| //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// This pass implements a data flow analysis that propagates debug location | 
 | /// information by inserting additional DBG_VALUE instructions into the machine | 
 | /// instruction stream. The pass internally builds debug location liveness | 
 | /// ranges to determine the points where additional DBG_VALUEs need to be | 
 | /// inserted. | 
 | /// | 
 | /// This is a separate pass from DbgValueHistoryCalculator to facilitate | 
 | /// testing and improve modularity. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/SparseBitVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/UniqueVector.h" | 
 | #include "llvm/CodeGen/LexicalScopes.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/RegisterScavenging.h" | 
 | #include "llvm/CodeGen/TargetFrameLowering.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetPassConfig.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/IR/DIBuilder.h" | 
 | #include "llvm/IR/DebugInfoMetadata.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/MC/MCRegisterInfo.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <functional> | 
 | #include <queue> | 
 | #include <tuple> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "livedebugvalues" | 
 |  | 
 | STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); | 
 |  | 
 | // If @MI is a DBG_VALUE with debug value described by a defined | 
 | // register, returns the number of this register. In the other case, returns 0. | 
 | static Register isDbgValueDescribedByReg(const MachineInstr &MI) { | 
 |   assert(MI.isDebugValue() && "expected a DBG_VALUE"); | 
 |   assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); | 
 |   // If location of variable is described using a register (directly | 
 |   // or indirectly), this register is always a first operand. | 
 |   return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register(); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | class LiveDebugValues : public MachineFunctionPass { | 
 | private: | 
 |   const TargetRegisterInfo *TRI; | 
 |   const TargetInstrInfo *TII; | 
 |   const TargetFrameLowering *TFI; | 
 |   BitVector CalleeSavedRegs; | 
 |   LexicalScopes LS; | 
 |  | 
 |   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; | 
 |  | 
 |   /// Keeps track of lexical scopes associated with a user value's source | 
 |   /// location. | 
 |   class UserValueScopes { | 
 |     DebugLoc DL; | 
 |     LexicalScopes &LS; | 
 |     SmallPtrSet<const MachineBasicBlock *, 4> LBlocks; | 
 |  | 
 |   public: | 
 |     UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {} | 
 |  | 
 |     /// Return true if current scope dominates at least one machine | 
 |     /// instruction in a given machine basic block. | 
 |     bool dominates(MachineBasicBlock *MBB) { | 
 |       if (LBlocks.empty()) | 
 |         LS.getMachineBasicBlocks(DL, LBlocks); | 
 |       return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB); | 
 |     } | 
 |   }; | 
 |  | 
 |   using FragmentInfo = DIExpression::FragmentInfo; | 
 |   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; | 
 |  | 
 |   /// Storage for identifying a potentially inlined instance of a variable, | 
 |   /// or a fragment thereof. | 
 |   class DebugVariable { | 
 |     const DILocalVariable *Variable; | 
 |     OptFragmentInfo Fragment; | 
 |     const DILocation *InlinedAt; | 
 |  | 
 |     /// Fragment that will overlap all other fragments. Used as default when | 
 |     /// caller demands a fragment. | 
 |     static const FragmentInfo DefaultFragment; | 
 |  | 
 |   public: | 
 |     DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo, | 
 |                   const DILocation *InlinedAt) | 
 |         : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {} | 
 |  | 
 |     DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo, | 
 |                   const DILocation *InlinedAt) | 
 |         : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {} | 
 |  | 
 |     DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr, | 
 |                   const DILocation *InlinedAt) | 
 |         : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {} | 
 |  | 
 |     DebugVariable(const MachineInstr &MI) | 
 |         : DebugVariable(MI.getDebugVariable(), | 
 |                         MI.getDebugExpression()->getFragmentInfo(), | 
 |                         MI.getDebugLoc()->getInlinedAt()) {} | 
 |  | 
 |     const DILocalVariable *getVar() const { return Variable; } | 
 |     const OptFragmentInfo &getFragment() const { return Fragment; } | 
 |     const DILocation *getInlinedAt() const { return InlinedAt; } | 
 |  | 
 |     const FragmentInfo getFragmentDefault() const { | 
 |       return Fragment.getValueOr(DefaultFragment); | 
 |     } | 
 |  | 
 |     static bool isFragmentDefault(FragmentInfo &F) { | 
 |       return F == DefaultFragment; | 
 |     } | 
 |  | 
 |     bool operator==(const DebugVariable &Other) const { | 
 |       return std::tie(Variable, Fragment, InlinedAt) == | 
 |              std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); | 
 |     } | 
 |  | 
 |     bool operator<(const DebugVariable &Other) const { | 
 |       return std::tie(Variable, Fragment, InlinedAt) < | 
 |              std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); | 
 |     } | 
 |   }; | 
 |  | 
 |   friend struct llvm::DenseMapInfo<DebugVariable>; | 
 |  | 
 |   /// A pair of debug variable and value location. | 
 |   struct VarLoc { | 
 |     // The location at which a spilled variable resides. It consists of a | 
 |     // register and an offset. | 
 |     struct SpillLoc { | 
 |       unsigned SpillBase; | 
 |       int SpillOffset; | 
 |       bool operator==(const SpillLoc &Other) const { | 
 |         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; | 
 |       } | 
 |     }; | 
 |  | 
 |     const DebugVariable Var; | 
 |     const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE. | 
 |     mutable UserValueScopes UVS; | 
 |     enum VarLocKind { | 
 |       InvalidKind = 0, | 
 |       RegisterKind, | 
 |       SpillLocKind, | 
 |       ImmediateKind, | 
 |       EntryValueKind | 
 |     } Kind = InvalidKind; | 
 |  | 
 |     /// The value location. Stored separately to avoid repeatedly | 
 |     /// extracting it from MI. | 
 |     union { | 
 |       uint64_t RegNo; | 
 |       SpillLoc SpillLocation; | 
 |       uint64_t Hash; | 
 |       int64_t Immediate; | 
 |       const ConstantFP *FPImm; | 
 |       const ConstantInt *CImm; | 
 |     } Loc; | 
 |  | 
 |     VarLoc(const MachineInstr &MI, LexicalScopes &LS, | 
 |           VarLocKind K = InvalidKind) | 
 |         : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS){ | 
 |       static_assert((sizeof(Loc) == sizeof(uint64_t)), | 
 |                     "hash does not cover all members of Loc"); | 
 |       assert(MI.isDebugValue() && "not a DBG_VALUE"); | 
 |       assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); | 
 |       if (int RegNo = isDbgValueDescribedByReg(MI)) { | 
 |         Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind; | 
 |         Loc.RegNo = RegNo; | 
 |       } else if (MI.getOperand(0).isImm()) { | 
