 |         continue; | 
 |       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); | 
 |     } | 
 |   } | 
 |  | 
 |   ++NumGlobalSplits; | 
 |  | 
 |   SmallVector<unsigned, 8> IntvMap; | 
 |   SE->finish(&IntvMap); | 
 |   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); | 
 |  | 
 |   ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |   unsigned OrigBlocks = SA->getNumLiveBlocks(); | 
 |  | 
 |   // Sort out the new intervals created by splitting. We get four kinds: | 
 |   // - Remainder intervals should not be split again. | 
 |   // - Candidate intervals can be assigned to Cand.PhysReg. | 
 |   // - Block-local splits are candidates for local splitting. | 
 |   // - DCE leftovers should go back on the queue. | 
 |   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { | 
 |     LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); | 
 |  | 
 |     // Ignore old intervals from DCE. | 
 |     if (getStage(Reg) != RS_New) | 
 |       continue; | 
 |  | 
 |     // Remainder interval. Don't try splitting again, spill if it doesn't | 
 |     // allocate. | 
 |     if (IntvMap[i] == 0) { | 
 |       setStage(Reg, RS_Spill); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Global intervals. Allow repeated splitting as long as the number of live | 
 |     // blocks is strictly decreasing. | 
 |     if (IntvMap[i] < NumGlobalIntvs) { | 
 |       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { | 
 |         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks | 
 |                           << " blocks as original.\n"); | 
 |         // Don't allow repeated splitting as a safe guard against looping. | 
 |         setStage(Reg, RS_Split2); | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Other intervals are treated as new. This includes local intervals created | 
 |     // for blocks with multiple uses, and anything created by DCE. | 
 |   } | 
 |  | 
 |   if (VerifyEnabled) | 
 |     MF->verify(this, "After splitting live range around region"); | 
 | } | 
 |  | 
 | // Global split has high compile time cost especially for large live range. | 
 | // Return false for the case here where the potential benefit will never | 
 | // worth the cost. | 
 | unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) { | 
 |   MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg); | 
 |   if (MI && TII->isTriviallyReMaterializable(*MI, AA) && | 
 |       VirtReg.size() > HugeSizeForSplit) | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                                   SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   if (!isSplitBenefitWorthCost(VirtReg)) | 
 |     return 0; | 
 |   unsigned NumCands = 0; | 
 |   BlockFrequency SpillCost = calcSpillCost(); | 
 |   BlockFrequency BestCost; | 
 |  | 
 |   // Check if we can split this live range around a compact region. | 
 |   bool HasCompact = calcCompactRegion(GlobalCand.front()); | 
 |   if (HasCompact) { | 
 |     // Yes, keep GlobalCand[0] as the compact region candidate. | 
 |     NumCands = 1; | 
 |     BestCost = BlockFrequency::getMaxFrequency(); | 
 |   } else { | 
 |     // No benefit from the compact region, our fallback will be per-block | 
 |     // splitting. Make sure we find a solution that is cheaper than spilling. | 
 |     BestCost = SpillCost; | 
 |     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; | 
 |                MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); | 
 |   } | 
 |  | 
 |   bool CanCauseEvictionChain = false; | 
 |   unsigned BestCand = | 
 |       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, | 
 |                                false /*IgnoreCSR*/, &CanCauseEvictionChain); | 
 |  | 
 |   // Split candidates with compact regions can cause a bad eviction sequence. | 
 |   // See splitCanCauseEvictionChain for detailed description of scenarios. | 
 |   // To avoid it, we need to comapre the cost with the spill cost and not the | 
 |   // current max frequency. | 
 |   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && | 
 |     CanCauseEvictionChain) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // No solutions found, fall back to single block splitting. | 
 |   if (!HasCompact && BestCand == NoCand) | 
 |     return 0; | 
 |  | 
 |   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); | 
 | } | 
 |  | 
 | unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, | 
 |                                             AllocationOrder &Order, | 
 |                                             BlockFrequency &BestCost, | 
 |                                             unsigned &NumCands, bool IgnoreCSR, | 
 |                                             bool *CanCauseEvictionChain) { | 
 |   unsigned BestCand = NoCand; | 
 |   Order.rewind(); | 
 |   while (unsigned PhysReg = Order.next()) { | 
 |     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) | 
 |       continue; | 
 |  | 
 |     // Discard bad candidates before we run out of interference cache cursors. | 
 |     // This will only affect register classes with a lot of registers (>32). | 
 |     if (NumCands == IntfCache.getMaxCursors()) { | 
 |       unsigned WorstCount = ~0u; | 
 |       unsigned Worst = 0; | 
 |       for (unsigned i = 0; i != NumCands; ++i) { | 
 |         if (i == BestCand || !GlobalCand[i].PhysReg) | 
 |           continue; | 
 |         unsigned Count = GlobalCand[i].LiveBundles.count(); | 
 |         if (Count < WorstCount) { | 
 |           Worst = i; | 
 |           WorstCount = Count; | 
 |         } | 
 |       } | 
 |       --NumCands; | 
 |       GlobalCand[Worst] = GlobalCand[NumCands]; | 
 |       if (BestCand == NumCands) | 
 |         BestCand = Worst; | 
 |     } | 
 |  | 
 |     if (GlobalCand.size() <= NumCands) | 
 |       GlobalCand.resize(NumCands+1); | 
 |     GlobalSplitCandidate &Cand = GlobalCand[NumCands]; | 
 |     Cand.reset(IntfCache, PhysReg); | 
 |  | 
 |     SpillPlacer->prepare(Cand.LiveBundles); | 
 |     BlockFrequency Cost; | 
 |     if (!addSplitConstraints(Cand.Intf, Cost)) { | 
 |       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); | 
 |       continue; | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; | 
 |                MBFI->printBlockFreq(dbgs(), Cost)); | 
 |     if (Cost >= BestCost) { | 
 |       LLVM_DEBUG({ | 
 |         if (BestCand == NoCand) | 
 |           dbgs() << " worse than no bundles\n"; | 
 |         else | 
 |           dbgs() << " worse than " | 
 |                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; | 
 |       }); | 
 |       continue; | 
 |     } | 
 |     if (!growRegion(Cand)) { | 
 |       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     SpillPlacer->finish(); | 
 |  | 
 |     // No live bundles, defer to splitSingleBlocks(). | 
 |     if (!Cand.LiveBundles.any()) { | 
 |       LLVM_DEBUG(dbgs() << " no bundles.\n"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     bool HasEvictionChain = false; | 
 |     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); | 
 |     LLVM_DEBUG({ | 
 |       dbgs() << ", total = "; | 
 |       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; | 
 |       for (int i : Cand.LiveBundles.set_bits()) | 
 |         dbgs() << " EB#" << i; | 
 |       dbgs() << ".\n"; | 
 |     }); | 
 |     if (Cost < BestCost) { | 
 |       BestCand = NumCands; | 
 |       BestCost = Cost; | 
 |       // See splitCanCauseEvictionChain for detailed description of bad | 
 |       // eviction chain scenarios. | 
 |       if (CanCauseEvictionChain) | 
 |         *CanCauseEvictionChain = HasEvictionChain; | 
 |     } | 
 |     ++NumCands; | 
 |   } | 
 |  | 
 |   if (CanCauseEvictionChain && BestCand != NoCand) { | 
 |     // See splitCanCauseEvictionChain for detailed description of bad | 
 |     // eviction chain scenarios. | 
 |     LLVM_DEBUG(dbgs() << "Best split candidate of vreg " | 
 |                       << printReg(VirtReg.reg, TRI) << "  may "); | 
 |     if (!(*CanCauseEvictionChain)) | 
