| //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains a pass (at IR level) to replace atomic instructions with | 
 | // __atomic_* library calls, or target specific instruction which implement the | 
 | // same semantics in a way which better fits the target backend.  This can | 
 | // include the use of (intrinsic-based) load-linked/store-conditional loops, | 
 | // AtomicCmpXchg, or type coercions. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/CodeGen/AtomicExpandUtils.h" | 
 | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetPassConfig.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/CodeGen/ValueTypes.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InstIterator.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/User.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/AtomicOrdering.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "atomic-expand" | 
 |  | 
 | namespace { | 
 |  | 
 |   class AtomicExpand: public FunctionPass { | 
 |     const TargetLowering *TLI = nullptr; | 
 |  | 
 |   public: | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |  | 
 |     AtomicExpand() : FunctionPass(ID) { | 
 |       initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |  | 
 |     bool runOnFunction(Function &F) override; | 
 |  | 
 |   private: | 
 |     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); | 
 |     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); | 
 |     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); | 
 |     bool tryExpandAtomicLoad(LoadInst *LI); | 
 |     bool expandAtomicLoadToLL(LoadInst *LI); | 
 |     bool expandAtomicLoadToCmpXchg(LoadInst *LI); | 
 |     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); | 
 |     bool expandAtomicStore(StoreInst *SI); | 
 |     bool tryExpandAtomicRMW(AtomicRMWInst *AI); | 
 |     Value * | 
 |     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
 |                       AtomicOrdering MemOpOrder, | 
 |                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); | 
 |     void expandAtomicOpToLLSC( | 
 |         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, | 
 |         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); | 
 |     void expandPartwordAtomicRMW( | 
 |         AtomicRMWInst *I, | 
 |         TargetLoweringBase::AtomicExpansionKind ExpansionKind); | 
 |     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); | 
 |     void expandPartwordCmpXchg(AtomicCmpXchgInst *I); | 
 |     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); | 
 |     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); | 
 |  | 
 |     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); | 
 |     static Value *insertRMWCmpXchgLoop( | 
 |         IRBuilder<> &Builder, Type *ResultType, Value *Addr, | 
 |         AtomicOrdering MemOpOrder, | 
 |         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, | 
 |         CreateCmpXchgInstFun CreateCmpXchg); | 
 |     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); | 
 |  | 
 |     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); | 
 |     bool isIdempotentRMW(AtomicRMWInst *RMWI); | 
 |     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); | 
 |  | 
 |     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, | 
 |                                  Value *PointerOperand, Value *ValueOperand, | 
 |                                  Value *CASExpected, AtomicOrdering Ordering, | 
 |                                  AtomicOrdering Ordering2, | 
 |                                  ArrayRef<RTLIB::Libcall> Libcalls); | 
 |     void expandAtomicLoadToLibcall(LoadInst *LI); | 
 |     void expandAtomicStoreToLibcall(StoreInst *LI); | 
 |     void expandAtomicRMWToLibcall(AtomicRMWInst *I); | 
 |     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); | 
 |  | 
 |     friend bool | 
 |     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, | 
 |                                    CreateCmpXchgInstFun CreateCmpXchg); | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char AtomicExpand::ID = 0; | 
 |  | 
 | char &llvm::AtomicExpandID = AtomicExpand::ID; | 
 |  | 
 | INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", | 
 |                 false, false) | 
 |  | 
 | FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } | 
 |  | 
 | // Helper functions to retrieve the size of atomic instructions. | 
 | static unsigned getAtomicOpSize(LoadInst *LI) { | 
 |   const DataLayout &DL = LI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(LI->getType()); | 
 | } | 
 |  | 
 | static unsigned getAtomicOpSize(StoreInst *SI) { | 
 |   const DataLayout &DL = SI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(SI->getValueOperand()->getType()); | 
 | } | 
 |  | 
 | static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { | 
 |   const DataLayout &DL = RMWI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); | 
 | } | 
 |  | 
 | static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { | 
 |   const DataLayout &DL = CASI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); | 
 | } | 
 |  | 
 | // Helper functions to retrieve the alignment of atomic instructions. | 
 | static unsigned getAtomicOpAlign(LoadInst *LI) { | 
 |   unsigned Align = LI->getAlignment(); | 
 |   // In the future, if this IR restriction is relaxed, we should | 
 |   // return DataLayout::getABITypeAlignment when there's no align | 
 |   // value. | 
 |   assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); | 
 |   return Align; | 
 | } | 
 |  | 
 | static unsigned getAtomicOpAlign(StoreInst *SI) { | 
 |   unsigned Align = SI->getAlignment(); | 
 |   // In the future, if this IR restriction is relaxed, we should | 
 |   // return DataLayout::getABITypeAlignment when there's no align | 
 |   // value. | 
 |   assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); | 
 |   return Align; | 
 | } | 
 |  | 
 | static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { | 
 |   // TODO(PR27168): This instruction has no alignment attribute, but unlike the | 
 |   // default alignment for load/store, the default here is to assume | 
 |   // it has NATURAL alignment, not DataLayout-specified alignment. | 
 |   const DataLayout &DL = RMWI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); | 
 | } | 
 |  | 
 | static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { | 
 |   // TODO(PR27168): same comment as above. | 
 |   const DataLayout &DL = CASI->getModule()->getDataLayout(); | 
 |   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); | 
 | } | 
 |  | 
 | // Determine if a particular atomic operation has a supported size, | 
 | // and is of appropriate alignment, to be passed through for target | 
 | // lowering. (Versus turning into a __atomic libcall) | 
 | template <typename Inst> | 
 | static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { | 
 |   unsigned Size = getAtomicOpSize(I); | 
 |   unsigned Align = getAtomicOpAlign(I); | 
 |   return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; | 
 | } | 
 |  | 
 | bool AtomicExpand::runOnFunction(Function &F) { | 
 |   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
 |   if (!TPC) | 
 |     return false; | 
 |  | 
 |   auto &TM = TPC->getTM<TargetMachine>(); | 
 |   if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) | 
 |     return false; | 
 |   TLI = TM.getSubtargetImpl(F)->getTargetLowering(); | 
 |  | 
 |   SmallVector<Instruction *, 1> AtomicInsts; | 
 |  | 
 |   // Changing control-flow while iterating through it is a bad idea, so gather a | 
 |   // list of all atomic instructions before we start. | 
 |   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { | 
 |     Instruction *I = &*II; | 
 |     if (I->isAtomic() && !isa<FenceInst>(I)) | 
 |       AtomicInsts.push_back(I); | 
 |   } | 
 |  | 
 |   bool MadeChange = false; | 
 |   for (auto I : AtomicInsts) { | 
 |     auto LI = dyn_cast<LoadInst>(I); | 
 |     auto SI = dyn_cast<StoreInst>(I); | 
 |     auto RMWI = dyn_cast<AtomicRMWInst>(I); | 
 |     auto CASI = dyn_cast<AtomicCmpXchgInst>(I); | 
 |     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); | 
 |  | 
 |     // If the Size/Alignment is not supported, replace with a libcall. | 
 |     if (LI) { | 
 |       if (!atomicSizeSupported(TLI, LI)) { | 
 |         expandAtomicLoadToLibcall(LI); | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } else if (SI) { | 
 |       if (!atomicSizeSupported(TLI, SI)) { | 
 |         expandAtomicStoreToLibcall(SI); | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } else if (RMWI) { | 
 |       if (!atomicSizeSupported(TLI, RMWI)) { | 
 |         expandAtomicRMWToLibcall(RMWI); | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } else if (CASI) { | 
 |       if (!atomicSizeSupported(TLI, CASI)) { | 
 |         expandAtomicCASToLibcall(CASI); | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     if (TLI->shouldInsertFencesForAtomic(I)) { | 
 |       auto FenceOrdering = AtomicOrdering::Monotonic; | 
 |       if (LI && isAcquireOrStronger(LI->getOrdering())) { | 
 |         FenceOrdering = LI->getOrdering(); | 
 |         LI->setOrdering(AtomicOrdering::Monotonic); | 
 |       } else if (SI && isReleaseOrStronger(SI->getOrdering())) { | 
 |         FenceOrdering = SI->getOrdering(); | 
 |         SI->setOrdering(AtomicOrdering::Monotonic); | 
 |       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || | 
 |                           isAcquireOrStronger(RMWI->getOrdering()))) { | 
 |         FenceOrdering = RMWI->getOrdering(); | 
 |         RMWI->setOrdering(AtomicOrdering::Monotonic); | 
 |       } else if (CASI && | 
 |                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) == | 