 |         Kind = ImmediateKind; | 
 |         Loc.Immediate = MI.getOperand(0).getImm(); | 
 |       } else if (MI.getOperand(0).isFPImm()) { | 
 |         Kind = ImmediateKind; | 
 |         Loc.FPImm = MI.getOperand(0).getFPImm(); | 
 |       } else if (MI.getOperand(0).isCImm()) { | 
 |         Kind = ImmediateKind; | 
 |         Loc.CImm = MI.getOperand(0).getCImm(); | 
 |       } | 
 |       assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) && | 
 |              "entry values must be register locations"); | 
 |     } | 
 |  | 
 |     /// The constructor for spill locations. | 
 |     VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset, | 
 |            LexicalScopes &LS) | 
 |         : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) { | 
 |       assert(MI.isDebugValue() && "not a DBG_VALUE"); | 
 |       assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); | 
 |       Kind = SpillLocKind; | 
 |       Loc.SpillLocation = {SpillBase, SpillOffset}; | 
 |     } | 
 |  | 
 |     // Is the Loc field a constant or constant object? | 
 |     bool isConstant() const { return Kind == ImmediateKind; } | 
 |  | 
 |     /// If this variable is described by a register, return it, | 
 |     /// otherwise return 0. | 
 |     unsigned isDescribedByReg() const { | 
 |       if (Kind == RegisterKind) | 
 |         return Loc.RegNo; | 
 |       return 0; | 
 |     } | 
 |  | 
 |     /// Determine whether the lexical scope of this value's debug location | 
 |     /// dominates MBB. | 
 |     bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 |     LLVM_DUMP_METHOD void dump() const { MI.dump(); } | 
 | #endif | 
 |  | 
 |     bool operator==(const VarLoc &Other) const { | 
 |       return Kind == Other.Kind && Var == Other.Var && | 
 |              Loc.Hash == Other.Loc.Hash; | 
 |     } | 
 |  | 
 |     /// This operator guarantees that VarLocs are sorted by Variable first. | 
 |     bool operator<(const VarLoc &Other) const { | 
 |       return std::tie(Var, Kind, Loc.Hash) < | 
 |              std::tie(Other.Var, Other.Kind, Other.Loc.Hash); | 
 |     } | 
 |   }; | 
 |  | 
 |   using DebugParamMap = SmallDenseMap<const DILocalVariable *, MachineInstr *>; | 
 |   using VarLocMap = UniqueVector<VarLoc>; | 
 |   using VarLocSet = SparseBitVector<>; | 
 |   using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>; | 
 |   struct TransferDebugPair { | 
 |     MachineInstr *TransferInst; | 
 |     MachineInstr *DebugInst; | 
 |   }; | 
 |   using TransferMap = SmallVector<TransferDebugPair, 4>; | 
 |  | 
 |   // Types for recording sets of variable fragments that overlap. For a given | 
 |   // local variable, we record all other fragments of that variable that could | 
 |   // overlap it, to reduce search time. | 
 |   using FragmentOfVar = | 
 |       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; | 
 |   using OverlapMap = | 
 |       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; | 
 |  | 
 |   // Helper while building OverlapMap, a map of all fragments seen for a given | 
 |   // DILocalVariable. | 
 |   using VarToFragments = | 
 |       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; | 
 |  | 
 |   /// This holds the working set of currently open ranges. For fast | 
 |   /// access, this is done both as a set of VarLocIDs, and a map of | 
 |   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all | 
 |   /// previous open ranges for the same variable. | 
 |   class OpenRangesSet { | 
 |     VarLocSet VarLocs; | 
 |     SmallDenseMap<DebugVariable, unsigned, 8> Vars; | 
 |     OverlapMap &OverlappingFragments; | 
 |  | 
 |   public: | 
 |     OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {} | 
 |  | 
 |     const VarLocSet &getVarLocs() const { return VarLocs; } | 
 |  | 
 |     /// Terminate all open ranges for Var by removing it from the set. | 
 |     void erase(DebugVariable Var); | 
 |  | 
 |     /// Terminate all open ranges listed in \c KillSet by removing | 
 |     /// them from the set. | 
 |     void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) { | 
 |       VarLocs.intersectWithComplement(KillSet); | 
 |       for (unsigned ID : KillSet) | 
 |         Vars.erase(VarLocIDs[ID].Var); | 
 |     } | 
 |  | 
 |     /// Insert a new range into the set. | 
 |     void insert(unsigned VarLocID, DebugVariable Var) { | 
 |       VarLocs.set(VarLocID); | 
 |       Vars.insert({Var, VarLocID}); | 
 |     } | 
 |  | 
 |     /// Empty the set. | 
 |     void clear() { | 
 |       VarLocs.clear(); | 
 |       Vars.clear(); | 
 |     } | 
 |  | 
 |     /// Return whether the set is empty or not. | 
 |     bool empty() const { | 
 |       assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"); | 
 |       return VarLocs.empty(); | 
 |     } | 
 |   }; | 
 |  | 
 |   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF, | 
 |                           unsigned &Reg); | 
 |   /// If a given instruction is identified as a spill, return the spill location | 
 |   /// and set \p Reg to the spilled register. | 
 |   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, | 
 |                                                   MachineFunction *MF, | 
 |                                                   unsigned &Reg); | 
 |   /// Given a spill instruction, extract the register and offset used to | 
 |   /// address the spill location in a target independent way. | 
 |   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); | 
 |   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                                TransferMap &Transfers, VarLocMap &VarLocIDs, | 
 |                                unsigned OldVarID, TransferKind Kind, | 
 |                                unsigned NewReg = 0); | 
 |  | 
 |   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                           VarLocMap &VarLocIDs); | 
 |   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                                   VarLocMap &VarLocIDs, TransferMap &Transfers); | 
 |   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                        VarLocMap &VarLocIDs, TransferMap &Transfers, | 
 |                        DebugParamMap &DebugEntryVals, | 
 |                        SparseBitVector<> &KillSet); | 
 |   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                             VarLocMap &VarLocIDs, TransferMap &Transfers); | 
 |   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                            VarLocMap &VarLocIDs, TransferMap &Transfers, | 
 |                            DebugParamMap &DebugEntryVals); | 
 |   bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                               VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); | 
 |  | 
 |   bool process(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                VarLocInMBB &OutLocs, VarLocMap &VarLocIDs, | 
 |                TransferMap &Transfers, DebugParamMap &DebugEntryVals, | 
 |                bool transferChanges, OverlapMap &OverlapFragments, | 
 |                VarToFragments &SeenFragments); | 
 |  | 
 |   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, | 
 |                              OverlapMap &OLapMap); | 