 |       LLVM_DEBUG(dbgs() << "not "); | 
 |     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); | 
 |   } | 
 |  | 
 |   return BestCand; | 
 | } | 
 |  | 
 | unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, | 
 |                                  bool HasCompact, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   SmallVector<unsigned, 8> UsedCands; | 
 |   // Prepare split editor. | 
 |   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
 |   SE->reset(LREdit, SplitSpillMode); | 
 |  | 
 |   // Assign all edge bundles to the preferred candidate, or NoCand. | 
 |   BundleCand.assign(Bundles->getNumBundles(), NoCand); | 
 |  | 
 |   // Assign bundles for the best candidate region. | 
 |   if (BestCand != NoCand) { | 
 |     GlobalSplitCandidate &Cand = GlobalCand[BestCand]; | 
 |     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { | 
 |       UsedCands.push_back(BestCand); | 
 |       Cand.IntvIdx = SE->openIntv(); | 
 |       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " | 
 |                         << B << " bundles, intv " << Cand.IntvIdx << ".\n"); | 
 |       (void)B; | 
 |     } | 
 |   } | 
 |  | 
 |   // Assign bundles for the compact region. | 
 |   if (HasCompact) { | 
 |     GlobalSplitCandidate &Cand = GlobalCand.front(); | 
 |     assert(!Cand.PhysReg && "Compact region has no physreg"); | 
 |     if (unsigned B = Cand.getBundles(BundleCand, 0)) { | 
 |       UsedCands.push_back(0); | 
 |       Cand.IntvIdx = SE->openIntv(); | 
 |       LLVM_DEBUG(dbgs() << "Split for compact region in " << B | 
 |                         << " bundles, intv " << Cand.IntvIdx << ".\n"); | 
 |       (void)B; | 
 |     } | 
 |   } | 
 |  | 
 |   splitAroundRegion(LREdit, UsedCands); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Per-Block Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// tryBlockSplit - Split a global live range around every block with uses. This | 
 | /// creates a lot of local live ranges, that will be split by tryLocalSplit if | 
 | /// they don't allocate. | 
 | unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); | 
 |   unsigned Reg = VirtReg.reg; | 
 |   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); | 
 |   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
 |   SE->reset(LREdit, SplitSpillMode); | 
 |   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
 |   for (unsigned i = 0; i != UseBlocks.size(); ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; | 
 |     if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) | 
 |       SE->splitSingleBlock(BI); | 
 |   } | 
 |   // No blocks were split. | 
 |   if (LREdit.empty()) | 
 |     return 0; | 
 |  | 
 |   // We did split for some blocks. | 
 |   SmallVector<unsigned, 8> IntvMap; | 
 |   SE->finish(&IntvMap); | 
 |  | 
 |   // Tell LiveDebugVariables about the new ranges. | 
 |   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); | 
 |  | 
 |   ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |  | 
 |   // Sort out the new intervals created by splitting. The remainder interval | 
 |   // goes straight to spilling, the new local ranges get to stay RS_New. | 
 |   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { | 
 |     LiveInterval &LI = LIS->getInterval(LREdit.get(i)); | 
 |     if (getStage(LI) == RS_New && IntvMap[i] == 0) | 
 |       setStage(LI, RS_Spill); | 
 |   } | 
 |  | 
 |   if (VerifyEnabled) | 
 |     MF->verify(this, "After splitting live range around basic blocks"); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Per-Instruction Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Get the number of allocatable registers that match the constraints of \p Reg | 
 | /// on \p MI and that are also in \p SuperRC. | 
 | static unsigned getNumAllocatableRegsForConstraints( | 
 |     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, | 
 |     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, | 
 |     const RegisterClassInfo &RCI) { | 
 |   assert(SuperRC && "Invalid register class"); | 
 |  | 
 |   const TargetRegisterClass *ConstrainedRC = | 
 |       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, | 
 |                                              /* ExploreBundle */ true); | 
 |   if (!ConstrainedRC) | 
 |     return 0; | 
 |   return RCI.getNumAllocatableRegs(ConstrainedRC); | 
 | } | 
 |  | 
 | /// tryInstructionSplit - Split a live range around individual instructions. | 
 | /// This is normally not worthwhile since the spiller is doing essentially the | 
 | /// same thing. However, when the live range is in a constrained register | 
 | /// class, it may help to insert copies such that parts of the live range can | 
 | /// be moved to a larger register class. | 
 | /// | 
 | /// This is similar to spilling to a larger register class. | 
 | unsigned | 
 | RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                               SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); | 
 |   // There is no point to this if there are no larger sub-classes. | 
 |   if (!RegClassInfo.isProperSubClass(CurRC)) | 
 |     return 0; | 
 |  | 
 |   // Always enable split spill mode, since we're effectively spilling to a | 
 |   // register. | 
 |   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
 |   SE->reset(LREdit, SplitEditor::SM_Size); | 
 |  | 
 |   ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
 |   if (Uses.size() <= 1) | 
 |     return 0; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Split around " << Uses.size() | 
 |                     << " individual instrs.\n"); | 
 |  | 
 |   const TargetRegisterClass *SuperRC = | 
 |       TRI->getLargestLegalSuperClass(CurRC, *MF); | 
 |   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); | 
 |   // Split around every non-copy instruction if this split will relax | 
 |   // the constraints on the virtual register. | 
 |   // Otherwise, splitting just inserts uncoalescable copies that do not help | 
 |   // the allocation. | 
 |   for (unsigned i = 0; i != Uses.size(); ++i) { | 
 |     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) | 
 |       if (MI->isFullCopy() || | 
 |           SuperRCNumAllocatableRegs == | 
 |               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, | 
 |                                                   TRI, RCI)) { | 
 |         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI); | 
 |         continue; | 
 |       } | 
 |     SE->openIntv(); | 
 |     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); | 
 |     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]); | 
 |     SE->useIntv(SegStart, SegStop); | 
 |   } | 
 |  | 
 |   if (LREdit.empty()) { | 
 |     LLVM_DEBUG(dbgs() << "All uses were copies.\n"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   SmallVector<unsigned, 8> IntvMap; | 
 |   SE->finish(&IntvMap); | 
 |   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); | 
 |   ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |  | 
 |   // Assign all new registers to RS_Spill. This was the last chance. | 
 |   setStage(LREdit.begin(), LREdit.end(), RS_Spill); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Local Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// calcGapWeights - Compute the maximum spill weight that needs to be evicted | 
 | /// in order to use PhysReg between two entries in SA->UseSlots. | 
 | /// | 
 | /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. | 
 | /// | 
 | void RAGreedy::calcGapWeights(unsigned PhysReg, | 
 |                               SmallVectorImpl<float> &GapWeight) { | 
 |   assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); | 
 |   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); | 
 |   ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
 |   const unsigned NumGaps = Uses.size()-1; | 
 |  | 
 |   // Start and end points for the interference check. | 
 |   SlotIndex StartIdx = | 
 |     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; | 
 |   SlotIndex StopIdx = | 