 |                      TargetLoweringBase::AtomicExpansionKind::None && | 
 |                  (isReleaseOrStronger(CASI->getSuccessOrdering()) || | 
 |                   isAcquireOrStronger(CASI->getSuccessOrdering()))) { | 
 |         // If a compare and swap is lowered to LL/SC, we can do smarter fence | 
 |         // insertion, with a stronger one on the success path than on the | 
 |         // failure path. As a result, fence insertion is directly done by | 
 |         // expandAtomicCmpXchg in that case. | 
 |         FenceOrdering = CASI->getSuccessOrdering(); | 
 |         CASI->setSuccessOrdering(AtomicOrdering::Monotonic); | 
 |         CASI->setFailureOrdering(AtomicOrdering::Monotonic); | 
 |       } | 
 |  | 
 |       if (FenceOrdering != AtomicOrdering::Monotonic) { | 
 |         MadeChange |= bracketInstWithFences(I, FenceOrdering); | 
 |       } | 
 |     } | 
 |  | 
 |     if (LI) { | 
 |       if (LI->getType()->isFloatingPointTy()) { | 
 |         // TODO: add a TLI hook to control this so that each target can | 
 |         // convert to lowering the original type one at a time. | 
 |         LI = convertAtomicLoadToIntegerType(LI); | 
 |         assert(LI->getType()->isIntegerTy() && "invariant broken"); | 
 |         MadeChange = true; | 
 |       } | 
 |  | 
 |       MadeChange |= tryExpandAtomicLoad(LI); | 
 |     } else if (SI) { | 
 |       if (SI->getValueOperand()->getType()->isFloatingPointTy()) { | 
 |         // TODO: add a TLI hook to control this so that each target can | 
 |         // convert to lowering the original type one at a time. | 
 |         SI = convertAtomicStoreToIntegerType(SI); | 
 |         assert(SI->getValueOperand()->getType()->isIntegerTy() && | 
 |                "invariant broken"); | 
 |         MadeChange = true; | 
 |       } | 
 |  | 
 |       if (TLI->shouldExpandAtomicStoreInIR(SI)) | 
 |         MadeChange |= expandAtomicStore(SI); | 
 |     } else if (RMWI) { | 
 |       // There are two different ways of expanding RMW instructions: | 
 |       // - into a load if it is idempotent | 
 |       // - into a Cmpxchg/LL-SC loop otherwise | 
 |       // we try them in that order. | 
 |  | 
 |       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { | 
 |         MadeChange = true; | 
 |       } else { | 
 |         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
 |         unsigned ValueSize = getAtomicOpSize(RMWI); | 
 |         AtomicRMWInst::BinOp Op = RMWI->getOperation(); | 
 |         if (ValueSize < MinCASSize && | 
 |             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || | 
 |              Op == AtomicRMWInst::And)) { | 
 |           RMWI = widenPartwordAtomicRMW(RMWI); | 
 |           MadeChange = true; | 
 |         } | 
 |  | 
 |         MadeChange |= tryExpandAtomicRMW(RMWI); | 
 |       } | 
 |     } else if (CASI) { | 
 |       // TODO: when we're ready to make the change at the IR level, we can | 
 |       // extend convertCmpXchgToInteger for floating point too. | 
 |       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && | 
 |              "unimplemented - floating point not legal at IR level"); | 
 |       if (CASI->getCompareOperand()->getType()->isPointerTy() ) { | 
 |         // TODO: add a TLI hook to control this so that each target can | 
 |         // convert to lowering the original type one at a time. | 
 |         CASI = convertCmpXchgToIntegerType(CASI); | 
 |         assert(CASI->getCompareOperand()->getType()->isIntegerTy() && | 
 |                "invariant broken"); | 
 |         MadeChange = true; | 
 |       } | 
 |  | 
 |       MadeChange |= tryExpandAtomicCmpXchg(CASI); | 
 |     } | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { | 
 |   IRBuilder<> Builder(I); | 
 |  | 
 |   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); | 
 |  | 
 |   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); | 
 |   // We have a guard here because not every atomic operation generates a | 
 |   // trailing fence. | 
 |   if (TrailingFence) | 
 |     TrailingFence->moveAfter(I); | 
 |  | 
 |   return (LeadingFence || TrailingFence); | 
 | } | 
 |  | 
 | /// Get the iX type with the same bitwidth as T. | 
 | IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, | 
 |                                                        const DataLayout &DL) { | 
 |   EVT VT = TLI->getMemValueType(DL, T); | 
 |   unsigned BitWidth = VT.getStoreSizeInBits(); | 
 |   assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); | 
 |   return IntegerType::get(T->getContext(), BitWidth); | 
 | } | 
 |  | 
 | /// Convert an atomic load of a non-integral type to an integer load of the | 
 | /// equivalent bitwidth.  See the function comment on | 
 | /// convertAtomicStoreToIntegerType for background. | 
 | LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { | 
 |   auto *M = LI->getModule(); | 
 |   Type *NewTy = getCorrespondingIntegerType(LI->getType(), | 
 |                                             M->getDataLayout()); | 
 |  | 
 |   IRBuilder<> Builder(LI); | 
 |  | 
 |   Value *Addr = LI->getPointerOperand(); | 
 |   Type *PT = PointerType::get(NewTy, | 
 |                               Addr->getType()->getPointerAddressSpace()); | 
 |   Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
 |  | 
 |   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); | 
 |   NewLI->setAlignment(LI->getAlignment()); | 
 |   NewLI->setVolatile(LI->isVolatile()); | 
 |   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); | 
 |   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); | 
 |  | 
 |   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); | 
 |   LI->replaceAllUsesWith(NewVal); | 
 |   LI->eraseFromParent(); | 
 |   return NewLI; | 
 | } | 
 |  | 
 | bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { | 
 |   switch (TLI->shouldExpandAtomicLoadInIR(LI)) { | 
 |   case TargetLoweringBase::AtomicExpansionKind::None: | 
 |     return false; | 
 |   case TargetLoweringBase::AtomicExpansionKind::LLSC: | 
 |     expandAtomicOpToLLSC( | 
 |         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), | 
 |         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); | 
 |     return true; | 
 |   case TargetLoweringBase::AtomicExpansionKind::LLOnly: | 
 |     return expandAtomicLoadToLL(LI); | 
 |   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: | 
 |     return expandAtomicLoadToCmpXchg(LI); | 
 |   default: | 
 |     llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); | 
 |   } | 
 | } | 
 |  | 
 | bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { | 
 |   IRBuilder<> Builder(LI); | 
 |  | 
 |   // On some architectures, load-linked instructions are atomic for larger | 
 |   // sizes than normal loads. For example, the only 64-bit load guaranteed | 
 |   // to be single-copy atomic by ARM is an ldrexd (A3.5.3). | 
 |   Value *Val = | 
 |       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); | 
 |   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); | 
 |  | 
 |   LI->replaceAllUsesWith(Val); | 
 |   LI->eraseFromParent(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { | 
 |   IRBuilder<> Builder(LI); | 
 |   AtomicOrdering Order = LI->getOrdering(); | 
 |   if (Order == AtomicOrdering::Unordered) | 
 |     Order = AtomicOrdering::Monotonic; | 
 |  | 
 |   Value *Addr = LI->getPointerOperand(); | 
 |   Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); | 
 |   Constant *DummyVal = Constant::getNullValue(Ty); | 
 |  | 
 |   Value *Pair = Builder.CreateAtomicCmpXchg( | 
 |       Addr, DummyVal, DummyVal, Order, | 
 |       AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); | 
 |   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); | 
 |  | 
 |   LI->replaceAllUsesWith(Loaded); | 
 |   LI->eraseFromParent(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Convert an atomic store of a non-integral type to an integer store of the | 
 | /// equivalent bitwidth.  We used to not support floating point or vector | 
 | /// atomics in the IR at all.  The backends learned to deal with the bitcast | 
 | /// idiom because that was the only way of expressing the notion of a atomic | 
 | /// float or vector store.  The long term plan is to teach each backend to | 
 | /// instruction select from the original atomic store, but as a migration | 
 | /// mechanism, we convert back to the old format which the backends understand. | 
 | /// Each backend will need individual work to recognize the new format. | 
 | StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { | 
 |   IRBuilder<> Builder(SI); | 
 |   auto *M = SI->getModule(); | 
 |   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), | 
 |                                             M->getDataLayout()); | 
 |   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); | 
 |  | 
 |   Value *Addr = SI->getPointerOperand(); | 
 |   Type *PT = PointerType::get(NewTy, | 
 |                               Addr->getType()->getPointerAddressSpace()); | 
 |   Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
 |  | 
 |   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); | 
 |   NewSI->setAlignment(SI->getAlignment()); | 
 |   NewSI->setVolatile(SI->isVolatile()); | 
 |   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); | 
 |   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); | 
 |   SI->eraseFromParent(); | 
 |   return NewSI; | 
 | } | 
 |  | 
 | bool AtomicExpand::expandAtomicStore(StoreInst *SI) { | 
 |   // This function is only called on atomic stores that are too large to be | 
 |   // atomic if implemented as a native store. So we replace them by an | 