 |  | 
 |   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, | 
 |             const VarLocMap &VarLocIDs, | 
 |             SmallPtrSet<const MachineBasicBlock *, 16> &Visited, | 
 |             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); | 
 |  | 
 |   bool ExtendRanges(MachineFunction &MF); | 
 |  | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   /// Default construct and initialize the pass. | 
 |   LiveDebugValues(); | 
 |  | 
 |   /// Tell the pass manager which passes we depend on and what | 
 |   /// information we preserve. | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override; | 
 |  | 
 |   MachineFunctionProperties getRequiredProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |         MachineFunctionProperties::Property::NoVRegs); | 
 |   } | 
 |  | 
 |   /// Print to ostream with a message. | 
 |   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, | 
 |                         const VarLocMap &VarLocIDs, const char *msg, | 
 |                         raw_ostream &Out) const; | 
 |  | 
 |   /// Calculate the liveness information for the given machine function. | 
 |   bool runOnMachineFunction(MachineFunction &MF) override; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | namespace llvm { | 
 |  | 
 | template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> { | 
 |   using DV = LiveDebugValues::DebugVariable; | 
 |   using OptFragmentInfo = LiveDebugValues::OptFragmentInfo; | 
 |   using FragmentInfo = LiveDebugValues::FragmentInfo; | 
 |  | 
 |   // Empty key: no key should be generated that has no DILocalVariable. | 
 |   static inline DV getEmptyKey() { | 
 |     return DV(nullptr, OptFragmentInfo(), nullptr); | 
 |   } | 
 |  | 
 |   // Difference in tombstone is that the Optional is meaningful | 
 |   static inline DV getTombstoneKey() { | 
 |     return DV(nullptr, OptFragmentInfo({0, 0}), nullptr); | 
 |   } | 
 |  | 
 |   static unsigned getHashValue(const DV &D) { | 
 |     unsigned HV = 0; | 
 |     const OptFragmentInfo &Fragment = D.getFragment(); | 
 |     if (Fragment) | 
 |       HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment); | 
 |  | 
 |     return hash_combine(D.getVar(), HV, D.getInlinedAt()); | 
 |   } | 
 |  | 
 |   static bool isEqual(const DV &A, const DV &B) { return A == B; } | 
 | }; | 
 |  | 
 | } // namespace llvm | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //            Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const DIExpression::FragmentInfo | 
 |     LiveDebugValues::DebugVariable::DefaultFragment = { | 
 |         std::numeric_limits<uint64_t>::max(), | 
 |         std::numeric_limits<uint64_t>::min()}; | 
 |  | 
 | char LiveDebugValues::ID = 0; | 
 |  | 
 | char &llvm::LiveDebugValuesID = LiveDebugValues::ID; | 
 |  | 
 | INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis", | 
 |                 false, false) | 
 |  | 
 | /// Default construct and initialize the pass. | 
 | LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) { | 
 |   initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry()); | 
 | } | 
 |  | 
 | /// Tell the pass manager which passes we depend on and what information we | 
 | /// preserve. | 
 | void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesCFG(); | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 | } | 
 |  | 
 | /// Erase a variable from the set of open ranges, and additionally erase any | 
 | /// fragments that may overlap it. | 
 | void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) { | 
 |   // Erasure helper. | 
 |   auto DoErase = [this](DebugVariable VarToErase) { | 
 |     auto It = Vars.find(VarToErase); | 
 |     if (It != Vars.end()) { | 
 |       unsigned ID = It->second; | 
 |       VarLocs.reset(ID); | 
 |       Vars.erase(It); | 
 |     } | 
 |   }; | 
 |  | 
 |   // Erase the variable/fragment that ends here. | 
 |   DoErase(Var); | 
 |  | 
 |   // Extract the fragment. Interpret an empty fragment as one that covers all | 
 |   // possible bits. | 
 |   FragmentInfo ThisFragment = Var.getFragmentDefault(); | 
 |  | 
 |   // There may be fragments that overlap the designated fragment. Look them up | 
 |   // in the pre-computed overlap map, and erase them too. | 
 |   auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment}); | 
 |   if (MapIt != OverlappingFragments.end()) { | 
 |     for (auto Fragment : MapIt->second) { | 
 |       LiveDebugValues::OptFragmentInfo FragmentHolder; | 
 |       if (!DebugVariable::isFragmentDefault(Fragment)) | 
 |         FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment); | 
 |       DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()}); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //            Debug Range Extension Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef NDEBUG | 
 | void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF, | 
 |                                        const VarLocInMBB &V, | 
 |                                        const VarLocMap &VarLocIDs, | 
 |                                        const char *msg, | 
 |                                        raw_ostream &Out) const { | 
 |   Out << '\n' << msg << '\n'; | 
 |   for (const MachineBasicBlock &BB : MF) { | 
 |     const VarLocSet &L = V.lookup(&BB); | 
 |     if (L.empty()) | 
 |       continue; | 
 |     Out << "MBB: " << BB.getNumber() << ":\n"; | 
 |     for (unsigned VLL : L) { | 
 |       const VarLoc &VL = VarLocIDs[VLL]; | 
 |       Out << " Var: " << VL.Var.getVar()->getName(); | 
 |       Out << " MI: "; | 
 |       VL.dump(); | 
 |     } | 
 |   } | 
 |   Out << "\n"; | 
 | } | 
 | #endif | 
 |  | 
 | LiveDebugValues::VarLoc::SpillLoc | 
 | LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) { | 
 |   assert(MI.hasOneMemOperand() && | 
 |          "Spill instruction does not have exactly one memory operand?"); | 
 |   auto MMOI = MI.memoperands_begin(); | 
 |   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); | 
 |   assert(PVal->kind() == PseudoSourceValue::FixedStack && | 
 |          "Inconsistent memory operand in spill instruction"); | 
 |   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); | 
 |   const MachineBasicBlock *MBB = MI.getParent(); | 
 |   unsigned Reg; | 
 |   int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); | 
 |   return {Reg, Offset}; | 
 | } | 
 |  | 
 | /// End all previous ranges related to @MI and start a new range from @MI | 
 | /// if it is a DBG_VALUE instr. | 
 | void LiveDebugValues::transferDebugValue(const MachineInstr &MI, | 
 |                                          OpenRangesSet &OpenRanges, | 
 |                                          VarLocMap &VarLocIDs) { | 
 |   if (!MI.isDebugValue()) | 
 |     return; | 
 |   const DILocalVariable *Var = MI.getDebugVariable(); | 
 |   const DIExpression *Expr = MI.getDebugExpression(); | 
 |   const DILocation *DebugLoc = MI.getDebugLoc(); | 
 |   const DILocation *InlinedAt = DebugLoc->getInlinedAt(); | 
 |   assert(Var->isValidLocationForIntrinsic(DebugLoc) && | 
 |          "Expected inlined-at fields to agree"); | 
 |  | 
 |   // End all previous ranges of Var. | 
 |   DebugVariable V(Var, Expr, InlinedAt); | 