 |     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; | 
 |  | 
 |   GapWeight.assign(NumGaps, 0.0f); | 
 |  | 
 |   // Add interference from each overlapping register. | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) | 
 |           .checkInterference()) | 
 |       continue; | 
 |  | 
 |     // We know that VirtReg is a continuous interval from FirstInstr to | 
 |     // LastInstr, so we don't need InterferenceQuery. | 
 |     // | 
 |     // Interference that overlaps an instruction is counted in both gaps | 
 |     // surrounding the instruction. The exception is interference before | 
 |     // StartIdx and after StopIdx. | 
 |     // | 
 |     LiveIntervalUnion::SegmentIter IntI = | 
 |       Matrix->getLiveUnions()[*Units] .find(StartIdx); | 
 |     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { | 
 |       // Skip the gaps before IntI. | 
 |       while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) | 
 |         if (++Gap == NumGaps) | 
 |           break; | 
 |       if (Gap == NumGaps) | 
 |         break; | 
 |  | 
 |       // Update the gaps covered by IntI. | 
 |       const float weight = IntI.value()->weight; | 
 |       for (; Gap != NumGaps; ++Gap) { | 
 |         GapWeight[Gap] = std::max(GapWeight[Gap], weight); | 
 |         if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) | 
 |           break; | 
 |       } | 
 |       if (Gap == NumGaps) | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Add fixed interference. | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     const LiveRange &LR = LIS->getRegUnit(*Units); | 
 |     LiveRange::const_iterator I = LR.find(StartIdx); | 
 |     LiveRange::const_iterator E = LR.end(); | 
 |  | 
 |     // Same loop as above. Mark any overlapped gaps as HUGE_VALF. | 
 |     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { | 
 |       while (Uses[Gap+1].getBoundaryIndex() < I->start) | 
 |         if (++Gap == NumGaps) | 
 |           break; | 
 |       if (Gap == NumGaps) | 
 |         break; | 
 |  | 
 |       for (; Gap != NumGaps; ++Gap) { | 
 |         GapWeight[Gap] = huge_valf; | 
 |         if (Uses[Gap+1].getBaseIndex() >= I->end) | 
 |           break; | 
 |       } | 
 |       if (Gap == NumGaps) | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only | 
 | /// basic block. | 
 | /// | 
 | unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   // TODO: the function currently only handles a single UseBlock; it should be | 
 |   // possible to generalize. | 
 |   if (SA->getUseBlocks().size() != 1) | 
 |     return 0; | 
 |  | 
 |   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); | 
 |  | 
 |   // Note that it is possible to have an interval that is live-in or live-out | 
 |   // while only covering a single block - A phi-def can use undef values from | 
 |   // predecessors, and the block could be a single-block loop. | 
 |   // We don't bother doing anything clever about such a case, we simply assume | 
 |   // that the interval is continuous from FirstInstr to LastInstr. We should | 
 |   // make sure that we don't do anything illegal to such an interval, though. | 
 |  | 
 |   ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
 |   if (Uses.size() <= 2) | 
 |     return 0; | 
 |   const unsigned NumGaps = Uses.size()-1; | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "tryLocalSplit: "; | 
 |     for (unsigned i = 0, e = Uses.size(); i != e; ++i) | 
 |       dbgs() << ' ' << Uses[i]; | 
 |     dbgs() << '\n'; | 
 |   }); | 
 |  | 
 |   // If VirtReg is live across any register mask operands, compute a list of | 
 |   // gaps with register masks. | 
 |   SmallVector<unsigned, 8> RegMaskGaps; | 
 |   if (Matrix->checkRegMaskInterference(VirtReg)) { | 
 |     // Get regmask slots for the whole block. | 
 |     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); | 
 |     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); | 
 |     // Constrain to VirtReg's live range. | 
 |     unsigned ri = | 
 |         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); | 
 |     unsigned re = RMS.size(); | 
 |     for (unsigned i = 0; i != NumGaps && ri != re; ++i) { | 
 |       // Look for Uses[i] <= RMS <= Uses[i+1]. | 
 |       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); | 
 |       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) | 
 |         continue; | 
 |       // Skip a regmask on the same instruction as the last use. It doesn't | 
 |       // overlap the live range. | 
 |       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) | 
 |         break; | 
 |       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' | 
 |                         << Uses[i + 1]); | 
 |       RegMaskGaps.push_back(i); | 
 |       // Advance ri to the next gap. A regmask on one of the uses counts in | 
 |       // both gaps. | 
 |       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) | 
 |         ++ri; | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << '\n'); | 
 |   } | 
 |  | 
 |   // Since we allow local split results to be split again, there is a risk of | 
 |   // creating infinite loops. It is tempting to require that the new live | 
 |   // ranges have less instructions than the original. That would guarantee | 
 |   // convergence, but it is too strict. A live range with 3 instructions can be | 
 |   // split 2+3 (including the COPY), and we want to allow that. | 
 |   // | 
 |   // Instead we use these rules: | 
 |   // | 
 |   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the | 
 |   //    noop split, of course). | 
 |   // 2. Require progress be made for ranges with getStage() == RS_Split2. All | 
 |   //    the new ranges must have fewer instructions than before the split. | 
 |   // 3. New ranges with the same number of instructions are marked RS_Split2, | 
 |   //    smaller ranges are marked RS_New. | 
 |   // | 
 |   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent | 
 |   // excessive splitting and infinite loops. | 
 |   // | 
 |   bool ProgressRequired = getStage(VirtReg) >= RS_Split2; | 
 |  | 
 |   // Best split candidate. | 
 |   unsigned BestBefore = NumGaps; | 
 |   unsigned BestAfter = 0; | 
 |   float BestDiff = 0; | 
 |  | 
 |   const float blockFreq = | 
 |     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * | 
 |     (1.0f / MBFI->getEntryFreq()); | 
 |   SmallVector<float, 8> GapWeight; | 
 |  | 
 |   Order.rewind(); | 
 |   while (unsigned PhysReg = Order.next()) { | 
 |     // Keep track of the largest spill weight that would need to be evicted in | 
 |     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. | 
 |     calcGapWeights(PhysReg, GapWeight); | 
 |  | 
 |     // Remove any gaps with regmask clobbers. | 
 |     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) | 
 |       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) | 
 |         GapWeight[RegMaskGaps[i]] = huge_valf; | 
 |  | 
 |     // Try to find the best sequence of gaps to close. | 
 |     // The new spill weight must be larger than any gap interference. | 
 |  | 
 |     // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. | 
 |     unsigned SplitBefore = 0, SplitAfter = 1; | 
 |  | 
 |     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). | 
 |     // It is the spill weight that needs to be evicted. | 
 |     float MaxGap = GapWeight[0]; | 
 |  | 
 |     while (true) { | 
 |       // Live before/after split? | 
 |       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; | 
 |       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; | 
 |  | 
 |       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] | 
 |                         << '-' << Uses[SplitAfter] << " i=" << MaxGap); | 
 |  | 
 |       // Stop before the interval gets so big we wouldn't be making progress. | 
 |       if (!LiveBefore && !LiveAfter) { | 
 |         LLVM_DEBUG(dbgs() << " all\n"); | 
 |         break; | 
 |       } | 
 |       // Should the interval be extended or shrunk? | 