 |   // atomic swap, that can be implemented for example as a ldrex/strex on ARM | 
 |   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. | 
 |   // It is the responsibility of the target to only signal expansion via | 
 |   // shouldExpandAtomicRMW in cases where this is required and possible. | 
 |   IRBuilder<> Builder(SI); | 
 |   AtomicRMWInst *AI = | 
 |       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), | 
 |                               SI->getValueOperand(), SI->getOrdering()); | 
 |   SI->eraseFromParent(); | 
 |  | 
 |   // Now we have an appropriate swap instruction, lower it as usual. | 
 |   return tryExpandAtomicRMW(AI); | 
 | } | 
 |  | 
 | static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, | 
 |                                  Value *Loaded, Value *NewVal, | 
 |                                  AtomicOrdering MemOpOrder, | 
 |                                  Value *&Success, Value *&NewLoaded) { | 
 |   Type *OrigTy = NewVal->getType(); | 
 |  | 
 |   // This code can go away when cmpxchg supports FP types. | 
 |   bool NeedBitcast = OrigTy->isFloatingPointTy(); | 
 |   if (NeedBitcast) { | 
 |     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); | 
 |     unsigned AS = Addr->getType()->getPointerAddressSpace(); | 
 |     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); | 
 |     NewVal = Builder.CreateBitCast(NewVal, IntTy); | 
 |     Loaded = Builder.CreateBitCast(Loaded, IntTy); | 
 |   } | 
 |  | 
 |   Value* Pair = Builder.CreateAtomicCmpXchg( | 
 |       Addr, Loaded, NewVal, MemOpOrder, | 
 |       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); | 
 |   Success = Builder.CreateExtractValue(Pair, 1, "success"); | 
 |   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); | 
 |  | 
 |   if (NeedBitcast) | 
 |     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); | 
 | } | 
 |  | 
 | /// Emit IR to implement the given atomicrmw operation on values in registers, | 
 | /// returning the new value. | 
 | static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, | 
 |                               Value *Loaded, Value *Inc) { | 
 |   Value *NewVal; | 
 |   switch (Op) { | 
 |   case AtomicRMWInst::Xchg: | 
 |     return Inc; | 
 |   case AtomicRMWInst::Add: | 
 |     return Builder.CreateAdd(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::Sub: | 
 |     return Builder.CreateSub(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::And: | 
 |     return Builder.CreateAnd(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::Nand: | 
 |     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); | 
 |   case AtomicRMWInst::Or: | 
 |     return Builder.CreateOr(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::Xor: | 
 |     return Builder.CreateXor(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::Max: | 
 |     NewVal = Builder.CreateICmpSGT(Loaded, Inc); | 
 |     return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::Min: | 
 |     NewVal = Builder.CreateICmpSLE(Loaded, Inc); | 
 |     return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::UMax: | 
 |     NewVal = Builder.CreateICmpUGT(Loaded, Inc); | 
 |     return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::UMin: | 
 |     NewVal = Builder.CreateICmpULE(Loaded, Inc); | 
 |     return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::FAdd: | 
 |     return Builder.CreateFAdd(Loaded, Inc, "new"); | 
 |   case AtomicRMWInst::FSub: | 
 |     return Builder.CreateFSub(Loaded, Inc, "new"); | 
 |   default: | 
 |     llvm_unreachable("Unknown atomic op"); | 
 |   } | 
 | } | 
 |  | 
 | bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { | 
 |   switch (TLI->shouldExpandAtomicRMWInIR(AI)) { | 
 |   case TargetLoweringBase::AtomicExpansionKind::None: | 
 |     return false; | 
 |   case TargetLoweringBase::AtomicExpansionKind::LLSC: { | 
 |     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
 |     unsigned ValueSize = getAtomicOpSize(AI); | 
 |     if (ValueSize < MinCASSize) { | 
 |       llvm_unreachable( | 
 |           "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); | 
 |     } else { | 
 |       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { | 
 |         return performAtomicOp(AI->getOperation(), Builder, Loaded, | 
 |                                AI->getValOperand()); | 
 |       }; | 
 |       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), | 
 |                            AI->getOrdering(), PerformOp); | 
 |     } | 
 |     return true; | 
 |   } | 
 |   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { | 
 |     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
 |     unsigned ValueSize = getAtomicOpSize(AI); | 
 |     if (ValueSize < MinCASSize) { | 
 |       // TODO: Handle atomicrmw fadd/fsub | 
 |       if (AI->getType()->isFloatingPointTy()) | 
 |         return false; | 
 |  | 
 |       expandPartwordAtomicRMW(AI, | 
 |                               TargetLoweringBase::AtomicExpansionKind::CmpXChg); | 
 |     } else { | 
 |       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); | 
 |     } | 
 |     return true; | 
 |   } | 
 |   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { | 
 |     expandAtomicRMWToMaskedIntrinsic(AI); | 
 |     return true; | 
 |   } | 
 |   default: | 
 |     llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// Result values from createMaskInstrs helper. | 
 | struct PartwordMaskValues { | 
 |   Type *WordType; | 
 |   Type *ValueType; | 
 |   Value *AlignedAddr; | 
 |   Value *ShiftAmt; | 
 |   Value *Mask; | 
 |   Value *Inv_Mask; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// This is a helper function which builds instructions to provide | 
 | /// values necessary for partword atomic operations. It takes an | 
 | /// incoming address, Addr, and ValueType, and constructs the address, | 
 | /// shift-amounts and masks needed to work with a larger value of size | 
 | /// WordSize. | 
 | /// | 
 | /// AlignedAddr: Addr rounded down to a multiple of WordSize | 
 | /// | 
 | /// ShiftAmt: Number of bits to right-shift a WordSize value loaded | 
 | ///           from AlignAddr for it to have the same value as if | 
 | ///           ValueType was loaded from Addr. | 
 | /// | 
 | /// Mask: Value to mask with the value loaded from AlignAddr to | 
 | ///       include only the part that would've been loaded from Addr. | 
 | /// | 
 | /// Inv_Mask: The inverse of Mask. | 
 | static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, | 
 |                                            Type *ValueType, Value *Addr, | 
 |                                            unsigned WordSize) { | 
 |   PartwordMaskValues Ret; | 
 |  | 
 |   BasicBlock *BB = I->getParent(); | 
 |   Function *F = BB->getParent(); | 
 |   Module *M = I->getModule(); | 
 |  | 
 |   LLVMContext &Ctx = F->getContext(); | 
 |   const DataLayout &DL = M->getDataLayout(); | 
 |  | 
 |   unsigned ValueSize = DL.getTypeStoreSize(ValueType); | 
 |  | 
 |   assert(ValueSize < WordSize); | 
 |  | 
 |   Ret.ValueType = ValueType; | 
 |   Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); | 
 |  | 
 |   Type *WordPtrType = | 
 |       Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); | 
 |  | 
 |   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); | 
 |   Ret.AlignedAddr = Builder.CreateIntToPtr( | 
 |       Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, | 
 |       "AlignedAddr"); | 
 |  | 
 |   Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); | 
 |   if (DL.isLittleEndian()) { | 
 |     // turn bytes into bits | 
 |     Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); | 
 |   } else { | 
 |     // turn bytes into bits, and count from the other side. | 
 |     Ret.ShiftAmt = | 
 |         Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); | 
 |   } | 
 |  | 
 |   Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); | 
 |   Ret.Mask = Builder.CreateShl( | 
 |       ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, | 
 |       "Mask"); | 
 |   Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); | 
 |  | 
 |   return Ret; | 
 | } | 
 |  | 
 | /// Emit IR to implement a masked version of a given atomicrmw | 
 | /// operation. (That is, only the bits under the Mask should be | 
 | /// affected by the operation) | 
 | static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, | 
 |                                     IRBuilder<> &Builder, Value *Loaded, | 
 |                                     Value *Shifted_Inc, Value *Inc, | 
 |                                     const PartwordMaskValues &PMV) { | 
 |   // TODO: update to use | 
 |   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order | 
 |   // to merge bits from two values without requiring PMV.Inv_Mask. | 
 |   switch (Op) { | 
 |   case AtomicRMWInst::Xchg: { | 
 |     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
 |     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); | 
 |     return FinalVal; | 
 |   } | 
 |   case AtomicRMWInst::Or: | 
 |   case AtomicRMWInst::Xor: | 
 |   case AtomicRMWInst::And: | 
 |     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); | 
 |   case AtomicRMWInst::Add: | 
 |   case AtomicRMWInst::Sub: | 
 |   case AtomicRMWInst::Nand: { | 
 |     // The other arithmetic ops need to be masked into place. | 
 |     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); | 
 |     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); | 
 |     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
 |     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); | 
 |     return FinalVal; | 
 |   } | 
 |   case AtomicRMWInst::Max: | 
 |   case AtomicRMWInst::Min: | 