 |   OpenRanges.erase(V); | 
 |  | 
 |   // Add the VarLoc to OpenRanges from this DBG_VALUE. | 
 |   unsigned ID; | 
 |   if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() || | 
 |       MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) { | 
 |     // Use normal VarLoc constructor for registers and immediates. | 
 |     VarLoc VL(MI, LS); | 
 |     ID = VarLocIDs.insert(VL); | 
 |     OpenRanges.insert(ID, VL.Var); | 
 |   } else if (MI.hasOneMemOperand()) { | 
 |     // It's a stack spill -- fetch spill base and offset. | 
 |     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); | 
 |     VarLoc VL(MI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS); | 
 |     ID = VarLocIDs.insert(VL); | 
 |     OpenRanges.insert(ID, VL.Var); | 
 |   } else { | 
 |     // This must be an undefined location. We should leave OpenRanges closed. | 
 |     assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 && | 
 |            "Unexpected non-undef DBG_VALUE encountered"); | 
 |   } | 
 | } | 
 |  | 
 | void LiveDebugValues::emitEntryValues(MachineInstr &MI, | 
 |                                       OpenRangesSet &OpenRanges, | 
 |                                       VarLocMap &VarLocIDs, | 
 |                                       TransferMap &Transfers, | 
 |                                       DebugParamMap &DebugEntryVals, | 
 |                                       SparseBitVector<> &KillSet) { | 
 |   MachineFunction *MF = MI.getParent()->getParent(); | 
 |   for (unsigned ID : KillSet) { | 
 |     if (!VarLocIDs[ID].Var.getVar()->isParameter()) | 
 |       continue; | 
 |  | 
 |     const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI; | 
 |  | 
 |     // If parameter's DBG_VALUE is not in the map that means we can't | 
 |     // generate parameter's entry value. | 
 |     if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable())) | 
 |       continue; | 
 |  | 
 |     auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()]; | 
 |     DIExpression *NewExpr = DIExpression::prepend( | 
 |         ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue); | 
 |     MachineInstr *EntryValDbgMI = | 
 |         BuildMI(*MF, ParamDebugInstr->getDebugLoc(), ParamDebugInstr->getDesc(), | 
 |                 ParamDebugInstr->isIndirectDebugValue(), | 
 |                 ParamDebugInstr->getOperand(0).getReg(), | 
 |                 ParamDebugInstr->getDebugVariable(), NewExpr); | 
 |  | 
 |     if (ParamDebugInstr->isIndirectDebugValue()) | 
 |       EntryValDbgMI->getOperand(1).setImm( | 
 |           ParamDebugInstr->getOperand(1).getImm()); | 
 |  | 
 |     Transfers.push_back({&MI, EntryValDbgMI}); | 
 |     VarLoc VL(*EntryValDbgMI, LS); | 
 |     unsigned EntryValLocID = VarLocIDs.insert(VL); | 
 |     OpenRanges.insert(EntryValLocID, VL.Var); | 
 |   } | 
 | } | 
 |  | 
 | /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc | 
 | /// with \p OldVarID should be deleted form \p OpenRanges and replaced with | 
 | /// new VarLoc. If \p NewReg is different than default zero value then the | 
 | /// new location will be register location created by the copy like instruction, | 
 | /// otherwise it is variable's location on the stack. | 
 | void LiveDebugValues::insertTransferDebugPair( | 
 |     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, | 
 |     VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind, | 
 |     unsigned NewReg) { | 
 |   const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; | 
 |   MachineFunction *MF = MI.getParent()->getParent(); | 
 |   MachineInstr *NewDebugInstr; | 
 |  | 
 |   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr, | 
 |                         &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) { | 
 |     unsigned LocId = VarLocIDs.insert(VL); | 
 |  | 
 |     // Close this variable's previous location range. | 
 |     DebugVariable V(*DebugInstr); | 
 |     OpenRanges.erase(V); | 
 |  | 
 |     OpenRanges.insert(LocId, VL.Var); | 
 |     // The newly created DBG_VALUE instruction NewDebugInstr must be inserted | 
 |     // after MI. Keep track of the pairing. | 
 |     TransferDebugPair MIP = {&MI, NewDebugInstr}; | 
 |     Transfers.push_back(MIP); | 
 |   }; | 
 |  | 
 |   // End all previous ranges of Var. | 
 |   OpenRanges.erase(VarLocIDs[OldVarID].Var); | 
 |   switch (Kind) { | 
 |   case TransferKind::TransferCopy: { | 
 |     assert(NewReg && | 
 |            "No register supplied when handling a copy of a debug value"); | 
 |     // Create a DBG_VALUE instruction to describe the Var in its new | 
 |     // register location. | 
 |     NewDebugInstr = BuildMI( | 
 |         *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), | 
 |         DebugInstr->isIndirectDebugValue(), NewReg, | 
 |         DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression()); | 
 |     if (DebugInstr->isIndirectDebugValue()) | 
 |       NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm()); | 
 |     VarLoc VL(*NewDebugInstr, LS); | 
 |     ProcessVarLoc(VL, NewDebugInstr); | 
 |     LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: "; | 
 |                NewDebugInstr->print(dbgs(), /*IsStandalone*/false, | 
 |                                     /*SkipOpers*/false, /*SkipDebugLoc*/false, | 
 |                                     /*AddNewLine*/true, TII)); | 
 |     return; | 
 |   } | 
 |   case TransferKind::TransferSpill: { | 
 |     // Create a DBG_VALUE instruction to describe the Var in its spilled | 
 |     // location. | 
 |     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); | 
 |     auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(), | 
 |                                             DIExpression::ApplyOffset, | 
 |                                             SpillLocation.SpillOffset); | 
 |     NewDebugInstr = BuildMI( | 
 |         *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true, | 
 |         SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr); | 
 |     VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase, | 
 |               SpillLocation.SpillOffset, LS); | 
 |     ProcessVarLoc(VL, NewDebugInstr); | 
 |     LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: "; | 
 |                NewDebugInstr->print(dbgs(), /*IsStandalone*/false, | 
 |                                     /*SkipOpers*/false, /*SkipDebugLoc*/false, | 
 |                                     /*AddNewLine*/true, TII)); | 
 |     return; | 
 |   } | 
 |   case TransferKind::TransferRestore: { | 
 |     assert(NewReg && | 
 |            "No register supplied when handling a restore of a debug value"); | 
 |     MachineFunction *MF = MI.getMF(); | 
 |     DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent()); | 
 |  | 
 |     const DIExpression *NewExpr; | 
 |     if (auto Fragment = DebugInstr->getDebugExpression()->getFragmentInfo()) | 
 |       NewExpr = *DIExpression::createFragmentExpression(DIB.createExpression(), | 
 |         Fragment->OffsetInBits, Fragment->SizeInBits); | 
 |     else | 
 |       NewExpr = DIB.createExpression(); | 
 |  | 
 |     NewDebugInstr = | 
 |         BuildMI(*MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false, | 