 |       bool Shrink = true; | 
 |  | 
 |       // How many gaps would the new range have? | 
 |       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; | 
 |  | 
 |       // Legally, without causing looping? | 
 |       bool Legal = !ProgressRequired || NewGaps < NumGaps; | 
 |  | 
 |       if (Legal && MaxGap < huge_valf) { | 
 |         // Estimate the new spill weight. Each instruction reads or writes the | 
 |         // register. Conservatively assume there are no read-modify-write | 
 |         // instructions. | 
 |         // | 
 |         // Try to guess the size of the new interval. | 
 |         const float EstWeight = normalizeSpillWeight( | 
 |             blockFreq * (NewGaps + 1), | 
 |             Uses[SplitBefore].distance(Uses[SplitAfter]) + | 
 |                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, | 
 |             1); | 
 |         // Would this split be possible to allocate? | 
 |         // Never allocate all gaps, we wouldn't be making progress. | 
 |         LLVM_DEBUG(dbgs() << " w=" << EstWeight); | 
 |         if (EstWeight * Hysteresis >= MaxGap) { | 
 |           Shrink = false; | 
 |           float Diff = EstWeight - MaxGap; | 
 |           if (Diff > BestDiff) { | 
 |             LLVM_DEBUG(dbgs() << " (best)"); | 
 |             BestDiff = Hysteresis * Diff; | 
 |             BestBefore = SplitBefore; | 
 |             BestAfter = SplitAfter; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Try to shrink. | 
 |       if (Shrink) { | 
 |         if (++SplitBefore < SplitAfter) { | 
 |           LLVM_DEBUG(dbgs() << " shrink\n"); | 
 |           // Recompute the max when necessary. | 
 |           if (GapWeight[SplitBefore - 1] >= MaxGap) { | 
 |             MaxGap = GapWeight[SplitBefore]; | 
 |             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) | 
 |               MaxGap = std::max(MaxGap, GapWeight[i]); | 
 |           } | 
 |           continue; | 
 |         } | 
 |         MaxGap = 0; | 
 |       } | 
 |  | 
 |       // Try to extend the interval. | 
 |       if (SplitAfter >= NumGaps) { | 
 |         LLVM_DEBUG(dbgs() << " end\n"); | 
 |         break; | 
 |       } | 
 |  | 
 |       LLVM_DEBUG(dbgs() << " extend\n"); | 
 |       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); | 
 |     } | 
 |   } | 
 |  | 
 |   // Didn't find any candidates? | 
 |   if (BestBefore == NumGaps) | 
 |     return 0; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' | 
 |                     << Uses[BestAfter] << ", " << BestDiff << ", " | 
 |                     << (BestAfter - BestBefore + 1) << " instrs\n"); | 
 |  | 
 |   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
 |   SE->reset(LREdit); | 
 |  | 
 |   SE->openIntv(); | 
 |   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); | 
 |   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]); | 
 |   SE->useIntv(SegStart, SegStop); | 
 |   SmallVector<unsigned, 8> IntvMap; | 
 |   SE->finish(&IntvMap); | 
 |   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); | 
 |  | 
 |   // If the new range has the same number of instructions as before, mark it as | 
 |   // RS_Split2 so the next split will be forced to make progress. Otherwise, | 
 |   // leave the new intervals as RS_New so they can compete. | 
 |   bool LiveBefore = BestBefore != 0 || BI.LiveIn; | 
 |   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; | 
 |   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; | 
 |   if (NewGaps >= NumGaps) { | 
 |     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); | 
 |     assert(!ProgressRequired && "Didn't make progress when it was required."); | 
 |     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) | 
 |       if (IntvMap[i] == 1) { | 
 |         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); | 
 |         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); | 
 |       } | 
 |     LLVM_DEBUG(dbgs() << '\n'); | 
 |   } | 
 |   ++NumLocalSplits; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          Live Range Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// trySplit - Try to split VirtReg or one of its interferences, making it | 
 | /// assignable. | 
 | /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. | 
 | unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, | 
 |                             SmallVectorImpl<unsigned>&NewVRegs, | 
 |                             const SmallVirtRegSet &FixedRegisters) { | 
 |   // Ranges must be Split2 or less. | 
 |   if (getStage(VirtReg) >= RS_Spill) | 
 |     return 0; | 
 |  | 
 |   // Local intervals are handled separately. | 
 |   if (LIS->intervalIsInOneMBB(VirtReg)) { | 
 |     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, | 
 |                        TimerGroupDescription, TimePassesIsEnabled); | 
 |     SA->analyze(&VirtReg); | 
 |     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); | 
 |     if (PhysReg || !NewVRegs.empty()) | 
 |       return PhysReg; | 
 |     return tryInstructionSplit(VirtReg, Order, NewVRegs); | 
 |   } | 
 |  | 
 |   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, | 
 |                      TimerGroupDescription, TimePassesIsEnabled); | 
 |  | 
 |   SA->analyze(&VirtReg); | 
 |  | 
 |   // FIXME: SplitAnalysis may repair broken live ranges coming from the | 
 |   // coalescer. That may cause the range to become allocatable which means that | 
 |   // tryRegionSplit won't be making progress. This check should be replaced with | 
 |   // an assertion when the coalescer is fixed. | 
 |   if (SA->didRepairRange()) { | 
 |     // VirtReg has changed, so all cached queries are invalid. | 
 |     Matrix->invalidateVirtRegs(); | 
 |     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) | 
 |       return PhysReg; | 
 |   } | 
 |  | 
 |   // First try to split around a region spanning multiple blocks. RS_Split2 | 
 |   // ranges already made dubious progress with region splitting, so they go | 
 |   // straight to single block splitting. | 
 |   if (getStage(VirtReg) < RS_Split2) { | 
 |     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); | 
 |     if (PhysReg || !NewVRegs.empty()) | 
 |       return PhysReg; | 
 |   } | 
 |  | 
 |   // Then isolate blocks. | 
 |   return tryBlockSplit(VirtReg, Order, NewVRegs); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          Last Chance Recoloring | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Return true if \p reg has any tied def operand. | 
 | static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { | 
 |   for (const MachineOperand &MO : MRI->def_operands(reg)) | 
 |     if (MO.isTied()) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// mayRecolorAllInterferences - Check if the virtual registers that | 
 | /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be | 
 | /// recolored to free \p PhysReg. | 
 | /// When true is returned, \p RecoloringCandidates has been augmented with all | 
 | /// the live intervals that need to be recolored in order to free \p PhysReg | 
 | /// for \p VirtReg. | 
 | /// \p FixedRegisters contains all the virtual registers that cannot be | 
 | /// recolored. | 
 | bool | 
 | RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, | 
 |                                      SmallLISet &RecoloringCandidates, | 
 |                                      const SmallVirtRegSet &FixedRegisters) { | 
 |   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); | 
 |  | 
 |   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { | 
 |     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); | 
 |     // If there is LastChanceRecoloringMaxInterference or more interferences, | 
 |     // chances are one would not be recolorable. | 
 |     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= | 
 |         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { | 
 |       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); | 
 |       CutOffInfo |= CO_Interf; | 