 |   case AtomicRMWInst::UMax: | 
 |   case AtomicRMWInst::UMin: { | 
 |     // Finally, comparison ops will operate on the full value, so | 
 |     // truncate down to the original size, and expand out again after | 
 |     // doing the operation. | 
 |     Value *Loaded_Shiftdown = Builder.CreateTrunc( | 
 |         Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); | 
 |     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); | 
 |     Value *NewVal_Shiftup = Builder.CreateShl( | 
 |         Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); | 
 |     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
 |     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); | 
 |     return FinalVal; | 
 |   } | 
 |   default: | 
 |     llvm_unreachable("Unknown atomic op"); | 
 |   } | 
 | } | 
 |  | 
 | /// Expand a sub-word atomicrmw operation into an appropriate | 
 | /// word-sized operation. | 
 | /// | 
 | /// It will create an LL/SC or cmpxchg loop, as appropriate, the same | 
 | /// way as a typical atomicrmw expansion. The only difference here is | 
 | /// that the operation inside of the loop must operate only upon a | 
 | /// part of the value. | 
 | void AtomicExpand::expandPartwordAtomicRMW( | 
 |     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { | 
 |   assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); | 
 |  | 
 |   AtomicOrdering MemOpOrder = AI->getOrdering(); | 
 |  | 
 |   IRBuilder<> Builder(AI); | 
 |  | 
 |   PartwordMaskValues PMV = | 
 |       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
 |                        TLI->getMinCmpXchgSizeInBits() / 8); | 
 |  | 
 |   Value *ValOperand_Shifted = | 
 |       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), | 
 |                         PMV.ShiftAmt, "ValOperand_Shifted"); | 
 |  | 
 |   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { | 
 |     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, | 
 |                                  ValOperand_Shifted, AI->getValOperand(), PMV); | 
 |   }; | 
 |  | 
 |   // TODO: When we're ready to support LLSC conversions too, use | 
 |   // insertRMWLLSCLoop here for ExpansionKind==LLSC. | 
 |   Value *OldResult = | 
 |       insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, | 
 |                            PerformPartwordOp, createCmpXchgInstFun); | 
 |   Value *FinalOldResult = Builder.CreateTrunc( | 
 |       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); | 
 |   AI->replaceAllUsesWith(FinalOldResult); | 
 |   AI->eraseFromParent(); | 
 | } | 
 |  | 
 | // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. | 
 | AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { | 
 |   IRBuilder<> Builder(AI); | 
 |   AtomicRMWInst::BinOp Op = AI->getOperation(); | 
 |  | 
 |   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || | 
 |           Op == AtomicRMWInst::And) && | 
 |          "Unable to widen operation"); | 
 |  | 
 |   PartwordMaskValues PMV = | 
 |       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
 |                        TLI->getMinCmpXchgSizeInBits() / 8); | 
 |  | 
 |   Value *ValOperand_Shifted = | 
 |       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), | 
 |                         PMV.ShiftAmt, "ValOperand_Shifted"); | 
 |  | 
 |   Value *NewOperand; | 
 |  | 
 |   if (Op == AtomicRMWInst::And) | 
 |     NewOperand = | 
 |         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); | 
 |   else | 
 |     NewOperand = ValOperand_Shifted; | 
 |  | 
 |   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, | 
 |                                                  NewOperand, AI->getOrdering()); | 
 |  | 
 |   Value *FinalOldResult = Builder.CreateTrunc( | 
 |       Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); | 
 |   AI->replaceAllUsesWith(FinalOldResult); | 
 |   AI->eraseFromParent(); | 
 |   return NewAI; | 
 | } | 
 |  | 
 | void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { | 
 |   // The basic idea here is that we're expanding a cmpxchg of a | 
 |   // smaller memory size up to a word-sized cmpxchg. To do this, we | 
 |   // need to add a retry-loop for strong cmpxchg, so that | 
 |   // modifications to other parts of the word don't cause a spurious | 
 |   // failure. | 
 |  | 
 |   // This generates code like the following: | 
 |   //     [[Setup mask values PMV.*]] | 
 |   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt | 
 |   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt | 
 |   //     %InitLoaded = load i32* %addr | 
 |   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask | 
 |   //     br partword.cmpxchg.loop | 
 |   // partword.cmpxchg.loop: | 
 |   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], | 
 |   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ] | 
 |   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted | 
 |   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted | 
 |   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, | 
 |   //        i32 %FullWord_NewVal success_ordering failure_ordering | 
 |   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0 | 
 |   //     %Success = extractvalue { i32, i1 } %NewCI, 1 | 
 |   //     br i1 %Success, label %partword.cmpxchg.end, | 
 |   //        label %partword.cmpxchg.failure | 
 |   // partword.cmpxchg.failure: | 
 |   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask | 
 |   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut | 
 |   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop, | 
 |   //         label %partword.cmpxchg.end | 
 |   // partword.cmpxchg.end: | 
 |   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt | 
 |   //    %FinalOldVal = trunc i32 %tmp1 to i8 | 
 |   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 | 
 |   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 | 
 |  | 
 |   Value *Addr = CI->getPointerOperand(); | 
 |   Value *Cmp = CI->getCompareOperand(); | 
 |   Value *NewVal = CI->getNewValOperand(); | 
 |  | 
 |   BasicBlock *BB = CI->getParent(); | 
 |   Function *F = BB->getParent(); | 
 |   IRBuilder<> Builder(CI); | 
 |   LLVMContext &Ctx = Builder.getContext(); | 
 |  | 
 |   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
 |  | 
 |   BasicBlock *EndBB = | 
 |       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); | 
 |   auto FailureBB = | 
 |       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); | 
 |   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); | 
 |  | 
 |   // The split call above "helpfully" added a branch at the end of BB | 
 |   // (to the wrong place). | 
 |   std::prev(BB->end())->eraseFromParent(); | 
 |   Builder.SetInsertPoint(BB); | 
 |  | 
 |   PartwordMaskValues PMV = createMaskInstrs( | 
 |       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); | 
 |  | 
 |   // Shift the incoming values over, into the right location in the word. | 
 |   Value *NewVal_Shifted = | 
 |       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); | 
 |   Value *Cmp_Shifted = | 
 |       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); | 
 |  | 
 |   // Load the entire current word, and mask into place the expected and new | 
 |   // values | 
 |   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); | 
 |   InitLoaded->setVolatile(CI->isVolatile()); | 
 |   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); | 
 |   Builder.CreateBr(LoopBB); | 
 |  | 
 |   // partword.cmpxchg.loop: | 
 |   Builder.SetInsertPoint(LoopBB); | 
 |   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); | 
 |   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); | 
 |  | 
 |   // Mask/Or the expected and new values into place in the loaded word. | 
 |   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); | 
 |   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); | 
 |   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( | 
 |       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), | 
 |       CI->getFailureOrdering(), CI->getSyncScopeID()); | 
 |   NewCI->setVolatile(CI->isVolatile()); | 
 |   // When we're building a strong cmpxchg, we need a loop, so you | 
 |   // might think we could use a weak cmpxchg inside. But, using strong | 
 |   // allows the below comparison for ShouldContinue, and we're | 
 |   // expecting the underlying cmpxchg to be a machine instruction, | 
 |   // which is strong anyways. | 
 |   NewCI->setWeak(CI->isWeak()); | 
 |  | 
 |   Value *OldVal = Builder.CreateExtractValue(NewCI, 0); | 
 |   Value *Success = Builder.CreateExtractValue(NewCI, 1); | 
 |  | 
 |   if (CI->isWeak()) | 
 |     Builder.CreateBr(EndBB); | 
 |   else | 
 |     Builder.CreateCondBr(Success, EndBB, FailureBB); | 
 |  | 
 |   // partword.cmpxchg.failure: | 
 |   Builder.SetInsertPoint(FailureBB); | 
 |   // Upon failure, verify that the masked-out part of the loaded value | 
 |   // has been modified.  If it didn't, abort the cmpxchg, since the | 
 |   // masked-in part must've. | 
 |   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); | 
 |   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); | 
 |   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); | 
 |  | 
 |   // Add the second value to the phi from above | 
 |   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); | 
 |  | 
 |   // partword.cmpxchg.end: | 
 |   Builder.SetInsertPoint(CI); | 
 |  | 
 |   Value *FinalOldVal = Builder.CreateTrunc( | 
 |       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); | 
 |   Value *Res = UndefValue::get(CI->getType()); | 
 |   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); | 
 |   Res = Builder.CreateInsertValue(Res, Success, 1); | 