 |                 NewReg, DebugInstr->getDebugVariable(), NewExpr); | 
 |     VarLoc VL(*NewDebugInstr, LS); | 
 |     ProcessVarLoc(VL, NewDebugInstr); | 
 |     LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: "; | 
 |                NewDebugInstr->print(dbgs(), /*IsStandalone*/false, | 
 |                                     /*SkipOpers*/false, /*SkipDebugLoc*/false, | 
 |                                     /*AddNewLine*/true, TII)); | 
 |     return; | 
 |   } | 
 |   } | 
 |   llvm_unreachable("Invalid transfer kind"); | 
 | } | 
 |  | 
 | /// A definition of a register may mark the end of a range. | 
 | void LiveDebugValues::transferRegisterDef( | 
 |     MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, | 
 |     TransferMap &Transfers, DebugParamMap &DebugEntryVals) { | 
 |   MachineFunction *MF = MI.getMF(); | 
 |   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
 |   unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); | 
 |   SparseBitVector<> KillSet; | 
 |   for (const MachineOperand &MO : MI.operands()) { | 
 |     // Determine whether the operand is a register def.  Assume that call | 
 |     // instructions never clobber SP, because some backends (e.g., AArch64) | 
 |     // never list SP in the regmask. | 
 |     if (MO.isReg() && MO.isDef() && MO.getReg() && | 
 |         TRI->isPhysicalRegister(MO.getReg()) && | 
 |         !(MI.isCall() && MO.getReg() == SP)) { | 
 |       // Remove ranges of all aliased registers. | 
 |       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) | 
 |         for (unsigned ID : OpenRanges.getVarLocs()) | 
 |           if (VarLocIDs[ID].isDescribedByReg() == *RAI) | 
 |             KillSet.set(ID); | 
 |     } else if (MO.isRegMask()) { | 
 |       // Remove ranges of all clobbered registers. Register masks don't usually | 
 |       // list SP as preserved.  While the debug info may be off for an | 
 |       // instruction or two around callee-cleanup calls, transferring the | 
 |       // DEBUG_VALUE across the call is still a better user experience. | 
 |       for (unsigned ID : OpenRanges.getVarLocs()) { | 
 |         unsigned Reg = VarLocIDs[ID].isDescribedByReg(); | 
 |         if (Reg && Reg != SP && MO.clobbersPhysReg(Reg)) | 
 |           KillSet.set(ID); | 
 |       } | 
 |     } | 
 |   } | 
 |   OpenRanges.erase(KillSet, VarLocIDs); | 
 |  | 
 |   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | 
 |     auto &TM = TPC->getTM<TargetMachine>(); | 
 |     if (TM.Options.EnableDebugEntryValues) | 
 |       emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals, | 
 |                       KillSet); | 
 |   } | 
 | } | 
 |  | 
 | /// Decide if @MI is a spill instruction and return true if it is. We use 2 | 
 | /// criteria to make this decision: | 
 | /// - Is this instruction a store to a spill slot? | 
 | /// - Is there a register operand that is both used and killed? | 
 | /// TODO: Store optimization can fold spills into other stores (including | 
 | /// other spills). We do not handle this yet (more than one memory operand). | 
 | bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI, | 
 |                                          MachineFunction *MF, unsigned &Reg) { | 
 |   SmallVector<const MachineMemOperand*, 1> Accesses; | 
 |  | 
 |   // TODO: Handle multiple stores folded into one. | 
 |   if (!MI.hasOneMemOperand()) | 
 |     return false; | 
 |  | 
 |   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) | 
 |     return false; // This is not a spill instruction, since no valid size was | 
 |                   // returned from either function. | 
 |  | 
 |   auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { | 
 |     if (!MO.isReg() || !MO.isUse()) { | 
 |       Reg = 0; | 
 |       return false; | 
 |     } | 
 |     Reg = MO.getReg(); | 
 |     return MO.isKill(); | 
 |   }; | 
 |  | 
 |   for (const MachineOperand &MO : MI.operands()) { | 
 |     // In a spill instruction generated by the InlineSpiller the spilled | 
 |     // register has its kill flag set. | 
 |     if (isKilledReg(MO, Reg)) | 
 |       return true; | 
 |     if (Reg != 0) { | 
 |       // Check whether next instruction kills the spilled register. | 
 |       // FIXME: Current solution does not cover search for killed register in | 
 |       // bundles and instructions further down the chain. | 
 |       auto NextI = std::next(MI.getIterator()); | 
 |       // Skip next instruction that points to basic block end iterator. | 
 |       if (MI.getParent()->end() == NextI) | 
 |         continue; | 
 |       unsigned RegNext; | 
 |       for (const MachineOperand &MONext : NextI->operands()) { | 
 |         // Return true if we came across the register from the | 
 |         // previous spill instruction that is killed in NextI. | 
 |         if (isKilledReg(MONext, RegNext) && RegNext == Reg) | 
 |           return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   // Return false if we didn't find spilled register. | 
 |   return false; | 
 | } | 
 |  | 
 | Optional<LiveDebugValues::VarLoc::SpillLoc> | 
 | LiveDebugValues::isRestoreInstruction(const MachineInstr &MI, | 
 |                                       MachineFunction *MF, unsigned &Reg) { | 
 |   if (!MI.hasOneMemOperand()) | 
 |     return None; | 
 |  | 
 |   // FIXME: Handle folded restore instructions with more than one memory | 
 |   // operand. | 
 |   if (MI.getRestoreSize(TII)) { | 
 |     Reg = MI.getOperand(0).getReg(); | 
 |     return extractSpillBaseRegAndOffset(MI); | 
 |   } | 
 |   return None; | 
 | } | 
 |  | 
 | /// A spilled register may indicate that we have to end the current range of | 
 | /// a variable and create a new one for the spill location. | 
 | /// A restored register may indicate the reverse situation. | 
 | /// We don't want to insert any instructions in process(), so we just create | 
 | /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. | 
 | /// It will be inserted into the BB when we're done iterating over the | 
 | /// instructions. | 
 | void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI, | 
 |                                                  OpenRangesSet &OpenRanges, | 
 |                                                  VarLocMap &VarLocIDs, | 
 |                                                  TransferMap &Transfers) { | 
 |   MachineFunction *MF = MI.getMF(); | 
 |   TransferKind TKind; | 
 |   unsigned Reg; | 
 |   Optional<VarLoc::SpillLoc> Loc; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); | 
 |  | 
 |   if (isSpillInstruction(MI, MF, Reg)) { | 
 |     TKind = TransferKind::TransferSpill; | 
 |     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); | 
 |     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) | 
 |                       << "\n"); | 
 |   } else { | 
 |     if (!(Loc = isRestoreInstruction(MI, MF, Reg))) | 
 |       return; | 
 |     TKind = TransferKind::TransferRestore; | 
 |     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); | 
 |     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) | 
 |                       << "\n"); | 
 |   } | 
 |   // Check if the register or spill location is the location of a debug value. | 