 |       return false; | 
 |     } | 
 |     for (unsigned i = Q.interferingVRegs().size(); i; --i) { | 
 |       LiveInterval *Intf = Q.interferingVRegs()[i - 1]; | 
 |       // If Intf is done and sit on the same register class as VirtReg, | 
 |       // it would not be recolorable as it is in the same state as VirtReg. | 
 |       // However, if VirtReg has tied defs and Intf doesn't, then | 
 |       // there is still a point in examining if it can be recolorable. | 
 |       if (((getStage(*Intf) == RS_Done && | 
 |             MRI->getRegClass(Intf->reg) == CurRC) && | 
 |            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || | 
 |           FixedRegisters.count(Intf->reg)) { | 
 |         LLVM_DEBUG( | 
 |             dbgs() << "Early abort: the interference is not recolorable.\n"); | 
 |         return false; | 
 |       } | 
 |       RecoloringCandidates.insert(Intf); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring | 
 | /// its interferences. | 
 | /// Last chance recoloring chooses a color for \p VirtReg and recolors every | 
 | /// virtual register that was using it. The recoloring process may recursively | 
 | /// use the last chance recoloring. Therefore, when a virtual register has been | 
 | /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot | 
 | /// be last-chance-recolored again during this recoloring "session". | 
 | /// E.g., | 
 | /// Let | 
 | /// vA can use {R1, R2    } | 
 | /// vB can use {    R2, R3} | 
 | /// vC can use {R1        } | 
 | /// Where vA, vB, and vC cannot be split anymore (they are reloads for | 
 | /// instance) and they all interfere. | 
 | /// | 
 | /// vA is assigned R1 | 
 | /// vB is assigned R2 | 
 | /// vC tries to evict vA but vA is already done. | 
 | /// Regular register allocation fails. | 
 | /// | 
 | /// Last chance recoloring kicks in: | 
 | /// vC does as if vA was evicted => vC uses R1. | 
 | /// vC is marked as fixed. | 
 | /// vA needs to find a color. | 
 | /// None are available. | 
 | /// vA cannot evict vC: vC is a fixed virtual register now. | 
 | /// vA does as if vB was evicted => vA uses R2. | 
 | /// vB needs to find a color. | 
 | /// R3 is available. | 
 | /// Recoloring => vC = R1, vA = R2, vB = R3 | 
 | /// | 
 | /// \p Order defines the preferred allocation order for \p VirtReg. | 
 | /// \p NewRegs will contain any new virtual register that have been created | 
 | /// (split, spill) during the process and that must be assigned. | 
 | /// \p FixedRegisters contains all the virtual registers that cannot be | 
 | /// recolored. | 
 | /// \p Depth gives the current depth of the last chance recoloring. | 
 | /// \return a physical register that can be used for VirtReg or ~0u if none | 
 | /// exists. | 
 | unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, | 
 |                                            AllocationOrder &Order, | 
 |                                            SmallVectorImpl<unsigned> &NewVRegs, | 
 |                                            SmallVirtRegSet &FixedRegisters, | 
 |                                            unsigned Depth) { | 
 |   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); | 
 |   // Ranges must be Done. | 
 |   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && | 
 |          "Last chance recoloring should really be last chance"); | 
 |   // Set the max depth to LastChanceRecoloringMaxDepth. | 
 |   // We may want to reconsider that if we end up with a too large search space | 
 |   // for target with hundreds of registers. | 
 |   // Indeed, in that case we may want to cut the search space earlier. | 
 |   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { | 
 |     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); | 
 |     CutOffInfo |= CO_Depth; | 
 |     return ~0u; | 
 |   } | 
 |  | 
 |   // Set of Live intervals that will need to be recolored. | 
 |   SmallLISet RecoloringCandidates; | 
 |   // Record the original mapping virtual register to physical register in case | 
 |   // the recoloring fails. | 
 |   DenseMap<unsigned, unsigned> VirtRegToPhysReg; | 
 |   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in | 
 |   // this recoloring "session". | 
 |   assert(!FixedRegisters.count(VirtReg.reg)); | 
 |   FixedRegisters.insert(VirtReg.reg); | 
 |   SmallVector<unsigned, 4> CurrentNewVRegs; | 
 |  | 
 |   Order.rewind(); | 
 |   while (unsigned PhysReg = Order.next()) { | 
 |     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " | 
 |                       << printReg(PhysReg, TRI) << '\n'); | 
 |     RecoloringCandidates.clear(); | 
 |     VirtRegToPhysReg.clear(); | 
 |     CurrentNewVRegs.clear(); | 
 |  | 
 |     // It is only possible to recolor virtual register interference. | 
 |     if (Matrix->checkInterference(VirtReg, PhysReg) > | 
 |         LiveRegMatrix::IK_VirtReg) { | 
 |       LLVM_DEBUG( | 
 |           dbgs() << "Some interferences are not with virtual registers.\n"); | 
 |  | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Early give up on this PhysReg if it is obvious we cannot recolor all | 
 |     // the interferences. | 
 |     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, | 
 |                                     FixedRegisters)) { | 
 |       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // RecoloringCandidates contains all the virtual registers that interfer | 
 |     // with VirtReg on PhysReg (or one of its aliases). | 
 |     // Enqueue them for recoloring and perform the actual recoloring. | 
 |     PQueue RecoloringQueue; | 
 |     for (SmallLISet::iterator It = RecoloringCandidates.begin(), | 
 |                               EndIt = RecoloringCandidates.end(); | 
 |          It != EndIt; ++It) { | 
 |       unsigned ItVirtReg = (*It)->reg; | 
 |       enqueue(RecoloringQueue, *It); | 
 |       assert(VRM->hasPhys(ItVirtReg) && | 
 |              "Interferences are supposed to be with allocated variables"); | 
 |  | 
 |       // Record the current allocation. | 
 |       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); | 
 |       // unset the related struct. | 
 |       Matrix->unassign(**It); | 
 |     } | 
 |  | 
 |     // Do as if VirtReg was assigned to PhysReg so that the underlying | 
 |     // recoloring has the right information about the interferes and | 
 |     // available colors. | 
 |     Matrix->assign(VirtReg, PhysReg); | 
 |  | 
 |     // Save the current recoloring state. | 
 |     // If we cannot recolor all the interferences, we will have to start again | 
 |     // at this point for the next physical register. | 
 |     SmallVirtRegSet SaveFixedRegisters(FixedRegisters); | 
 |     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, | 
 |                                 FixedRegisters, Depth)) { | 
 |       // Push the queued vregs into the main queue. | 
 |       for (unsigned NewVReg : CurrentNewVRegs) | 
 |         NewVRegs.push_back(NewVReg); | 
 |       // Do not mess up with the global assignment process. | 
 |       // I.e., VirtReg must be unassigned. | 
 |       Matrix->unassign(VirtReg); | 
 |       return PhysReg; | 
 |     } | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " | 
 |                       << printReg(PhysReg, TRI) << '\n'); | 
 |  | 
 |     // The recoloring attempt failed, undo the changes. | 
 |     FixedRegisters = SaveFixedRegisters; | 
 |     Matrix->unassign(VirtReg); | 
 |  | 
 |     // For a newly created vreg which is also in RecoloringCandidates, | 
 |     // don't add it to NewVRegs because its physical register will be restored | 
 |     // below. Other vregs in CurrentNewVRegs are created by calling | 
 |     // selectOrSplit and should be added into NewVRegs. | 
 |     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), | 
 |                                              End = CurrentNewVRegs.end(); | 
 |          Next != End; ++Next) { | 
 |       if (RecoloringCandidates.count(&LIS->getInterval(*Next))) | 
 |         continue; | 
 |       NewVRegs.push_back(*Next); | 