 |  | 
 |   CI->replaceAllUsesWith(Res); | 
 |   CI->eraseFromParent(); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicOpToLLSC( | 
 |     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, | 
 |     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { | 
 |   IRBuilder<> Builder(I); | 
 |   Value *Loaded = | 
 |       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); | 
 |  | 
 |   I->replaceAllUsesWith(Loaded); | 
 |   I->eraseFromParent(); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { | 
 |   IRBuilder<> Builder(AI); | 
 |  | 
 |   PartwordMaskValues PMV = | 
 |       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
 |                        TLI->getMinCmpXchgSizeInBits() / 8); | 
 |  | 
 |   // The value operand must be sign-extended for signed min/max so that the | 
 |   // target's signed comparison instructions can be used. Otherwise, just | 
 |   // zero-ext. | 
 |   Instruction::CastOps CastOp = Instruction::ZExt; | 
 |   AtomicRMWInst::BinOp RMWOp = AI->getOperation(); | 
 |   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) | 
 |     CastOp = Instruction::SExt; | 
 |  | 
 |   Value *ValOperand_Shifted = Builder.CreateShl( | 
 |       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), | 
 |       PMV.ShiftAmt, "ValOperand_Shifted"); | 
 |   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( | 
 |       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, | 
 |       AI->getOrdering()); | 
 |   Value *FinalOldResult = Builder.CreateTrunc( | 
 |       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); | 
 |   AI->replaceAllUsesWith(FinalOldResult); | 
 |   AI->eraseFromParent(); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { | 
 |   IRBuilder<> Builder(CI); | 
 |  | 
 |   PartwordMaskValues PMV = createMaskInstrs( | 
 |       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), | 
 |       TLI->getMinCmpXchgSizeInBits() / 8); | 
 |  | 
 |   Value *CmpVal_Shifted = Builder.CreateShl( | 
 |       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, | 
 |       "CmpVal_Shifted"); | 
 |   Value *NewVal_Shifted = Builder.CreateShl( | 
 |       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, | 
 |       "NewVal_Shifted"); | 
 |   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( | 
 |       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, | 
 |       CI->getSuccessOrdering()); | 
 |   Value *FinalOldVal = Builder.CreateTrunc( | 
 |       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); | 
 |  | 
 |   Value *Res = UndefValue::get(CI->getType()); | 
 |   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); | 
 |   Value *Success = Builder.CreateICmpEQ( | 
 |       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); | 
 |   Res = Builder.CreateInsertValue(Res, Success, 1); | 
 |  | 
 |   CI->replaceAllUsesWith(Res); | 
 |   CI->eraseFromParent(); | 
 | } | 
 |  | 
 | Value *AtomicExpand::insertRMWLLSCLoop( | 
 |     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
 |     AtomicOrdering MemOpOrder, | 
 |     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { | 
 |   LLVMContext &Ctx = Builder.getContext(); | 
 |   BasicBlock *BB = Builder.GetInsertBlock(); | 
 |   Function *F = BB->getParent(); | 
 |  | 
 |   // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
 |   // | 
 |   // The standard expansion we produce is: | 
 |   //     [...] | 
 |   // atomicrmw.start: | 
 |   //     %loaded = @load.linked(%addr) | 
 |   //     %new = some_op iN %loaded, %incr | 
 |   //     %stored = @store_conditional(%new, %addr) | 
 |   //     %try_again = icmp i32 ne %stored, 0 | 
 |   //     br i1 %try_again, label %loop, label %atomicrmw.end | 
 |   // atomicrmw.end: | 
 |   //     [...] | 
 |   BasicBlock *ExitBB = | 
 |       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); | 
 |   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
 |  | 
 |   // The split call above "helpfully" added a branch at the end of BB (to the | 
 |   // wrong place). | 
 |   std::prev(BB->end())->eraseFromParent(); | 
 |   Builder.SetInsertPoint(BB); | 
 |   Builder.CreateBr(LoopBB); | 
 |  | 
 |   // Start the main loop block now that we've taken care of the preliminaries. | 
 |   Builder.SetInsertPoint(LoopBB); | 
 |   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
 |  | 
 |   Value *NewVal = PerformOp(Builder, Loaded); | 
 |  | 
 |   Value *StoreSuccess = | 
 |       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); | 
 |   Value *TryAgain = Builder.CreateICmpNE( | 
 |       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); | 
 |   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); | 
 |  | 
 |   Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
 |   return Loaded; | 
 | } | 
 |  | 
 | /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of | 
 | /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the | 
 | /// IR.  As a migration step, we convert back to what use to be the standard | 
 | /// way to represent a pointer cmpxchg so that we can update backends one by | 
 | /// one. | 
 | AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { | 
 |   auto *M = CI->getModule(); | 
 |   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), | 
 |                                             M->getDataLayout()); | 
 |  | 
 |   IRBuilder<> Builder(CI); | 
 |  | 
 |   Value *Addr = CI->getPointerOperand(); | 
 |   Type *PT = PointerType::get(NewTy, | 
 |                               Addr->getType()->getPointerAddressSpace()); | 
 |   Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
 |  | 
 |   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); | 
 |   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); | 
 |  | 
 |  | 
 |   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, | 
 |                                             CI->getSuccessOrdering(), | 
 |                                             CI->getFailureOrdering(), | 
 |                                             CI->getSyncScopeID()); | 
 |   NewCI->setVolatile(CI->isVolatile()); | 
 |   NewCI->setWeak(CI->isWeak()); | 
 |   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); | 
 |  | 
 |   Value *OldVal = Builder.CreateExtractValue(NewCI, 0); | 
 |   Value *Succ = Builder.CreateExtractValue(NewCI, 1); | 
 |  | 
 |   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); | 
 |  | 
 |   Value *Res = UndefValue::get(CI->getType()); | 
 |   Res = Builder.CreateInsertValue(Res, OldVal, 0); | 
 |   Res = Builder.CreateInsertValue(Res, Succ, 1); | 
 |  | 
 |   CI->replaceAllUsesWith(Res); | 
 |   CI->eraseFromParent(); | 
 |   return NewCI; | 
 | } | 
 |  | 
 | bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { | 
 |   AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); | 
 |   AtomicOrdering FailureOrder = CI->getFailureOrdering(); | 
 |   Value *Addr = CI->getPointerOperand(); | 
 |   BasicBlock *BB = CI->getParent(); | 
 |   Function *F = BB->getParent(); | 
 |   LLVMContext &Ctx = F->getContext(); | 
 |   // If shouldInsertFencesForAtomic() returns true, then the target does not | 
 |   // want to deal with memory orders, and emitLeading/TrailingFence should take | 
 |   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we | 
 |   // should preserve the ordering. | 
 |   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); | 
 |   AtomicOrdering MemOpOrder = | 
 |       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; | 
 |  | 
 |   // In implementations which use a barrier to achieve release semantics, we can | 
 |   // delay emitting this barrier until we know a store is actually going to be | 
 |   // attempted. The cost of this delay is that we need 2 copies of the block | 
 |   // emitting the load-linked, affecting code size. | 
 |   // | 
 |   // Ideally, this logic would be unconditional except for the minsize check | 
 |   // since in other cases the extra blocks naturally collapse down to the | 
 |   // minimal loop. Unfortunately, this puts too much stress on later | 
 |   // optimisations so we avoid emitting the extra logic in those cases too. | 
 |   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && | 
 |                            SuccessOrder != AtomicOrdering::Monotonic && | 
 |                            SuccessOrder != AtomicOrdering::Acquire && | 
 |                            !F->hasMinSize(); | 
 |  | 
 |   // There's no overhead for sinking the release barrier in a weak cmpxchg, so | 
 |   // do it even on minsize. | 
 |   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); | 
 |  | 
 |   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord | 
 |   // | 
 |   // The full expansion we produce is: | 
 |   //     [...] | 
 |   // cmpxchg.start: | 
 |   //     %unreleasedload = @load.linked(%addr) | 
 |   //     %should_store = icmp eq %unreleasedload, %desired | 
 |   //     br i1 %should_store, label %cmpxchg.fencedstore, | 
 |   //                          label %cmpxchg.nostore | 
 |   // cmpxchg.releasingstore: | 
 |   //     fence? | 
 |   //     br label cmpxchg.trystore | 
 |   // cmpxchg.trystore: | 
 |   //     %loaded.trystore = phi [%unreleasedload, %releasingstore], | 
 |   //                            [%releasedload, %cmpxchg.releasedload] | 
 |   //     %stored = @store_conditional(%new, %addr) | 
 |   //     %success = icmp eq i32 %stored, 0 | 
 |   //     br i1 %success, label %cmpxchg.success, | 
 |   //                     label %cmpxchg.releasedload/%cmpxchg.failure | 
 |   // cmpxchg.releasedload: | 
 |   //     %releasedload = @load.linked(%addr) | 
 |   //     %should_store = icmp eq %releasedload, %desired | 
 |   //     br i1 %should_store, label %cmpxchg.trystore, | 