 |   // FIXME: Don't create a spill transfer if there is a complex expression, | 
 |   // because we currently cannot recover the original expression on restore. | 
 |   for (unsigned ID : OpenRanges.getVarLocs()) { | 
 |     const MachineInstr *DebugInstr = &VarLocIDs[ID].MI; | 
 |  | 
 |     if (TKind == TransferKind::TransferSpill && | 
 |         VarLocIDs[ID].isDescribedByReg() == Reg && | 
 |         !DebugInstr->getDebugExpression()->isComplex()) { | 
 |       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' | 
 |                         << VarLocIDs[ID].Var.getVar()->getName() << ")\n"); | 
 |     } else if (TKind == TransferKind::TransferRestore && | 
 |                VarLocIDs[ID].Loc.SpillLocation == *Loc) { | 
 |       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' | 
 |                         << VarLocIDs[ID].Var.getVar()->getName() << ")\n"); | 
 |     } else | 
 |       continue; | 
 |     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind, | 
 |                             Reg); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// If \p MI is a register copy instruction, that copies a previously tracked | 
 | /// value from one register to another register that is callee saved, we | 
 | /// create new DBG_VALUE instruction  described with copy destination register. | 
 | void LiveDebugValues::transferRegisterCopy(MachineInstr &MI, | 
 |                                            OpenRangesSet &OpenRanges, | 
 |                                            VarLocMap &VarLocIDs, | 
 |                                            TransferMap &Transfers) { | 
 |   const MachineOperand *SrcRegOp, *DestRegOp; | 
 |  | 
 |   if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() || | 
 |       !DestRegOp->isDef()) | 
 |     return; | 
 |  | 
 |   auto isCalleSavedReg = [&](unsigned Reg) { | 
 |     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) | 
 |       if (CalleeSavedRegs.test(*RAI)) | 
 |         return true; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   unsigned SrcReg = SrcRegOp->getReg(); | 
 |   unsigned DestReg = DestRegOp->getReg(); | 
 |  | 
 |   // We want to recognize instructions where destination register is callee | 
 |   // saved register. If register that could be clobbered by the call is | 
 |   // included, there would be a great chance that it is going to be clobbered | 
 |   // soon. It is more likely that previous register location, which is callee | 
 |   // saved, is going to stay unclobbered longer, even if it is killed. | 
 |   if (!isCalleSavedReg(DestReg)) | 
 |     return; | 
 |  | 
 |   for (unsigned ID : OpenRanges.getVarLocs()) { | 
 |     if (VarLocIDs[ID].isDescribedByReg() == SrcReg) { | 
 |       insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, | 
 |                               TransferKind::TransferCopy, DestReg); | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Terminate all open ranges at the end of the current basic block. | 
 | bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI, | 
 |                                              OpenRangesSet &OpenRanges, | 
 |                                              VarLocInMBB &OutLocs, | 
 |                                              const VarLocMap &VarLocIDs) { | 
 |   bool Changed = false; | 
 |   const MachineBasicBlock *CurMBB = MI.getParent(); | 
 |   if (!(MI.isTerminator() || (&MI == &CurMBB->back()))) | 
 |     return false; | 
 |  | 
 |   if (OpenRanges.empty()) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(for (unsigned ID | 
 |                   : OpenRanges.getVarLocs()) { | 
 |     // Copy OpenRanges to OutLocs, if not already present. | 
 |     dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  "; | 
 |     VarLocIDs[ID].dump(); | 
 |   }); | 
 |   VarLocSet &VLS = OutLocs[CurMBB]; | 
 |   Changed = VLS |= OpenRanges.getVarLocs(); | 
 |   // New OutLocs set may be different due to spill, restore or register | 
 |   // copy instruction processing. | 
 |   if (Changed) | 
 |     VLS = OpenRanges.getVarLocs(); | 
 |   OpenRanges.clear(); | 
 |   return Changed; | 
 | } | 
 |  | 
 | /// Accumulate a mapping between each DILocalVariable fragment and other | 
 | /// fragments of that DILocalVariable which overlap. This reduces work during | 
 | /// the data-flow stage from "Find any overlapping fragments" to "Check if the | 
 | /// known-to-overlap fragments are present". | 
 | /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for | 
 | ///           fragment usage. | 
 | /// \param SeenFragments Map from DILocalVariable to all fragments of that | 
 | ///           Variable which are known to exist. | 
 | /// \param OverlappingFragments The overlap map being constructed, from one | 
 | ///           Var/Fragment pair to a vector of fragments known to overlap. | 
 | void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI, | 
 |                                             VarToFragments &SeenFragments, | 
 |                                             OverlapMap &OverlappingFragments) { | 
 |   DebugVariable MIVar(MI); | 
 |   FragmentInfo ThisFragment = MIVar.getFragmentDefault(); | 
 |  | 
 |   // If this is the first sighting of this variable, then we are guaranteed | 
 |   // there are currently no overlapping fragments either. Initialize the set | 
 |   // of seen fragments, record no overlaps for the current one, and return. | 
 |   auto SeenIt = SeenFragments.find(MIVar.getVar()); | 
 |   if (SeenIt == SeenFragments.end()) { | 
 |     SmallSet<FragmentInfo, 4> OneFragment; | 
 |     OneFragment.insert(ThisFragment); | 
 |     SeenFragments.insert({MIVar.getVar(), OneFragment}); | 
 |  | 
 |     OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}}); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If this particular Variable/Fragment pair already exists in the overlap | 
 |   // map, it has already been accounted for. | 
 |   auto IsInOLapMap = | 
 |       OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}}); | 
 |   if (!IsInOLapMap.second) | 
 |     return; | 
 |  | 
 |   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; | 
 |   auto &AllSeenFragments = SeenIt->second; | 
 |  | 
 |   // Otherwise, examine all other seen fragments for this variable, with "this" | 
 |   // fragment being a previously unseen fragment. Record any pair of | 
 |   // overlapping fragments. | 
 |   for (auto &ASeenFragment : AllSeenFragments) { | 
 |     // Does this previously seen fragment overlap? | 
 |     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { | 
 |       // Yes: Mark the current fragment as being overlapped. | 
 |       ThisFragmentsOverlaps.push_back(ASeenFragment); | 
 |       // Mark the previously seen fragment as being overlapped by the current | 
 |       // one. | 
 |       auto ASeenFragmentsOverlaps = | 
 |           OverlappingFragments.find({MIVar.getVar(), ASeenFragment}); | 
 |       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && | 
 |              "Previously seen var fragment has no vector of overlaps"); | 
 |       ASeenFragmentsOverlaps->second.push_back(ThisFragment); | 
 |     } | 
 |   } | 
 |  | 
 |   AllSeenFragments.insert(ThisFragment); | 
 | } | 
 |  | 
 | /// This routine creates OpenRanges and OutLocs. | 
 | bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges, | 
 |                               VarLocInMBB &OutLocs, VarLocMap &VarLocIDs, | 
 |                               TransferMap &Transfers, DebugParamMap &DebugEntryVals, | 
 |                               bool transferChanges, | 
 |                               OverlapMap &OverlapFragments, | 
 |                               VarToFragments &SeenFragments) { | 
 |   bool Changed = false; | 
 |   transferDebugValue(MI, OpenRanges, VarLocIDs); | 
 |   transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers, | 
 |                       DebugEntryVals); | 
 |   if (transferChanges) { | 
 |     transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); | 
 |     transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); | 
 |   } else { | 
 |     // Build up a map of overlapping fragments on the first run through. | 
 |     if (MI.isDebugValue()) | 
 |       accumulateFragmentMap(MI, SeenFragments, OverlapFragments); | 
 |   } | 
 |   Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs); | 
 |   return Changed; | 
 | } | 
 |  | 
 | /// This routine joins the analysis results of all incoming edges in @MBB by | 
 | /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same | 
 | /// source variable in all the predecessors of @MBB reside in the same location. | 
 | bool LiveDebugValues::join( | 
 |     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, | 
 |     const VarLocMap &VarLocIDs, | 
 |     SmallPtrSet<const MachineBasicBlock *, 16> &Visited, | 
 |     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { | 
 |   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); | 
 |   bool Changed = false; | 
 |  | 
 |   VarLocSet InLocsT; // Temporary incoming locations. | 
 |  | 
 |   // For all predecessors of this MBB, find the set of VarLocs that | 
 |   // can be joined. | 
 |   int NumVisited = 0; | 
 |   for (auto p : MBB.predecessors()) { | 
 |     // Ignore unvisited predecessor blocks.  As we are processing | 
 |     // the blocks in reverse post-order any unvisited block can | 
 |     // be considered to not remove any incoming values. | 
 |     if (!Visited.count(p)) { | 
 |       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber() | 
 |                         << "\n"); | 
 |       continue; | 
 |     } | 
 |     auto OL = OutLocs.find(p); | 
 |     // Join is null in case of empty OutLocs from any of the pred. | 
 |     if (OL == OutLocs.end()) | 
 |       return false; | 
 |  | 
 |     // Just copy over the Out locs to incoming locs for the first visited | 
 |     // predecessor, and for all other predecessors join the Out locs. | 
 |     if (!NumVisited) | 
 |       InLocsT = OL->second; | 
 |     else | 
 |       InLocsT &= OL->second; | 
 |  | 
 |     LLVM_DEBUG({ | 
 |       if (!InLocsT.empty()) { | 
 |         for (auto ID : InLocsT) | 
 |           dbgs() << "  gathered candidate incoming var: " | 
 |                  << VarLocIDs[ID].Var.getVar()->getName() << "\n"; | 
 |       } | 
 |     }); | 
 |  | 
 |     NumVisited++; | 
 |   } | 
 |  | 
 |   // Filter out DBG_VALUES that are out of scope. | 
 |   VarLocSet KillSet; | 
 |   bool IsArtificial = ArtificialBlocks.count(&MBB); | 
 |   if (!IsArtificial) { | 
 |     for (auto ID : InLocsT) { | 
 |       if (!VarLocIDs[ID].dominates(MBB)) { | 
 |         KillSet.set(ID); | 
 |         LLVM_DEBUG({ | 
 |           auto Name = VarLocIDs[ID].Var.getVar()->getName(); | 
 |           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n"; | 
 |         }); | 
 |       } | 
 |     } | 
 |   } | 
 |   InLocsT.intersectWithComplement(KillSet); | 
 |  | 
 |   // As we are processing blocks in reverse post-order we | 
 |   // should have processed at least one predecessor, unless it | 
 |   // is the entry block which has no predecessor. | 
 |   assert((NumVisited || MBB.pred_empty()) && | 
 |          "Should have processed at least one predecessor"); | 
 |   if (InLocsT.empty()) | 
 |     return false; | 
 |  | 
 |   VarLocSet &ILS = InLocs[&MBB]; | 
 |  | 
 |   // Insert DBG_VALUE instructions, if not already inserted. | 
 |   VarLocSet Diff = InLocsT; | 
 |   Diff.intersectWithComplement(ILS); | 
 |   for (auto ID : Diff) { | 
 |     // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a | 
 |     // new range is started for the var from the mbb's beginning by inserting | 
 |     // a new DBG_VALUE. process() will end this range however appropriate. | 
 |     const VarLoc &DiffIt = VarLocIDs[ID]; | 
 |     const MachineInstr *DebugInstr = &DiffIt.MI; | 
 |     MachineInstr *MI = nullptr; | 
 |     if (DiffIt.isConstant()) { | 
 |       MachineOperand MO(DebugInstr->getOperand(0)); | 
 |       MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(), | 
 |                    DebugInstr->getDesc(), false, MO, | 
 |                    DebugInstr->getDebugVariable(), | 
 |                    DebugInstr->getDebugExpression()); | 
 |     } else { | 
 |       MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(), | 
 |                    DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(), | 
 |                    DebugInstr->getOperand(0).getReg(), | 
 |                    DebugInstr->getDebugVariable(), | 
 |                    DebugInstr->getDebugExpression()); | 
 |       if (DebugInstr->isIndirectDebugValue()) | 
 |         MI->getOperand(1).setImm(DebugInstr->getOperand(1).getImm()); | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); | 
 |     ILS.set(ID); | 
 |     ++NumInserted; | 
 |     Changed = true; | 
 |   } | 
 |   return Changed; | 
 | } | 
 |  | 
 | /// Calculate the liveness information for the given machine function and | 
 | /// extend ranges across basic blocks. | 
 | bool LiveDebugValues::ExtendRanges(MachineFunction &MF) { | 
 |   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); | 
 |  | 
 |   bool Changed = false; | 
 |   bool OLChanged = false; | 
 |   bool MBBJoined = false; | 
 |  | 
 |   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors. | 
 |   OverlapMap OverlapFragments; // Map of overlapping variable fragments | 
 |   OpenRangesSet OpenRanges(OverlapFragments); | 
 |                               // Ranges that are open until end of bb. | 
 |   VarLocInMBB OutLocs;        // Ranges that exist beyond bb. | 
 |   VarLocInMBB InLocs;         // Ranges that are incoming after joining. | 
 |   TransferMap Transfers;      // DBG_VALUEs associated with spills. | 
 |  | 
 |   VarToFragments SeenFragments; | 
 |  | 
 |   // Blocks which are artificial, i.e. blocks which exclusively contain | 
 |   // instructions without locations, or with line 0 locations. | 
 |   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; | 
 |  | 
 |   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; | 
 |   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; | 
 |   std::priority_queue<unsigned int, std::vector<unsigned int>, | 
 |                       std::greater<unsigned int>> | 
 |       Worklist; | 
 |   std::priority_queue<unsigned int, std::vector<unsigned int>, | 
 |                       std::greater<unsigned int>> | 
 |       Pending; | 
 |  | 
 |   enum : bool { dontTransferChanges = false, transferChanges = true }; | 