 |     } | 
 |  | 
 |     for (SmallLISet::iterator It = RecoloringCandidates.begin(), | 
 |                               EndIt = RecoloringCandidates.end(); | 
 |          It != EndIt; ++It) { | 
 |       unsigned ItVirtReg = (*It)->reg; | 
 |       if (VRM->hasPhys(ItVirtReg)) | 
 |         Matrix->unassign(**It); | 
 |       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; | 
 |       Matrix->assign(**It, ItPhysReg); | 
 |     } | 
 |   } | 
 |  | 
 |   // Last chance recoloring did not worked either, give up. | 
 |   return ~0u; | 
 | } | 
 |  | 
 | /// tryRecoloringCandidates - Try to assign a new color to every register | 
 | /// in \RecoloringQueue. | 
 | /// \p NewRegs will contain any new virtual register created during the | 
 | /// recoloring process. | 
 | /// \p FixedRegisters[in/out] contains all the registers that have been | 
 | /// recolored. | 
 | /// \return true if all virtual registers in RecoloringQueue were successfully | 
 | /// recolored, false otherwise. | 
 | bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, | 
 |                                        SmallVectorImpl<unsigned> &NewVRegs, | 
 |                                        SmallVirtRegSet &FixedRegisters, | 
 |                                        unsigned Depth) { | 
 |   while (!RecoloringQueue.empty()) { | 
 |     LiveInterval *LI = dequeue(RecoloringQueue); | 
 |     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); | 
 |     unsigned PhysReg; | 
 |     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); | 
 |     // When splitting happens, the live-range may actually be empty. | 
 |     // In that case, this is okay to continue the recoloring even | 
 |     // if we did not find an alternative color for it. Indeed, | 
 |     // there will not be anything to color for LI in the end. | 
 |     if (PhysReg == ~0u || (!PhysReg && !LI->empty())) | 
 |       return false; | 
 |  | 
 |     if (!PhysReg) { | 
 |       assert(LI->empty() && "Only empty live-range do not require a register"); | 
 |       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI | 
 |                         << " succeeded. Empty LI.\n"); | 
 |       continue; | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI | 
 |                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); | 
 |  | 
 |     Matrix->assign(*LI, PhysReg); | 
 |     FixedRegisters.insert(LI->reg); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Main Entry Point | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, | 
 |                                  SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   CutOffInfo = CO_None; | 
 |   LLVMContext &Ctx = MF->getFunction().getContext(); | 
 |   SmallVirtRegSet FixedRegisters; | 
 |   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); | 
 |   if (Reg == ~0U && (CutOffInfo != CO_None)) { | 
 |     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); | 
 |     if (CutOffEncountered == CO_Depth) | 
 |       Ctx.emitError("register allocation failed: maximum depth for recoloring " | 
 |                     "reached. Use -fexhaustive-register-search to skip " | 
 |                     "cutoffs"); | 
 |     else if (CutOffEncountered == CO_Interf) | 
 |       Ctx.emitError("register allocation failed: maximum interference for " | 
 |                     "recoloring reached. Use -fexhaustive-register-search " | 
 |                     "to skip cutoffs"); | 
 |     else if (CutOffEncountered == (CO_Depth | CO_Interf)) | 
 |       Ctx.emitError("register allocation failed: maximum interference and " | 
 |                     "depth for recoloring reached. Use " | 
 |                     "-fexhaustive-register-search to skip cutoffs"); | 
 |   } | 
 |   return Reg; | 
 | } | 
 |  | 
 | /// Using a CSR for the first time has a cost because it causes push|pop | 
 | /// to be added to prologue|epilogue. Splitting a cold section of the live | 
 | /// range can have lower cost than using the CSR for the first time; | 
 | /// Spilling a live range in the cold path can have lower cost than using | 
 | /// the CSR for the first time. Returns the physical register if we decide | 
 | /// to use the CSR; otherwise return 0. | 
 | unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, | 
 |                                          AllocationOrder &Order, | 
 |                                          unsigned PhysReg, | 
 |                                          unsigned &CostPerUseLimit, | 
 |                                          SmallVectorImpl<unsigned> &NewVRegs) { | 
 |   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { | 
 |     // We choose spill over using the CSR for the first time if the spill cost | 
 |     // is lower than CSRCost. | 
 |     SA->analyze(&VirtReg); | 
 |     if (calcSpillCost() >= CSRCost) | 
 |       return PhysReg; | 
 |  | 
 |     // We are going to spill, set CostPerUseLimit to 1 to make sure that | 
 |     // we will not use a callee-saved register in tryEvict. | 
 |     CostPerUseLimit = 1; | 
 |     return 0; | 
 |   } | 
 |   if (getStage(VirtReg) < RS_Split) { | 
 |     // We choose pre-splitting over using the CSR for the first time if | 
 |     // the cost of splitting is lower than CSRCost. | 
 |     SA->analyze(&VirtReg); | 
 |     unsigned NumCands = 0; | 
 |     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. | 
 |     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, | 
 |                                                  NumCands, true /*IgnoreCSR*/); | 
 |     if (BestCand == NoCand) | 
 |       // Use the CSR if we can't find a region split below CSRCost. | 
 |       return PhysReg; | 
 |  | 
 |     // Perform the actual pre-splitting. | 
 |     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); | 
 |     return 0; | 
 |   } | 
 |   return PhysReg; | 
 | } | 
 |  | 
 | void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { | 
 |   // Do not keep invalid information around. | 
 |   SetOfBrokenHints.remove(&LI); | 
 | } | 
 |  | 
 | void RAGreedy::initializeCSRCost() { | 
 |   // We use the larger one out of the command-line option and the value report | 
 |   // by TRI. | 
 |   CSRCost = BlockFrequency( | 
 |       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); | 
 |   if (!CSRCost.getFrequency()) | 
 |     return; | 
 |  | 
 |   // Raw cost is relative to Entry == 2^14; scale it appropriately. | 
 |   uint64_t ActualEntry = MBFI->getEntryFreq(); | 
 |   if (!ActualEntry) { | 
 |     CSRCost = 0; | 
 |     return; | 
 |   } | 
 |   uint64_t FixedEntry = 1 << 14; | 
 |   if (ActualEntry < FixedEntry) | 
 |     CSRCost *= BranchProbability(ActualEntry, FixedEntry); | 
 |   else if (ActualEntry <= UINT32_MAX) | 
 |     // Invert the fraction and divide. | 
 |     CSRCost /= BranchProbability(FixedEntry, ActualEntry); | 
 |   else | 
 |     // Can't use BranchProbability in general, since it takes 32-bit numbers. | 
 |     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); | 
 | } | 
 |  | 
 | /// Collect the hint info for \p Reg. | 
 | /// The results are stored into \p Out. | 
 | /// \p Out is not cleared before being populated. | 
 | void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { | 
 |   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { | 
 |     if (!Instr.isFullCopy()) | 
 |       continue; | 
 |     // Look for the other end of the copy. | 
 |     Register OtherReg = Instr.getOperand(0).getReg(); | 
 |     if (OtherReg == Reg) { | 
 |       OtherReg = Instr.getOperand(1).getReg(); | 
 |       if (OtherReg == Reg) | 
 |         continue; | 
 |     } | 
 |     // Get the current assignment. | 
 |     Register OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) | 
 |                                 ? OtherReg | 
 |                                 : VRM->getPhys(OtherReg); | 
 |     // Push the collected information. | 
 |     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, | 
 |                            OtherPhysReg)); | 
 |   } | 
 | } | 