 |   //                          label %cmpxchg.failure | 
 |   // cmpxchg.success: | 
 |   //     fence? | 
 |   //     br label %cmpxchg.end | 
 |   // cmpxchg.nostore: | 
 |   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], | 
 |   //                           [%releasedload, | 
 |   //                               %cmpxchg.releasedload/%cmpxchg.trystore] | 
 |   //     @load_linked_fail_balance()? | 
 |   //     br label %cmpxchg.failure | 
 |   // cmpxchg.failure: | 
 |   //     fence? | 
 |   //     br label %cmpxchg.end | 
 |   // cmpxchg.end: | 
 |   //     %loaded = phi [%loaded.nostore, %cmpxchg.failure], | 
 |   //                   [%loaded.trystore, %cmpxchg.trystore] | 
 |   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] | 
 |   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 | 
 |   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 | 
 |   //     [...] | 
 |   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); | 
 |   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); | 
 |   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); | 
 |   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); | 
 |   auto ReleasedLoadBB = | 
 |       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); | 
 |   auto TryStoreBB = | 
 |       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); | 
 |   auto ReleasingStoreBB = | 
 |       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); | 
 |   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); | 
 |  | 
 |   // This grabs the DebugLoc from CI | 
 |   IRBuilder<> Builder(CI); | 
 |  | 
 |   // The split call above "helpfully" added a branch at the end of BB (to the | 
 |   // wrong place), but we might want a fence too. It's easiest to just remove | 
 |   // the branch entirely. | 
 |   std::prev(BB->end())->eraseFromParent(); | 
 |   Builder.SetInsertPoint(BB); | 
 |   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) | 
 |     TLI->emitLeadingFence(Builder, CI, SuccessOrder); | 
 |   Builder.CreateBr(StartBB); | 
 |  | 
 |   // Start the main loop block now that we've taken care of the preliminaries. | 
 |   Builder.SetInsertPoint(StartBB); | 
 |   Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
 |   Value *ShouldStore = Builder.CreateICmpEQ( | 
 |       UnreleasedLoad, CI->getCompareOperand(), "should_store"); | 
 |  | 
 |   // If the cmpxchg doesn't actually need any ordering when it fails, we can | 
 |   // jump straight past that fence instruction (if it exists). | 
 |   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); | 
 |  | 
 |   Builder.SetInsertPoint(ReleasingStoreBB); | 
 |   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) | 
 |     TLI->emitLeadingFence(Builder, CI, SuccessOrder); | 
 |   Builder.CreateBr(TryStoreBB); | 
 |  | 
 |   Builder.SetInsertPoint(TryStoreBB); | 
 |   Value *StoreSuccess = TLI->emitStoreConditional( | 
 |       Builder, CI->getNewValOperand(), Addr, MemOpOrder); | 
 |   StoreSuccess = Builder.CreateICmpEQ( | 
 |       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); | 
 |   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; | 
 |   Builder.CreateCondBr(StoreSuccess, SuccessBB, | 
 |                        CI->isWeak() ? FailureBB : RetryBB); | 
 |  | 
 |   Builder.SetInsertPoint(ReleasedLoadBB); | 
 |   Value *SecondLoad; | 
 |   if (HasReleasedLoadBB) { | 
 |     SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
 |     ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), | 
 |                                        "should_store"); | 
 |  | 
 |     // If the cmpxchg doesn't actually need any ordering when it fails, we can | 
 |     // jump straight past that fence instruction (if it exists). | 
 |     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); | 
 |   } else | 
 |     Builder.CreateUnreachable(); | 
 |  | 
 |   // Make sure later instructions don't get reordered with a fence if | 
 |   // necessary. | 
 |   Builder.SetInsertPoint(SuccessBB); | 
 |   if (ShouldInsertFencesForAtomic) | 
 |     TLI->emitTrailingFence(Builder, CI, SuccessOrder); | 
 |   Builder.CreateBr(ExitBB); | 
 |  | 
 |   Builder.SetInsertPoint(NoStoreBB); | 
 |   // In the failing case, where we don't execute the store-conditional, the | 
 |   // target might want to balance out the load-linked with a dedicated | 
 |   // instruction (e.g., on ARM, clearing the exclusive monitor). | 
 |   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); | 
 |   Builder.CreateBr(FailureBB); | 
 |  | 
 |   Builder.SetInsertPoint(FailureBB); | 
 |   if (ShouldInsertFencesForAtomic) | 
 |     TLI->emitTrailingFence(Builder, CI, FailureOrder); | 
 |   Builder.CreateBr(ExitBB); | 
 |  | 
 |   // Finally, we have control-flow based knowledge of whether the cmpxchg | 
 |   // succeeded or not. We expose this to later passes by converting any | 
 |   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate | 
 |   // PHI. | 
 |   Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
 |   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); | 
 |   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); | 
 |   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); | 
 |  | 
 |   // Setup the builder so we can create any PHIs we need. | 
 |   Value *Loaded; | 
 |   if (!HasReleasedLoadBB) | 
 |     Loaded = UnreleasedLoad; | 
 |   else { | 
 |     Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); | 
 |     PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
 |     TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); | 
 |     TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); | 
 |  | 
 |     Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); | 
 |     PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
 |     NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); | 
 |     NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); | 
 |  | 
 |     Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); | 
 |     PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
 |     ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); | 
 |     ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); | 
 |  | 
 |     Loaded = ExitLoaded; | 
 |   } | 
 |  | 
 |   // Look for any users of the cmpxchg that are just comparing the loaded value | 
 |   // against the desired one, and replace them with the CFG-derived version. | 
 |   SmallVector<ExtractValueInst *, 2> PrunedInsts; | 
 |   for (auto User : CI->users()) { | 
 |     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); | 
 |     if (!EV) | 
 |       continue; | 
 |  | 
 |     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && | 
 |            "weird extraction from { iN, i1 }"); | 
 |  | 
 |     if (EV->getIndices()[0] == 0) | 
 |       EV->replaceAllUsesWith(Loaded); | 
 |     else | 
 |       EV->replaceAllUsesWith(Success); | 
 |  | 
 |     PrunedInsts.push_back(EV); | 
 |   } | 
 |  | 
 |   // We can remove the instructions now we're no longer iterating through them. | 
 |   for (auto EV : PrunedInsts) | 
 |     EV->eraseFromParent(); | 
 |  | 
 |   if (!CI->use_empty()) { | 
 |     // Some use of the full struct return that we don't understand has happened, | 
 |     // so we've got to reconstruct it properly. | 
 |     Value *Res; | 
 |     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); | 
 |     Res = Builder.CreateInsertValue(Res, Success, 1); | 
 |  | 
 |     CI->replaceAllUsesWith(Res); | 
 |   } | 
 |  | 
 |   CI->eraseFromParent(); | 
 |   return true; | 
 | } | 
 |  | 
 | bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { | 
 |   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); | 
 |   if(!C) | 
 |     return false; | 
 |  | 
 |   AtomicRMWInst::BinOp Op = RMWI->getOperation(); | 
 |   switch(Op) { | 
 |     case AtomicRMWInst::Add: | 
 |     case AtomicRMWInst::Sub: | 
 |     case AtomicRMWInst::Or: | 
 |     case AtomicRMWInst::Xor: | 
 |       return C->isZero(); | 
 |     case AtomicRMWInst::And: | 
 |       return C->isMinusOne(); | 
 |     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... | 
 |     default: | 
 |       return false; | 
 |   } | 
 | } | 
 |  | 
 | bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { | 
 |   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { | 
 |     tryExpandAtomicLoad(ResultingLoad); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | Value *AtomicExpand::insertRMWCmpXchgLoop( | 
 |     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
 |     AtomicOrdering MemOpOrder, | 
 |     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, | 
 |     CreateCmpXchgInstFun CreateCmpXchg) { | 
 |   LLVMContext &Ctx = Builder.getContext(); | 
 |   BasicBlock *BB = Builder.GetInsertBlock(); | 
 |   Function *F = BB->getParent(); | 
 |  | 
 |   // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
 |   // | 
 |   // The standard expansion we produce is: | 
 |   //     [...] | 
 |   //     %init_loaded = load atomic iN* %addr | 
 |   //     br label %loop | 
 |   // loop: | 
 |   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] | 
 |   //     %new = some_op iN %loaded, %incr | 
 |   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new | 
 |   //     %new_loaded = extractvalue { iN, i1 } %pair, 0 | 
 |   //     %success = extractvalue { iN, i1 } %pair, 1 | 
 |   //     br i1 %success, label %atomicrmw.end, label %loop | 
 |   // atomicrmw.end: | 
 |   //     [...] | 
 |   BasicBlock *ExitBB = | 
 |       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); | 
 |   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
 |  | 
 |   // The split call above "helpfully" added a branch at the end of BB (to the | 