 |  | 
 |   // Besides parameter's modification, check whether a DBG_VALUE is inlined | 
 |   // in order to deduce whether the variable that it tracks comes from | 
 |   // a different function. If that is the case we can't track its entry value. | 
 |   auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) { | 
 |     auto *DIVar = MI.getDebugVariable(); | 
 |     return DIVar->isParameter() && DIVar->isNotModified() && | 
 |            !MI.getDebugLoc()->getInlinedAt(); | 
 |   }; | 
 |  | 
 |   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); | 
 |   unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); | 
 |   unsigned FP = TRI->getFrameRegister(MF); | 
 |   auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool { | 
 |     return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP; | 
 |   }; | 
 |  | 
 |   // Working set of currently collected debug variables mapped to DBG_VALUEs | 
 |   // representing candidates for production of debug entry values. | 
 |   DebugParamMap DebugEntryVals; | 
 |  | 
 |   MachineBasicBlock &First_MBB = *(MF.begin()); | 
 |   // Only in the case of entry MBB collect DBG_VALUEs representing | 
 |   // function parameters in order to generate debug entry values for them. | 
 |   // Currently, we generate debug entry values only for parameters that are | 
 |   // unmodified throughout the function and located in a register. | 
 |   // TODO: Add support for parameters that are described as fragments. | 
 |   // TODO: Add support for modified arguments that can be expressed | 
 |   // by using its entry value. | 
 |   // TODO: Add support for local variables that are expressed in terms of | 
 |   // parameters entry values. | 
 |   for (auto &MI : First_MBB) | 
 |     if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) && | 
 |         !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) && | 
 |         !DebugEntryVals.count(MI.getDebugVariable()) && | 
 |         !MI.getDebugExpression()->isFragment()) | 
 |       DebugEntryVals[MI.getDebugVariable()] = &MI; | 
 |  | 
 |   // Initialize every mbb with OutLocs. | 
 |   // We are not looking at any spill instructions during the initial pass | 
 |   // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE | 
 |   // instructions for spills of registers that are known to be user variables | 
 |   // within the BB in which the spill occurs. | 
 |   for (auto &MBB : MF) { | 
 |     for (auto &MI : MBB) { | 
 |       process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, DebugEntryVals, | 
 |               dontTransferChanges, OverlapFragments, SeenFragments); | 
 |     } | 
 |     // Add any entry DBG_VALUE instructions necessitated by parameter | 
 |     // clobbering. | 
 |     for (auto &TR : Transfers) { | 
 |       MBB.insertAfter(MachineBasicBlock::iterator(*TR.TransferInst), | 
 |                      TR.DebugInst); | 
 |     } | 
 |     Transfers.clear(); | 
 |   } | 
 |  | 
 |   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { | 
 |     if (const DebugLoc &DL = MI.getDebugLoc()) | 
 |       return DL.getLine() != 0; | 
 |     return false; | 
 |   }; | 
 |   for (auto &MBB : MF) | 
 |     if (none_of(MBB.instrs(), hasNonArtificialLocation)) | 
 |       ArtificialBlocks.insert(&MBB); | 
 |  | 
 |   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, | 
 |                               "OutLocs after initialization", dbgs())); | 
 |  | 
 |   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); | 
 |   unsigned int RPONumber = 0; | 
 |   for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { | 
 |     OrderToBB[RPONumber] = *RI; | 
 |     BBToOrder[*RI] = RPONumber; | 
 |     Worklist.push(RPONumber); | 
 |     ++RPONumber; | 
 |   } | 
 |   // This is a standard "union of predecessor outs" dataflow problem. | 
 |   // To solve it, we perform join() and process() using the two worklist method | 
 |   // until the ranges converge. | 
 |   // Ranges have converged when both worklists are empty. | 
 |   SmallPtrSet<const MachineBasicBlock *, 16> Visited; | 
 |   while (!Worklist.empty() || !Pending.empty()) { | 
 |     // We track what is on the pending worklist to avoid inserting the same | 
 |     // thing twice.  We could avoid this with a custom priority queue, but this | 
 |     // is probably not worth it. | 
 |     SmallPtrSet<MachineBasicBlock *, 16> OnPending; | 
 |     LLVM_DEBUG(dbgs() << "Processing Worklist\n"); | 
 |     while (!Worklist.empty()) { | 
 |       MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; | 
 |       Worklist.pop(); | 
 |       MBBJoined = | 
 |           join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks); | 
 |       Visited.insert(MBB); | 
 |       if (MBBJoined) { | 
 |         MBBJoined = false; | 
 |         Changed = true; | 
 |         // Now that we have started to extend ranges across BBs we need to | 
 |         // examine spill instructions to see whether they spill registers that | 
 |         // correspond to user variables. | 
 |         for (auto &MI : *MBB) | 
 |           OLChanged |= | 
 |               process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, | 
 |                       DebugEntryVals, transferChanges, OverlapFragments, | 
 |                       SeenFragments); | 
 |  | 
 |         // Add any DBG_VALUE instructions necessitated by spills. | 
 |         for (auto &TR : Transfers) | 
 |           MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst), | 
 |                            TR.DebugInst); | 
 |         Transfers.clear(); | 
 |  | 
 |         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, | 
 |                                     "OutLocs after propagating", dbgs())); | 
 |         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, | 
 |                                     "InLocs after propagating", dbgs())); | 
 |  | 
 |         if (OLChanged) { | 
 |           OLChanged = false; | 
 |           for (auto s : MBB->successors()) | 
 |             if (OnPending.insert(s).second) { | 
 |               Pending.push(BBToOrder[s]); | 
 |             } | 
 |         } | 
 |       } | 
 |     } | 
 |     Worklist.swap(Pending); | 
 |     // At this point, pending must be empty, since it was just the empty | 
 |     // worklist | 
 |     assert(Pending.empty() && "Pending should be empty"); | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); | 
 |   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) { | 
 |   if (!MF.getFunction().getSubprogram()) | 
 |     // LiveDebugValues will already have removed all DBG_VALUEs. | 
 |     return false; | 
 |  | 
 |   // Skip functions from NoDebug compilation units. | 
 |   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == | 
 |       DICompileUnit::NoDebug) | 
 |     return false; | 
 |  | 
 |   TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   TII = MF.getSubtarget().getInstrInfo(); | 
 |   TFI = MF.getSubtarget().getFrameLowering(); | 
 |   TFI->determineCalleeSaves(MF, CalleeSavedRegs, | 
 |                             make_unique<RegScavenger>().get()); | 
 |   LS.initialize(MF); | 
 |  | 
 |   bool Changed = ExtendRanges(MF); | 
 |   return Changed; | 
 | } |