 |  | 
 | /// Using the given \p List, compute the cost of the broken hints if | 
 | /// \p PhysReg was used. | 
 | /// \return The cost of \p List for \p PhysReg. | 
 | BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, | 
 |                                            unsigned PhysReg) { | 
 |   BlockFrequency Cost = 0; | 
 |   for (const HintInfo &Info : List) { | 
 |     if (Info.PhysReg != PhysReg) | 
 |       Cost += Info.Freq; | 
 |   } | 
 |   return Cost; | 
 | } | 
 |  | 
 | /// Using the register assigned to \p VirtReg, try to recolor | 
 | /// all the live ranges that are copy-related with \p VirtReg. | 
 | /// The recoloring is then propagated to all the live-ranges that have | 
 | /// been recolored and so on, until no more copies can be coalesced or | 
 | /// it is not profitable. | 
 | /// For a given live range, profitability is determined by the sum of the | 
 | /// frequencies of the non-identity copies it would introduce with the old | 
 | /// and new register. | 
 | void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { | 
 |   // We have a broken hint, check if it is possible to fix it by | 
 |   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted | 
 |   // some register and PhysReg may be available for the other live-ranges. | 
 |   SmallSet<unsigned, 4> Visited; | 
 |   SmallVector<unsigned, 2> RecoloringCandidates; | 
 |   HintsInfo Info; | 
 |   unsigned Reg = VirtReg.reg; | 
 |   unsigned PhysReg = VRM->getPhys(Reg); | 
 |   // Start the recoloring algorithm from the input live-interval, then | 
 |   // it will propagate to the ones that are copy-related with it. | 
 |   Visited.insert(Reg); | 
 |   RecoloringCandidates.push_back(Reg); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) | 
 |                     << '(' << printReg(PhysReg, TRI) << ")\n"); | 
 |  | 
 |   do { | 
 |     Reg = RecoloringCandidates.pop_back_val(); | 
 |  | 
 |     // We cannot recolor physical register. | 
 |     if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
 |       continue; | 
 |  | 
 |     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); | 
 |  | 
 |     // Get the live interval mapped with this virtual register to be able | 
 |     // to check for the interference with the new color. | 
 |     LiveInterval &LI = LIS->getInterval(Reg); | 
 |     unsigned CurrPhys = VRM->getPhys(Reg); | 
 |     // Check that the new color matches the register class constraints and | 
 |     // that it is free for this live range. | 
 |     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || | 
 |                                 Matrix->checkInterference(LI, PhysReg))) | 
 |       continue; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) | 
 |                       << ") is recolorable.\n"); | 
 |  | 
 |     // Gather the hint info. | 
 |     Info.clear(); | 
 |     collectHintInfo(Reg, Info); | 
 |     // Check if recoloring the live-range will increase the cost of the | 
 |     // non-identity copies. | 
 |     if (CurrPhys != PhysReg) { | 
 |       LLVM_DEBUG(dbgs() << "Checking profitability:\n"); | 
 |       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); | 
 |       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); | 
 |       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() | 
 |                         << "\nNew Cost: " << NewCopiesCost.getFrequency() | 
 |                         << '\n'); | 
 |       if (OldCopiesCost < NewCopiesCost) { | 
 |         LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); | 
 |         continue; | 
 |       } | 
 |       // At this point, the cost is either cheaper or equal. If it is | 
 |       // equal, we consider this is profitable because it may expose | 
 |       // more recoloring opportunities. | 
 |       LLVM_DEBUG(dbgs() << "=> Profitable.\n"); | 
 |       // Recolor the live-range. | 
 |       Matrix->unassign(LI); | 
 |       Matrix->assign(LI, PhysReg); | 
 |     } | 
 |     // Push all copy-related live-ranges to keep reconciling the broken | 
 |     // hints. | 
 |     for (const HintInfo &HI : Info) { | 
 |       if (Visited.insert(HI.Reg).second) | 
 |         RecoloringCandidates.push_back(HI.Reg); | 
 |     } | 
 |   } while (!RecoloringCandidates.empty()); | 
 | } | 
 |  | 
 | /// Try to recolor broken hints. | 
 | /// Broken hints may be repaired by recoloring when an evicted variable | 
 | /// freed up a register for a larger live-range. | 
 | /// Consider the following example: | 
 | /// BB1: | 
 | ///   a = | 
 | ///   b = | 
 | /// BB2: | 
 | ///   ... | 
 | ///   = b | 
 | ///   = a | 
 | /// Let us assume b gets split: | 
 | /// BB1: | 
 | ///   a = | 
 | ///   b = | 
 | /// BB2: | 
 | ///   c = b | 
 | ///   ... | 
 | ///   d = c | 
 | ///   = d | 
 | ///   = a | 
 | /// Because of how the allocation work, b, c, and d may be assigned different | 
 | /// colors. Now, if a gets evicted later: | 
 | /// BB1: | 
 | ///   a = | 
 | ///   st a, SpillSlot | 
 | ///   b = | 
 | /// BB2: | 
 | ///   c = b | 
 | ///   ... | 
 | ///   d = c | 
 | ///   = d | 
 | ///   e = ld SpillSlot | 
 | ///   = e | 
 | /// This is likely that we can assign the same register for b, c, and d, | 
 | /// getting rid of 2 copies. | 
 | void RAGreedy::tryHintsRecoloring() { | 
 |   for (LiveInterval *LI : SetOfBrokenHints) { | 
 |     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && | 
 |            "Recoloring is possible only for virtual registers"); | 
 |     // Some dead defs may be around (e.g., because of debug uses). | 
 |     // Ignore those. | 
 |     if (!VRM->hasPhys(LI->reg)) | 
 |       continue; | 
 |     tryHintRecoloring(*LI); | 
 |   } | 
 | } | 
 |  | 
 | unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, | 
 |                                      SmallVectorImpl<unsigned> &NewVRegs, | 
 |                                      SmallVirtRegSet &FixedRegisters, | 
 |                                      unsigned Depth) { | 
 |   unsigned CostPerUseLimit = ~0u; | 
 |   // First try assigning a free register. | 
 |   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); | 
 |   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { | 
 |     // If VirtReg got an assignment, the eviction info is no longre relevant. | 
 |     LastEvicted.clearEvicteeInfo(VirtReg.reg); | 
 |     // When NewVRegs is not empty, we may have made decisions such as evicting | 
 |     // a virtual register, go with the earlier decisions and use the physical | 
 |     // register. | 
 |     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && | 
 |         NewVRegs.empty()) { | 
 |       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, | 
 |                                               CostPerUseLimit, NewVRegs); | 
 |       if (CSRReg || !NewVRegs.empty()) | 
 |         // Return now if we decide to use a CSR or create new vregs due to | 
 |         // pre-splitting. | 
 |         return CSRReg; | 
 |     } else | 
 |       return PhysReg; | 
 |   } | 
 |  | 
 |   LiveRangeStage Stage = getStage(VirtReg); | 
 |   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " | 
 |                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); | 
 |  | 
 |   // Try to evict a less worthy live range, but only for ranges from the primary | 
 |   // queue. The RS_Split ranges already failed to do this, and they should not | 
 |   // get a second chance until they have been split. | 
 |   if (Stage != RS_Split) | 
 |     if (unsigned PhysReg = | 
 |             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, | 
 |                      FixedRegisters)) { | 
 |       unsigned Hint = MRI->getSimpleHint(VirtReg.reg); | 
 |       // If VirtReg has a hint and that hint is broken record this | 
 |       // virtual register as a recoloring candidate for broken hint. | 
 |       // Indeed, since we evicted a variable in its neighborhood it is | 
 |       // likely we can at least partially recolor some of the | 
 |       // copy-related live-ranges. | 