 |   // wrong place), but we want a load. It's easiest to just remove | 
 |   // the branch entirely. | 
 |   std::prev(BB->end())->eraseFromParent(); | 
 |   Builder.SetInsertPoint(BB); | 
 |   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); | 
 |   // Atomics require at least natural alignment. | 
 |   InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); | 
 |   Builder.CreateBr(LoopBB); | 
 |  | 
 |   // Start the main loop block now that we've taken care of the preliminaries. | 
 |   Builder.SetInsertPoint(LoopBB); | 
 |   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); | 
 |   Loaded->addIncoming(InitLoaded, BB); | 
 |  | 
 |   Value *NewVal = PerformOp(Builder, Loaded); | 
 |  | 
 |   Value *NewLoaded = nullptr; | 
 |   Value *Success = nullptr; | 
 |  | 
 |   CreateCmpXchg(Builder, Addr, Loaded, NewVal, | 
 |                 MemOpOrder == AtomicOrdering::Unordered | 
 |                     ? AtomicOrdering::Monotonic | 
 |                     : MemOpOrder, | 
 |                 Success, NewLoaded); | 
 |   assert(Success && NewLoaded); | 
 |  | 
 |   Loaded->addIncoming(NewLoaded, LoopBB); | 
 |  | 
 |   Builder.CreateCondBr(Success, ExitBB, LoopBB); | 
 |  | 
 |   Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
 |   return NewLoaded; | 
 | } | 
 |  | 
 | bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { | 
 |   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
 |   unsigned ValueSize = getAtomicOpSize(CI); | 
 |  | 
 |   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { | 
 |   default: | 
 |     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); | 
 |   case TargetLoweringBase::AtomicExpansionKind::None: | 
 |     if (ValueSize < MinCASSize) | 
 |       expandPartwordCmpXchg(CI); | 
 |     return false; | 
 |   case TargetLoweringBase::AtomicExpansionKind::LLSC: { | 
 |     assert(ValueSize >= MinCASSize && | 
 |            "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); | 
 |     return expandAtomicCmpXchg(CI); | 
 |   } | 
 |   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: | 
 |     expandAtomicCmpXchgToMaskedIntrinsic(CI); | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | // Note: This function is exposed externally by AtomicExpandUtils.h | 
 | bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, | 
 |                                     CreateCmpXchgInstFun CreateCmpXchg) { | 
 |   IRBuilder<> Builder(AI); | 
 |   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( | 
 |       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), | 
 |       [&](IRBuilder<> &Builder, Value *Loaded) { | 
 |         return performAtomicOp(AI->getOperation(), Builder, Loaded, | 
 |                                AI->getValOperand()); | 
 |       }, | 
 |       CreateCmpXchg); | 
 |  | 
 |   AI->replaceAllUsesWith(Loaded); | 
 |   AI->eraseFromParent(); | 
 |   return true; | 
 | } | 
 |  | 
 | // In order to use one of the sized library calls such as | 
 | // __atomic_fetch_add_4, the alignment must be sufficient, the size | 
 | // must be one of the potentially-specialized sizes, and the value | 
 | // type must actually exist in C on the target (otherwise, the | 
 | // function wouldn't actually be defined.) | 
 | static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, | 
 |                                   const DataLayout &DL) { | 
 |   // TODO: "LargestSize" is an approximation for "largest type that | 
 |   // you can express in C". It seems to be the case that int128 is | 
 |   // supported on all 64-bit platforms, otherwise only up to 64-bit | 
 |   // integers are supported. If we get this wrong, then we'll try to | 
 |   // call a sized libcall that doesn't actually exist. There should | 
 |   // really be some more reliable way in LLVM of determining integer | 
 |   // sizes which are valid in the target's C ABI... | 
 |   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; | 
 |   return Align >= Size && | 
 |          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && | 
 |          Size <= LargestSize; | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { | 
 |   static const RTLIB::Libcall Libcalls[6] = { | 
 |       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, | 
 |       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; | 
 |   unsigned Size = getAtomicOpSize(I); | 
 |   unsigned Align = getAtomicOpAlign(I); | 
 |  | 
 |   bool expanded = expandAtomicOpToLibcall( | 
 |       I, Size, Align, I->getPointerOperand(), nullptr, nullptr, | 
 |       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
 |   (void)expanded; | 
 |   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { | 
 |   static const RTLIB::Libcall Libcalls[6] = { | 
 |       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, | 
 |       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; | 
 |   unsigned Size = getAtomicOpSize(I); | 
 |   unsigned Align = getAtomicOpAlign(I); | 
 |  | 
 |   bool expanded = expandAtomicOpToLibcall( | 
 |       I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, | 
 |       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
 |   (void)expanded; | 
 |   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { | 
 |   static const RTLIB::Libcall Libcalls[6] = { | 
 |       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1, | 
 |       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, | 
 |       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; | 
 |   unsigned Size = getAtomicOpSize(I); | 
 |   unsigned Align = getAtomicOpAlign(I); | 
 |  | 
 |   bool expanded = expandAtomicOpToLibcall( | 
 |       I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), | 
 |       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), | 
 |       Libcalls); | 
 |   (void)expanded; | 
 |   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); | 
 | } | 
 |  | 
 | static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { | 
 |   static const RTLIB::Libcall LibcallsXchg[6] = { | 
 |       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1, | 
 |       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, | 
 |       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; | 
 |   static const RTLIB::Libcall LibcallsAdd[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1, | 
 |       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, | 
 |       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; | 
 |   static const RTLIB::Libcall LibcallsSub[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1, | 
 |       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, | 
 |       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; | 
 |   static const RTLIB::Libcall LibcallsAnd[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1, | 
 |       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, | 
 |       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; | 
 |   static const RTLIB::Libcall LibcallsOr[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1, | 
 |       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, | 
 |       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; | 
 |   static const RTLIB::Libcall LibcallsXor[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1, | 
 |       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, | 
 |       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; | 
 |   static const RTLIB::Libcall LibcallsNand[6] = { | 
 |       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1, | 
 |       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, | 
 |       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; | 
 |  | 
 |   switch (Op) { | 
 |   case AtomicRMWInst::BAD_BINOP: | 
 |     llvm_unreachable("Should not have BAD_BINOP."); | 
 |   case AtomicRMWInst::Xchg: | 
 |     return makeArrayRef(LibcallsXchg); | 
 |   case AtomicRMWInst::Add: | 
 |     return makeArrayRef(LibcallsAdd); | 
 |   case AtomicRMWInst::Sub: | 
 |     return makeArrayRef(LibcallsSub); | 
 |   case AtomicRMWInst::And: | 
 |     return makeArrayRef(LibcallsAnd); | 
 |   case AtomicRMWInst::Or: | 
 |     return makeArrayRef(LibcallsOr); | 
 |   case AtomicRMWInst::Xor: | 
 |     return makeArrayRef(LibcallsXor); | 
 |   case AtomicRMWInst::Nand: | 
 |     return makeArrayRef(LibcallsNand); | 
 |   case AtomicRMWInst::Max: | 
 |   case AtomicRMWInst::Min: | 
 |   case AtomicRMWInst::UMax: | 
 |   case AtomicRMWInst::UMin: | 
 |   case AtomicRMWInst::FAdd: | 
 |   case AtomicRMWInst::FSub: | 
 |     // No atomic libcalls are available for max/min/umax/umin. | 
 |     return {}; | 
 |   } | 
 |   llvm_unreachable("Unexpected AtomicRMW operation."); | 
 | } | 
 |  | 
 | void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { | 
 |   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); | 
 |  | 
 |   unsigned Size = getAtomicOpSize(I); | 
 |   unsigned Align = getAtomicOpAlign(I); | 
 |  | 
 |   bool Success = false; | 
 |   if (!Libcalls.empty()) | 
 |     Success = expandAtomicOpToLibcall( | 
 |         I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, | 
 |         I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
 |  | 
 |   // The expansion failed: either there were no libcalls at all for | 
 |   // the operation (min/max), or there were only size-specialized | 
 |   // libcalls (add/sub/etc) and we needed a generic. So, expand to a | 
 |   // CAS libcall, via a CAS loop, instead. | 
 |   if (!Success) { | 
 |     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, | 
 |                                        Value *Loaded, Value *NewVal, | 
 |                                        AtomicOrdering MemOpOrder, | 
 |                                        Value *&Success, Value *&NewLoaded) { | 
 |       // Create the CAS instruction normally... | 
 |       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( | 
 |           Addr, Loaded, NewVal, MemOpOrder, | 
 |           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); | 
 |       Success = Builder.CreateExtractValue(Pair, 1, "success"); | 
 |       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); | 
 |  | 
 |       // ...and then expand the CAS into a libcall. | 
 |       expandAtomicCASToLibcall(Pair); | 
 |     }); | 
 |   } | 
 | } | 
 |  | 
 | // A helper routine for the above expandAtomic*ToLibcall functions. | 
 | // | 
 | // 'Libcalls' contains an array of enum values for the particular | 
 | // ATOMIC libcalls to be emitted. All of the other arguments besides | 
 | // 'I' are extracted from the Instruction subclass by the | 
 | // caller. Depending on the particular call, some will be null. | 
 | bool AtomicExpand::expandAtomicOpToLibcall( | 
 |     Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, | 
 |     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, | 
 |     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { | 
 |   assert(Libcalls.size() == 6); | 
 |  | 
 |   LLVMContext &Ctx = I->getContext(); | 
 |   Module *M = I->getModule(); | 
 |   const DataLayout &DL = M->getDataLayout(); | 
 |   IRBuilder<> Builder(I); | 
 |   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); | 
 |  | 
 |   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); | 
 |   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); | 
 |  | 
 |   unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); | 
 |  | 
 |   // TODO: the "order" argument type is "int", not int32. So | 
 |   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. | 
 |   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); | 
 |   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); | 
 |   Constant *OrderingVal = | 
 |       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); | 
 |   Constant *Ordering2Val = nullptr; | 
 |   if (CASExpected) { | 
 |     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); | 
 |     Ordering2Val = | 
 |         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); | 
 |   } | 
 |   bool HasResult = I->getType() != Type::getVoidTy(Ctx); | 
 |  | 
 |   RTLIB::Libcall RTLibType; | 
 |   if (UseSizedLibcall) { | 
 |     switch (Size) { | 
 |     case 1: RTLibType = Libcalls[1]; break; | 
 |     case 2: RTLibType = Libcalls[2]; break; | 
 |     case 4: RTLibType = Libcalls[3]; break; | 
 |     case 8: RTLibType = Libcalls[4]; break; | 
 |     case 16: RTLibType = Libcalls[5]; break; | 
 |     } | 
 |   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { | 
 |     RTLibType = Libcalls[0]; | 
 |   } else { | 
 |     // Can't use sized function, and there's no generic for this | 
 |     // operation, so give up. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Build up the function call. There's two kinds. First, the sized | 
 |   // variants.  These calls are going to be one of the following (with | 
 |   // N=1,2,4,8,16): | 
 |   //  iN    __atomic_load_N(iN *ptr, int ordering) | 
 |   //  void  __atomic_store_N(iN *ptr, iN val, int ordering) | 
 |   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) | 
 |   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, | 
 |   //                                    int success_order, int failure_order) | 
 |   // | 
 |   // Note that these functions can be used for non-integer atomic | 
 |   // operations, the values just need to be bitcast to integers on the | 
 |   // way in and out. | 
 |   // | 
 |   // And, then, the generic variants. They look like the following: | 
 |   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering) | 
 |   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering) | 
 |   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret, | 
 |   //                          int ordering) | 
 |   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected, | 
 |   //                                  void *desired, int success_order, | 
 |   //                                  int failure_order) | 
 |   // | 
 |   // The different signatures are built up depending on the | 
 |   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' | 
 |   // variables. | 
 |  | 
 |   AllocaInst *AllocaCASExpected = nullptr; | 
 |   Value *AllocaCASExpected_i8 = nullptr; | 
 |   AllocaInst *AllocaValue = nullptr; | 
 |   Value *AllocaValue_i8 = nullptr; | 
 |   AllocaInst *AllocaResult = nullptr; | 
 |   Value *AllocaResult_i8 = nullptr; | 
 |  | 
 |   Type *ResultTy; | 
 |   SmallVector<Value *, 6> Args; | 
 |   AttributeList Attr; | 
 |  | 
 |   // 'size' argument. | 
 |   if (!UseSizedLibcall) { | 
 |     // Note, getIntPtrType is assumed equivalent to size_t. | 
 |     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); | 
 |   } | 
 |  | 
 |   // 'ptr' argument. | 
 |   // note: This assumes all address spaces share a common libfunc | 
 |   // implementation and that addresses are convertable.  For systems without | 
 |   // that property, we'd need to extend this mechanism to support AS-specific | 
 |   // families of atomic intrinsics. | 
 |   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); | 
 |   Value *PtrVal = Builder.CreateBitCast(PointerOperand, | 
 |                                         Type::getInt8PtrTy(Ctx, PtrTypeAS)); | 
 |   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); | 
 |   Args.push_back(PtrVal); | 
 |  | 
 |   // 'expected' argument, if present. | 
 |   if (CASExpected) { | 
 |     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); | 
 |     AllocaCASExpected->setAlignment(AllocaAlignment); | 
 |     unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace(); | 
 |  | 
 |     AllocaCASExpected_i8 = | 
 |       Builder.CreateBitCast(AllocaCASExpected, | 
 |                             Type::getInt8PtrTy(Ctx, AllocaAS)); | 
 |     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); | 
 |     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); | 
 |     Args.push_back(AllocaCASExpected_i8); | 
 |   } | 
 |  | 
 |   // 'val' argument ('desired' for cas), if present. | 
 |   if (ValueOperand) { | 
 |     if (UseSizedLibcall) { | 
 |       Value *IntValue = | 
 |           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); | 
 |       Args.push_back(IntValue); | 
 |     } else { | 
 |       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); | 
 |       AllocaValue->setAlignment(AllocaAlignment); | 
 |       AllocaValue_i8 = | 
 |           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); | 
 |       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); | 
 |       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); | 
 |       Args.push_back(AllocaValue_i8); | 
 |     } | 
 |   } | 
 |  | 
 |   // 'ret' argument. | 
 |   if (!CASExpected && HasResult && !UseSizedLibcall) { | 
 |     AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); | 
 |     AllocaResult->setAlignment(AllocaAlignment); | 
 |     unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace(); | 
 |     AllocaResult_i8 = | 
 |       Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); | 
 |     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); | 
 |     Args.push_back(AllocaResult_i8); | 
 |   } | 
 |  | 
 |   // 'ordering' ('success_order' for cas) argument. | 
 |   Args.push_back(OrderingVal); | 
 |  | 
 |   // 'failure_order' argument, if present. | 
 |   if (Ordering2Val) | 
 |     Args.push_back(Ordering2Val); | 
 |  | 
 |   // Now, the return type. | 
 |   if (CASExpected) { | 
 |     ResultTy = Type::getInt1Ty(Ctx); | 
 |     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); | 
 |   } else if (HasResult && UseSizedLibcall) | 
 |     ResultTy = SizedIntTy; | 
 |   else | 
 |     ResultTy = Type::getVoidTy(Ctx); | 
 |  | 
 |   // Done with setting up arguments and return types, create the call: | 
 |   SmallVector<Type *, 6> ArgTys; | 
 |   for (Value *Arg : Args) | 
 |     ArgTys.push_back(Arg->getType()); | 
 |   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); | 
 |   FunctionCallee LibcallFn = | 
 |       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); | 
 |   CallInst *Call = Builder.CreateCall(LibcallFn, Args); | 
 |   Call->setAttributes(Attr); | 
 |   Value *Result = Call; | 
 |  | 
 |   // And then, extract the results... | 
 |   if (ValueOperand && !UseSizedLibcall) | 
 |     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); | 
 |  | 
 |   if (CASExpected) { | 
 |     // The final result from the CAS is {load of 'expected' alloca, bool result | 
 |     // from call} | 
 |     Type *FinalResultTy = I->getType(); | 
 |     Value *V = UndefValue::get(FinalResultTy); | 
 |     Value *ExpectedOut = Builder.CreateAlignedLoad( | 
 |         CASExpected->getType(), AllocaCASExpected, AllocaAlignment); | 
 |     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); | 
 |     V = Builder.CreateInsertValue(V, ExpectedOut, 0); | 
 |     V = Builder.CreateInsertValue(V, Result, 1); | 
 |     I->replaceAllUsesWith(V); | 
 |   } else if (HasResult) { | 
 |     Value *V; | 
 |     if (UseSizedLibcall) | 
 |       V = Builder.CreateBitOrPointerCast(Result, I->getType()); | 
 |     else { | 
 |       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, | 
 |                                     AllocaAlignment); | 
 |       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); | 
 |     } | 
 |     I->replaceAllUsesWith(V); | 
 |   } | 
 |   I->eraseFromParent(); | 
 |   return true; | 
 | } |