 |       if (Hint && Hint != PhysReg) | 
 |         SetOfBrokenHints.insert(&VirtReg); | 
 |       // If VirtReg eviction someone, the eviction info for it as an evictee is | 
 |       // no longre relevant. | 
 |       LastEvicted.clearEvicteeInfo(VirtReg.reg); | 
 |       return PhysReg; | 
 |     } | 
 |  | 
 |   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); | 
 |  | 
 |   // The first time we see a live range, don't try to split or spill. | 
 |   // Wait until the second time, when all smaller ranges have been allocated. | 
 |   // This gives a better picture of the interference to split around. | 
 |   if (Stage < RS_Split) { | 
 |     setStage(VirtReg, RS_Split); | 
 |     LLVM_DEBUG(dbgs() << "wait for second round\n"); | 
 |     NewVRegs.push_back(VirtReg.reg); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (Stage < RS_Spill) { | 
 |     // Try splitting VirtReg or interferences. | 
 |     unsigned NewVRegSizeBefore = NewVRegs.size(); | 
 |     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); | 
 |     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { | 
 |       // If VirtReg got split, the eviction info is no longre relevant. | 
 |       LastEvicted.clearEvicteeInfo(VirtReg.reg); | 
 |       return PhysReg; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we couldn't allocate a register from spilling, there is probably some | 
 |   // invalid inline assembly. The base class will report it. | 
 |   if (Stage >= RS_Done || !VirtReg.isSpillable()) | 
 |     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, | 
 |                                    Depth); | 
 |  | 
 |   // Finally spill VirtReg itself. | 
 |   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { | 
 |     // TODO: This is experimental and in particular, we do not model | 
 |     // the live range splitting done by spilling correctly. | 
 |     // We would need a deep integration with the spiller to do the | 
 |     // right thing here. Anyway, that is still good for early testing. | 
 |     setStage(VirtReg, RS_Memory); | 
 |     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); | 
 |     NewVRegs.push_back(VirtReg.reg); | 
 |   } else { | 
 |     NamedRegionTimer T("spill", "Spiller", TimerGroupName, | 
 |                        TimerGroupDescription, TimePassesIsEnabled); | 
 |     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
 |     spiller().spill(LRE); | 
 |     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); | 
 |  | 
 |     if (VerifyEnabled) | 
 |       MF->verify(this, "After spilling"); | 
 |   } | 
 |  | 
 |   // The live virtual register requesting allocation was spilled, so tell | 
 |   // the caller not to allocate anything during this round. | 
 |   return 0; | 
 | } | 
 |  | 
 | void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, | 
 |                                             unsigned &FoldedReloads, | 
 |                                             unsigned &Spills, | 
 |                                             unsigned &FoldedSpills) { | 
 |   Reloads = 0; | 
 |   FoldedReloads = 0; | 
 |   Spills = 0; | 
 |   FoldedSpills = 0; | 
 |  | 
 |   // Sum up the spill and reloads in subloops. | 
 |   for (MachineLoop *SubLoop : *L) { | 
 |     unsigned SubReloads; | 
 |     unsigned SubFoldedReloads; | 
 |     unsigned SubSpills; | 
 |     unsigned SubFoldedSpills; | 
 |  | 
 |     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, | 
 |                                  SubSpills, SubFoldedSpills); | 
 |     Reloads += SubReloads; | 
 |     FoldedReloads += SubFoldedReloads; | 
 |     Spills += SubSpills; | 
 |     FoldedSpills += SubFoldedSpills; | 
 |   } | 
 |  | 
 |   const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
 |   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
 |   int FI; | 
 |  | 
 |   for (MachineBasicBlock *MBB : L->getBlocks()) | 
 |     // Handle blocks that were not included in subloops. | 
 |     if (Loops->getLoopFor(MBB) == L) | 
 |       for (MachineInstr &MI : *MBB) { | 
 |         SmallVector<const MachineMemOperand *, 2> Accesses; | 
 |         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { | 
 |           return MFI.isSpillSlotObjectIndex( | 
 |               cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) | 
 |                   ->getFrameIndex()); | 
 |         }; | 
 |  | 
 |         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) | 
 |           ++Reloads; | 
 |         else if (TII->hasLoadFromStackSlot(MI, Accesses) && | 
 |                  llvm::any_of(Accesses, isSpillSlotAccess)) | 
 |           ++FoldedReloads; | 
 |         else if (TII->isStoreToStackSlot(MI, FI) && | 
 |                  MFI.isSpillSlotObjectIndex(FI)) | 
 |           ++Spills; | 
 |         else if (TII->hasStoreToStackSlot(MI, Accesses) && | 
 |                  llvm::any_of(Accesses, isSpillSlotAccess)) | 
 |           ++FoldedSpills; | 
 |       } | 
 |  | 
 |   if (Reloads || FoldedReloads || Spills || FoldedSpills) { | 
 |     using namespace ore; | 
 |  | 
 |     ORE->emit([&]() { | 
 |       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", | 
 |                                         L->getStartLoc(), L->getHeader()); | 
 |       if (Spills) | 
 |         R << NV("NumSpills", Spills) << " spills "; | 
 |       if (FoldedSpills) | 
 |         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; | 
 |       if (Reloads) | 
 |         R << NV("NumReloads", Reloads) << " reloads "; | 
 |       if (FoldedReloads) | 
 |         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; | 
 |       R << "generated in loop"; | 
 |       return R; | 
 |     }); | 
 |   } | 
 | } | 
 |  | 
 | bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { | 
 |   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" | 
 |                     << "********** Function: " << mf.getName() << '\n'); | 
 |  | 
 |   MF = &mf; | 
 |   TRI = MF->getSubtarget().getRegisterInfo(); | 
 |   TII = MF->getSubtarget().getInstrInfo(); | 
 |   RCI.runOnMachineFunction(mf); | 
 |  | 
 |   EnableLocalReassign = EnableLocalReassignment || | 
 |                         MF->getSubtarget().enableRALocalReassignment( | 
 |                             MF->getTarget().getOptLevel()); | 
 |  | 
 |   EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || | 
 |                               MF->getSubtarget().enableAdvancedRASplitCost(); | 
 |  | 
 |   if (VerifyEnabled) | 
 |     MF->verify(this, "Before greedy register allocator"); | 
 |  | 
 |   RegAllocBase::init(getAnalysis<VirtRegMap>(), | 
 |                      getAnalysis<LiveIntervals>(), | 
 |                      getAnalysis<LiveRegMatrix>()); | 
 |   Indexes = &getAnalysis<SlotIndexes>(); | 
 |   MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); | 
 |   DomTree = &getAnalysis<MachineDominatorTree>(); | 
 |   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
 |   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); | 
 |   Loops = &getAnalysis<MachineLoopInfo>(); | 
 |   Bundles = &getAnalysis<EdgeBundles>(); | 
 |   SpillPlacer = &getAnalysis<SpillPlacement>(); | 
 |   DebugVars = &getAnalysis<LiveDebugVariables>(); | 
 |   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
 |  | 
 |   initializeCSRCost(); | 
 |  | 
 |   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); | 
 |  | 
 |   LLVM_DEBUG(LIS->dump()); | 
 |  | 
 |   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); | 
 |   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); | 
 |   ExtraRegInfo.clear(); | 
 |   ExtraRegInfo.resize(MRI->getNumVirtRegs()); | 
 |   NextCascade = 1; | 
 |   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); | 
 |   GlobalCand.resize(32);  // This will grow as needed. | 
 |   SetOfBrokenHints.clear(); | 
 |   LastEvicted.clear(); | 
 |  | 
 |   allocatePhysRegs(); | 
 |   tryHintsRecoloring(); | 
 |   postOptimization(); | 
 |   reportNumberOfSplillsReloads(); | 
 |  | 
 |   releaseMemory(); | 
 |   return true; | 
 | } |